
Information Sciences 171 (2005) 273–287

www.elsevier.com/locate/ins
Optical implementation of the
Kak neural network

A. Shortt a, J.G. Keating a,*, L. Moulinier b, C.N. Pannell b

a Department of Computer Science, National University of Ireland, Maynooth,

Maynooth, Co. Kildare, Ireland
b Building of Physical Sciences (Room 116), University of Kent, Canterbury, CT2 7NR, UK

Received 12 January 2002; received in revised form 27 February 2003; accepted 28 February 2004
Abstract

We show that the Kak neural network is suitable for optical implementation using a

bipolar matrix vector multiplier. We demonstrate how the CC4 algorithm, with suitable
modifications to the structure and training algorithm, may be used to build an optical

neural network implementing N-Parity.
� 2004 Elsevier Inc. All rights reserved.

Keywords: Kak neural network; Optical neural network; Optical computing

1. Introduction

Kak proposed an efficient three-layer feedforward neural network archi-

tecture, with several associated learning algorithms [1,2], that maps a set of p n-
dimensional binary vectors fnljl ¼ 1; 2; . . . ; pg into p m-dimensional binary
vectors ftljl ¼ 1; 2; . . . ; pg using a constructive procedure f ð�Þ for the mapping
* Co

E-m

0020-0

doi:10.
tl ¼ f ðnlÞ ð1Þ
rresponding author.

ail addresses: ashortt@cs.may.ie (A. Shortt), john.keating@may.ie (J.G. Keating).

255/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

1016/j.ins.2004.02.028

mailto:ashortt@cs.may.ie


274 A. Shortt et al. / Information Sciences 171 (2005) 273–287
where l ¼ 1; 2; . . . ; p. The training algorithms known as Corner Classification
(CC) Algorithms, are examples of prescriptive learning, and train the network

by isolating the corner in the n-dimensional cube of the inputs represented by
the input vector being learned. Corner classification is based on two novel
ideas, one enabling learning and one enabling generalization:

• Learning is achieved by mapping training vectors fnlg into the corners of a
multidimensional cube, isolating each corner of the cube, and associating

each corner with a hidden neuron. Systematic recombination of the hidden

neuron outputs produces the corresponding target output.

• Generalization is accomplished by invoking the concept of radius of gener-

alization, which enables the network to classify any input vectors within a
user-specified Hamming distance from a stored vector as belonging to the

same output class as that stored vector.

To date, four learning algorithms [1,2,3] have been proposed including CC1
which obtained the weights using the perceptron algorithm, CC2 where the

weights were obtained by data inspection but did not provide generalization,

CC3 which is a modified version of CC2 that provides excellent generalization
[4], and CC4 which is a fast prescriptive learning algorithm also with enhanced
generalization capabilities. Two other corner classification algorithms ALG1
and ALG2, have been proposed for the architecture [5]. These algorithms are

based on CC2 but demonstrate improved generalization for a variety of

benchmark simulations. Although the scalability of the Kak network has been

criticized [6] due the large number of hidden neurons in the network, there can

be no doubt that the prescriptive learning, guaranteed convergence properties,

superb generalization, and binary-weight architecture are the reasons the

architecture has recently warranted attention by the electronic hardware
community [7]. In a later section of this paper, we describe an optical archi-

tecture suitable for implementing the Kak neural network.

The Kak network is a feedforward, three-layer network of binary neurons,

where the input-layer merely distributes data. Training involves the calculation

of two integer-valued weight matrices (wh and wo) and is generally achieved

using the the most recent CC4 learning algorithm. wh is the weight matrix

between the input, or distribution, layer and the hidden layer and wo is the

weight matrix between the hidden layer and the output layer. The output of a
neuron in the hidden or output layer is given by
oðxÞ � 1 if x > s
0 if x6 s

�
ð2Þ
where x is the sum of weighted inputs to that neuron from the preceding layer

and s is some threshold. In practice, an additional constant value called a bias,
is input to each hidden-layer neuron and s is replaced with the value zero. This



A. Shortt et al. / Information Sciences 171 (2005) 273–287 275
may also be achieved by providing an extra input nl;nþ1 ¼ 1 for each input

pattern l ¼ 1; 2; . . . ; p.
The procedure provides an upper-bound on the number of hidden neurons,

with the number of input and output neurons being n and m, respectively. For
CC4 the number of hidden neurons is equal to the number of training samples,
with each hidden neuron corresponding to one training sample. The output is

the binary step function given in Eq. (2). Input and output layer weights are

prescribed by inspection of the training samples with a weight of 1, assigned if

the input neuron receives a 1 and )1 otherwise. The weights from the bias input

is calculated as follows [3]: Let s be the number of 1s in the training vector,

excluding the bias input, and let r be the desired radius of generalization. The
choice of r depends on the nature of the generalization sought, and a full
discussion on the criteria for particular choices of r has been fully researched
and presented for a range of problems [4]. The weight between the bias and the

hidden neuron corresponding to the training vector is r 
 sþ 1. Therefore for

any training vector nl of length nþ 1 bits including bias, we may write the

weight assignment matrix wh from the input, or distributive, layer to hidden

layer as
wh
ij ¼

1 if nl;j ¼ 1


1 if nl;j ¼ 0

r 
 sþ 1 if j ¼ n

8<
: ð3Þ
where nl;j is the jth element of the training vector nl. The weight between the

ith hidden neuron and jth output neuron wo
ij is determined using the rule
wo
ij ¼

1 if tl;j ¼ 1


1 if tl;j ¼ 0

�
ð4Þ
where j ¼ 1; 2; . . . ;m and i ¼ 1; 2; . . . ; k where k is the number of hidden neu-
rons, and tl;j is the output of the hidden neuron associated with bit j of training
input nl. The CC4 algorithm has been successfully [3] used for the XOR-
problem, time series prediction (Mackey-Glass chaotic time series), the Twin

Spirals Problem (pattern classification), and more recently as the core tech-
nology associated with an intelligent metasearch engine [8].
2. Bipolar modification to the CC4 algorithm

We are specifically interested in bipolar weight neural network architectures

as they are particularly suitable for optical implementation using optical ma-

trix-vector multipliers. With such systems all weights between neuron j in a

network layer and neuron i in a preceding layer wij satisfy the relation
wij 2 f1;
1g. Hardware implementations of such systems are less susceptible

to noise than architectures implementing analogue or digital weights. Such



276 A. Shortt et al. / Information Sciences 171 (2005) 273–287
systems typically have larger numbers of neurons per layer than non-discrete

weight systems as there are greater constraints on the positioning of hyper-

planes separating class boundaries.

We have highlighted the Kak model as an excellent example of a multilayer
system capable of acting as a function approximation network or pattern

classifier. It is obvious from Eq. (3), however, that the weights from the bias

neuron (necessary for network generalization) may not be bipolar as they are

dependent on the radius of generalization sought for a particular problem and

training set. This results in an integral-valued matrix wh rather than a bipolar

valued matrix. We have investigated several techniques for obtaining a bipolar

matrix wH from matrix wh and describe one technique here to demonstrate that

our bipolar matrix-vector processor is a suitable optical architecture for use
with the Kak neural network. In this section we present an alternative meth-

odology for computing the weights from the input layer to the hidden layer

thereby ensuring that a bipolar weight matrix is obtained. The approach is

similar to CC4 as network generalization is accomplished using the rule pro-

posed in Eq. (3). We shall refer to the modified algorithm as mCC4 in the rest of
this paper.

Consider the case where the input layer is not augmented with a bias neuron.

In this case wH is given by
wH
ij ¼

1 if nl;j ¼ 1


1 if nl;j ¼ 0

�
ð5Þ
where nl is of length n. As generalization is expected of the network a p-element
vector j ¼ ðj1; j2; . . . ; jpÞ is computed, and is based on the desired radius of

generalization for each training vector nl using the following rule
jl ¼ r 
 sl þ 1 ð6Þ
where l ¼ 1; 2; . . . ; p and sl is the number of 1s in the training vector nl. The
activation for the vector th of hidden layer neurons for some input vector n is

given in vector form by
th ¼ o nTwH
�

þ j
�

ð7Þ
where nTwH represents the matrix-vector product of the transpose of the input

vector n, and the bipolar weight matrix wH . The output t of the Kak network

for an input vector n is given by
t ¼ o tThw
o

� �
ð8Þ
where th is transpose of the hidden layer output vector obtained using Eq. (7).

The mCC4 algorithm is computationally light and does not significantly

impact on the time associated with training. Furthermore, the technique re-

duces the size of the weight matrix by one row as it uses a subtraction of a fixed
vector j from the result of the matrix-vector multiplication to obtain the same



Table 1

Kak network implementation for N -parity problem using CC4

Inputs Hidden-layer weights Hidden-layer summations Out

n1 n2 n3 s wh
1 wh

2 wh
3 wh

b r1 r2 r3 r4 r5 r6 r7 m0
0 0 1 1 )1 )1 1 0 1 )1 0 )1 0 )2 )1 1

0 1 0 1 )1 1 )1 0 )1 1 0 )1 )2 0 )1 1

0 1 1 2 )1 1 1 )1 0 0 1 )2 )1 )1 0 0

1 0 0 1 1 )1 )1 0 )1 )1 )2 1 0 0 )1 1

1 0 1 2 1 )1 1 )1 0 )2 )1 0 1 )1 0 0

1 1 0 2 1 1 )1 )1 )2 0 )1 0 )1 1 0 0

1 1 1 3 1 1 1 )2 )1 )1 0 )1 0 0 1 1

A. Shortt et al. / Information Sciences 171 (2005) 273–287 277
degree of generalization as CC4. The primary significance of mCC4, however, is
that it is guaranteed to have binary-valued weights which are suitable for

optical implementation using our acousto-optic matrix-vector processor, de-

scribed in the following section.

As an example, we investigate the Kak network’s ability to solve the N -
Parity Problem which is an illustration of hard learning typically used for

benchmarking Artificial Neural Network learning algorithms. The N -parity
training set consists of 2N training pairs, with each training pair comprising an
N -length input vector and a single binary target value. The 2N input vectors
Fig. 1. Kak implementation of the parity network.



Table 2

Modified Kak network implementation for N -parity problem using mCC4

Inputs Hidden weights Hidden summations Bias Out

n1 n2 n3 wH
1 wH

2 wH
3 r1 r2 r3 r4 r5 r6 r7 jl m0

0 0 1 )1 )1 1 1 )1 1 )1 1 )1 1 0 1

0 1 0 )1 1 )1 )1 1 1 )1 )1 1 1 0 1

0 1 1 )1 1 1 0 0 2 )2 0 0 2 )1 0

1 0 0 1 )1 )1 )1 )1 )1 1 1 1 1 0 1

1 0 1 1 )1 1 0 )2 0 0 2 0 2 )1 0

1 1 0 1 1 )1 )2 0 0 0 0 2 2 )1 0

1 1 1 1 1 1 )1 )1 1 )1 1 1 3 )2 1

278 A. Shortt et al. / Information Sciences 171 (2005) 273–287
represent all possible combinations of N binary numbers. If a given input

vector contains an odd number of 1s, the corresponding target value is 1;

otherwise the target value is 0. Table 1 shows the input vectors, hidden-layer

weights, hidden-layer summations and output targets for 3-parity determined

using the CC4 algorithm described earlier. Our prototype processor currently

can only perform computations on matrices with dimension up to 7 · 7,
therefore for convenience purposes, we have not included the input

n0 ¼ ð0; 0; 0Þ in the table as it always has the output 0. The architecture of the
network is given in Fig. 1. Table 2 gives the input vectors, hidden-layer weights,

hidden-layer summations, bias vector (j) and output targets for the same

problem using the mCC4 algorithm, and the network architecture is shown in
Fig. 2.
3. A bipolar matrix-vector multiplier

Let d ¼ ðd1; d2; . . . ; dnÞ where di 2 f0; 1g be a Boolean vector representing

the n-element input to a neural network or the output of some n-element
hidden layer in the network. Let w where wij 2 f
1; 0; 1g be an n� p bipolar
interconnection weight matrix between two consecutive neural network layers

of length n and p, respectively. The matrix-vector product r ¼ dw gives the

activation for the neurons in the succeeding layer. For the Kak neural network
described earlier, the neuron outputs are determined using Eq. (2).

The purpose of our matrix-vector processor, shown in Fig. 3, is to optically

compute the activation vector r in a single step, thereby exploiting the inherent

parallelism of the optical processing device to speed up the training and

operation of neural networks. The optical arrangement (discussed in detail in a

later section) combined with the properties of the AOU (Acousto-Optic Unit)

and a recording (CCD) camera implement the optical Matrix-Vector Multiplier

(MVM). The activation weights are represented using the LCD (Liquid Crystal
Display) panel shown in Fig. 3, and the input vector is represented using the



Fig. 2. Modified Kak implementation of the parity network.

Fig. 3. Optical arrangement for the matrix-vector processor.

A. Shortt et al. / Information Sciences 171 (2005) 273–287 279
AOU. Although, the magnitude of the weight elements may be represented

using intensity modulation, it is not possible to represent the sign of the ele-

ment in this manner. For such optical systems it is typical to compute
r ¼ dwþ 
 dw
 ð9Þ

where wþ and w
 are matrices of the magnitudes of positive and negative

weights of w, respectively, computed using
wþ
ij ¼

1 if wij ¼ 1

0 otherwise

�
ð10aÞ



280 A. Shortt et al. / Information Sciences 171 (2005) 273–287
w

ij ¼

1 if wij ¼ 
1
0 otherwise

�
ð10bÞ
The subtraction of the two resultant intermediary matrix-vector products in
Eq. (10) may be performed either electronically or using software depending on

the system architecture. The latter is used at present as this is a prototype

system. We utilize an alternative approach whereby we construct a new matrix

wH which is an augmentation of wþ and w
 and is given by
ð11Þ
and compute a single matrix-vector product
rH � dwH ¼ rH

1 ; r
H

2 ; . . . ; r
H

p ; r
H

pþ1; r
H

pþ2; . . . ; r
H

2p

� �
ð12Þ
rH is a 2p-element vector containing the positive and negative contributions to
the neuron activations, and is obtained using a single optical matrix-vector

processor operation. The advantage of our technique is to compute both
matrix-vector products, dwþ and dw
, in a single pass. The required activation

vector r may be obtained from rH using
r ¼ rH

1

�

 rH

pþ1; r
H

2 
 rH

pþ2; . . . ; r
H

p 
 rH

2p

�
ð13Þ
For the parity problem described above, we can calculate the hidden-layer
weight matrix wH

H and output-layer weight matrix wH

O as
ð14Þ
Our prototype processor is currently capable of performing accurate binary
calculations using matrices of maximum size 7 · 15, and vectors of variable

length, although we have used vectors of size 7 for these experiments. These



Fig. 4. Weights presented to LCD for the modified Kak 3-parity network for (a) hidden layer and

(b) output layer trained using our mCC4 algorithm.

A. Shortt et al. / Information Sciences 171 (2005) 273–287 281
constraints are primarily determined by the signal-to-noise ratios and optical
components for the current configuration. We have successfully conducted

experiments that implement the optical ANN for the 3-parity problem trained

with the mCC4 algorithm discussed in the previous section. It is, in fact, a

perfect multiplier as it provided correct MVMs for both hidden and output

weight matrices and all of the inputs shown in Table 2. The actual weights

displayed on the LCD for the hidden and output layers are shown in Fig. 4(a)

and (b), respectively.

For experimental purposes (i.e. the actual data sent to LCD), it was nec-
essary to calculate a 7 · 15 matrix for both wH

H and wH

O where unused weights

are set to zero, i.e.
wH

LCD ¼

0 0 1 ..
.
0 0 0 0 ..

.
0 ..

.
1 1 0 ..

.
0 0 0 0

0 1 0 ..
.
0 0 0 0 ..

.
0 ..

.
1 0 1 ..

.
0 0 0 0

0 1 1 ..
.
0 0 0 0 ..

.
0 ..

.
1 0 0 ..

.
0 0 0 0

1 0 0 ..
.
0 0 0 0 ..

.
0 ..

.
0 1 1 ..

.
0 0 0 0

1 0 1 ..
.
0 0 0 0 ..

.
0 ..

.
0 1 0 ..

.
0 0 0 0

1 1 0 ..
.
0 0 0 0 ..

.
0 ..

.
0 0 1 ..

.
0 0 0 0

1 1 1 ..
.
0 0 0 0 ..

.
0 ..

.
0 0 0 ..

.
0 0 0 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

:

ð15Þ
Columns 1–3 of wH

LCD contain the positive weights and columns 9–11 contain

the negative weights for the hidden-layer weight matrix wH

H . In our experiments

we always set the weight values of column 8 to zero as this column was used as
a reference pivot for later subtraction of the negative contributions from the

positive contributions in the resulting matrix vector multiplication (rH

CCD)

accumulated in the CCD detector. Computation of the final matrix-vector



Fig. 5. Sample input vectors (lower signal) presented to the AOU: (a) an 8-bit vector (b) a 60-bit

vector. The upper pulse train is used for system synchronization.

282 A. Shortt et al. / Information Sciences 171 (2005) 273–287
product (rCCD) was accomplished using a ‘‘MATLAB’’ peak-finding and nor-

malization function. This will be illustrated in Fig. 6, to be discussed below. At
a later stage the CCD will be replaced with a linear photodetector array and

perform the necessary subtractions in electronic hardware.

The optical arrangement is such that the values given in the matrix shown in

Eq. (15) are rotated 90� counterclockwise before presentation to the LCD

panel (i.e. the first column in the matrix becomes the bottom row of displayed

weights) as shown in Fig. 4. Vector input to the multiplier was accomplished by

sending a pulse train (0 represented by 0V and 1 represented by 1V) of
Fig. 6. Process involved in computing rCCD: (a) 2D MVM recorded on CCD, (b) 1D (sampled)

MVM, (c) normalization and extraction of r

CCD and (d) calculation of rCCD.



A. Shortt et al. / Information Sciences 171 (2005) 273–287 283
appropriate length to the AOU device. An eight-element vector representing all

1s is shown in Fig. 5(a). Using software control, it is possible to have longer

vectors as shown in Fig. 5(b), however, the modified Kak 3-parity neural

network experiments just required a seven-bit pulse train.
Fig. 6(a)–(d) shows the steps in the process to compute rCCD for a typical

recorded MVM obtained using our optical arrangement. We select a line at a

fixed xMVM from the recorded CCD image and produce an intensity plot. Using

the ‘‘MATLAB’’ peak-finding and normalization function, mentioned previ-

ously, we compute the 15-element vector r

CCD which is then used to compute

the 7-element vector rCCD that contains the result of the MVM. Irregularities

in the LCD panel mean that the intensity distribution will not be constant over

the modulating plane, therefore, and contributes to small inaccuracies in the
final vector rCCD (theoretically rCCD ¼ 0 for the example shown). It is possible

to compensate for these and other noise-related errors with post-processing,

however.
4. Experimental arrangement and system evaluation

Fig. 3 shows a schematic of the apparatus used in our experiments. The

light source S is focused through a spatial filter F in order to get a clean

beam as homogeneous as possible in the transverse plane. The light source is

placed at the focal distance of the lens L1 in order to produce a wide col-

limated beam incident on the LCD panel used to contain the network

weights as described in the previous section. The set of three lenses (L2, L3

and L4) following the rectangular LCD panel are used to modify the shape
of the beam in order to sufficiently illuminate the acousto-optic unit (AOU)

that essentially performs the multiplication. The first of the three lenses

orients the light beam in the vertical plane (or y-direction). The AOU is

placed at the focal distance of the lens L2 but in order to improve homo-

geneity in the diffraction (i.e. the multiplication) the beam has to fill the

complete height of the cell, therefore L2 is repositioned to obtain a 3 mm

high beam in the AOU.

Although the beam needs to be focused in the y-direction, an image of the
LCD panel has to be cast onto the AOU in the horizontal plane (or x-direction)
for the multiplication to take place, i.e. the LCD panel and the acousto-optic

cell are conjugate in the x-direction. As the AOU is a Bragg deflector the beam

must be incident with as little divergence as possible so that the entire beam

respects certain optical (i.e. Bragg) conditions. This result is achieved by

combining the effects of two lenses L3 and L4, as a single lens would introduce

too much divergence in the beam.

The first order of the diffraction pattern emerging from the AOU carries
the result of the MVM and this order is collected by the two lenses L4 and



Fig. 7. Experimental control and data acquisition.

284 A. Shortt et al. / Information Sciences 171 (2005) 273–287
L5, ignoring the zeroth order and the little energy located in the higher-

diffracted orders. Lens L5 focuses the beam in the x-direction in order to

obtain a vector (rCCD) representing the MVM. Lens L6 has the same purpose

as the lenses L3 and L4, i.e. an imaging action between the acousto-optic
device and the output plane defined by lens L5. The result is then acquired

by the CCD camera.

Experimental control for our prototype matrix-vector multiplier is

accomplished using two computers as shown in Fig. 7. The first computer,

PC1, is used to write the network weights to the LCD panel, the second,

PC2, delivers the vector to the AOU device and collects the results of the

MVM using the CCD camera. Unfortunately, their use cannot be combined

at this stage as the full screen of PC1 is necessary to drive the LCD panel (a
640 · 480 unit in parallel with the PC1’s VDU). PC2 is also responsible for

providing synchronization information, i.e. the camera needs to be triggered

to record as soon as the MVM occurs. Ideally a single PC for control is most

desirable as it would then be possible to run the multiplier without manual

intervention.

The custom-built AO Control unit is central to the operation of our

system, and is necessary because of the unique behavior of the acousto-optic

cell and the limitations of the CCD camera. The cell is 25 mm long and as
the speed of the acoustic wave carrying the vector signal propagates at 617

ms
1, it takes 40 ls to fill the cell. The instant the cell is filled with the vector
signal, the MVM occurs. In this short period, the CCD camera cannot ac-

quire sufficient photons in order to acquire an image. It is necessary, there-

fore, to repeatedly send the same information until sufficient photons are

acquired to obtain the result of the MVM. The AO Control stores a series of

pulses (delivered by PC2), with amplitude between 0 and 1 (i.e. 0V and 1V)

and repeatedly delivers this waveform to the AOU every 40 ls. Eventually, a
photodiode array with a very fast response time could replace the CCD

camera and acquire an image with one pulse. Fig. 5 shows a captured



Fig. 8. Weight configurations used for matrix-vector multiplication tests.

A. Shortt et al. / Information Sciences 171 (2005) 273–287 285
oscilloscope image of two sample input vectors presented to the AOU: (a) an

8-bit vector (b) a 60-bit vector. The lower waveforms contain the actual

vector signal and upper waveform is used for system synchronization, in

particular triggering the CCD.

In order to investigate the full capabilities of the system (apart from the

Kak 3-parity problem discussed in the previous section) we created many
sample binary valued 7 · 15 matrices, shown schematically in Fig. 8, to test

the device. Each of the matrices were arranged so that when multiplied by

the vector (1,1,1,1,1,1,1) and post-processed using the procedure shown in

Fig. 6 gave the resultant vector (0,0,0,0,0,0,0). The weight configurations

were also chosen to investigate the properties of the LCD which, from

earlier investigations, was known to be non-linear. The configurations also

provided scaling information and aided the choice of spacing between the

individual weight representations on the CCD to minimize errors in the
MVM due to overlaps. We are pleased to report, as shown by the results

presented in Fig. 9, that our acousto-optical multiplier is sufficiently robust

to perform accurate matrix vector multiplications using 7 · 7 bipolar

valued ()1,0,1), or 7 · 15 Boolean (0,1) valued matrices and (7 · 1) Boolean
vectors.



Fig. 9. Matrix-vector multiplications (from CCD) for the test weight matrices.

286 A. Shortt et al. / Information Sciences 171 (2005) 273–287
5. Summary

The guaranteed convergence properties, excellent generalization and instan-
taneous learning capabilities of the Kak neural network make it very appealing

for optical implementation. In this paper, we provided amodification of the Kak

CC4 algorithm in order to obtain a guaranteed bipolar weight matrix which was

suitable for implementation in hardware using our acousto-optic matrix-vector

multiplier. We provided successful results for an optical 3-parity problem based

on the Kak neural network using network weights derived using the modified

algorithm. Our hardware configuration is a prototype, however, and is currently

limited by system noise and low-quality components essentially reducing the size
of weight matrices that can be accurately used in matrix-vector multiplications.

We plan on investigating these limits of the architecture not that the system is

operational. The system is not fully automated and work is currently underway

to provide experimental control using a single PC and automate the training and

execution of larger, bipolar and continuous-valued neural networks.

References

[1] S.Kak,On training feedforwardneural networks, Pramana:A Journal of Physics 40 (1993) 35–42.

[2] S. Kak, New algorithms for training feedforward neural networks, Pattern Recognition Letters

15 (1994) 295–298.



A. Shortt et al. / Information Sciences 171 (2005) 273–287 287
[3] K.-W. Tang, S. Kak, A new corner classification approach to neural network training, Circuits,

Systems and Signal Processing 17 (1998) 459–469.

[4] S. Kak, On generalization by neural networks, Information Sciences 111 (1998) 293–302.

[5] K.B. Madineni, Two corner classification algorithms for training the Kak feedforward neural

network, Information Sciences 81 (1994) 229–234.

[6] P. Raina, Comparison of learning and generalization capabilities of the Kak and Backprop-

agation algorithms, Information Sciences 81 (1994) 261–274.

[7] J. Zhu, G. Milne, Implementing Kak neural networks on a reconfigurable computing platform,

in: R.W. Hartenstein, H. Gruenbacher (Eds.), FPL 2000, LNCS 1896, Springer-Verlag, (2000)

260–269.

[8] B. Shu, S. Kak, A neural network based intelligent metasearch engine, Information Sciences 120

(1999) 1–11.


	Optical implementation of the Kak neural network
	Introduction
	Bipolar modification to the CC4 algorithm
	A bipolar matrix-vector multiplier
	Experimental arrangement and system evaluation
	Summary
	References


