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ABSTRAC T

This paper describes two neural network programming
projects suitable for undergraduate students who hav e
already completed introductory courses in Programmin g
and Data Structures . It briefly outlines the structure an d
operation of Hopfield Networks from a data structur e
stand-point and demonstrates how these type of neura l
networks may be used to solve interesting problems like
Perelman's Nine Flies Problem . Although the Hopfield
model is well defined mathematically, students do no t
have to be very familiar with the mathematics of th e
model in order to use it to solve problems . Students ar e
actively encouraged to design modifications to thei r
implementations in order to obtain faster or more accurat e
solutions. Additionally, students are also expected t o
compare the neural network's performance with traditiona l
approaches, in order that they may appreciate th e
subtleties of both approaches . Sample results are provide d
from projects which have been completed during the las t
three-year period .

INTRODUCTION

The N-Queens Problem (NQP) is concerned with placin g
N queens on a square NxN chessboard in such a way that
no more than one queen appears in any row, column or
diagonal of the board . Despite the fact that only one quee n
appears in any row or column, finding one (or all)
solutions to the problem is a reasonably time-consumin g
task as there are still N! arrangements along the diagonal s
to be examined . The NQP is just one of man y
combinatorial optimization problems which have resiste d
centuries of attempts at providing analytical solutions ; i n
the case of the NQP, this requires finding some systemati c
method of placing a queen on the board in order t o
preclude attacks by future placements . Traditionally, thi s
problem may be solved using Backtracking (see
McCracken and Salmon, 1987), but in recent times ,
methods of obtaining solutions using Neural Networks
have appeared in the literature (Shackleford, 1989 ; Dory ,
1990 ; Mandziuk and Macukow, 1992) .
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An interesting variation of the NQP has been presented by
Perelman in his wonderful book "Fun with Maths and
Physics " . It is the so-called Nine Flies Problem (NFP) ,
and may also be solved by computer using Backtrackin g

or with a Hopfield network . The problem is as follows:
"Nine Flies are sitting on a chequered window curtain (se e
Figure 1) . They happened to have arranged themselves s o
that no two flies are in the same row, column or diagonal .
After a while three flies shifted into neighbouring ,
unoccupied cells and the other six stayed in the sam e
place. Curiously enough, the nine flies still continued t o
be arranged so that not a single fly appeared in the sam e
direct or oblique line . Find which three flies moved, an d
the new arrangement " (after Perelman, 1987) . The
proposed projects require students to solve the NQP and
the NFP using using both Hopfield Networks an d
Backtracking .

DO®O®DDDE DD®DGODOD
0® ®ADO00 000010000
GDromG.D D DGGDD®D
D®DGD®DDD D1D®D®DG D
DDD00000I 000000001
ODO® ®0DO 00000 190
nDGDDDDDD I DDD E1D D
DDDDODnGD ODDlo: 13 GO
®Dq®GOGOD qOGE0lDOD

Figure 1 . Perelman's Nine Flies Problem . The diagram on
the left shows the arrangement of the flies initially (th e
squares occupied by flies are shown as black squares) . The
diagram on the right shows which three flies moved, and th e
new arrangement .

Schweller and Plagman (1989) and Wallace and Wallace
(1991) agree that it is extremely important that students
are introduced to both interesting and active research area s
early in the curriculum, and strongly emphasise th e
importance of exposing them to neural networ k
programming . It also familiarizes students with a non -
traditional programming paradigm . They have found tha t
successful completion of such assignments gives students



a sense of accomplishment, demystifies neural network s
and encourages active student participation in meaningfu l
research and investigation. I believe that students will gain
a full appreciation of problem-solving using neura l
networks, only if they solve first problems using
traditional methodologies and then compare the method s
used with the connectionist approach .

Junior students who have completed introductory courses
in Programming and Data Structures should, having ha d
two lectures on associated background information ,
complete both projects in about 8-10 hours. The projects
may also be assigned to senior students taking a course i n
Neural Networks . These students could be given a
statement of the problem together with a number o f
introductory and more detailed references from which the y
may determine, for themselves, how both problems migh t
be solved .

HOPFIELD NETWORKS - BACKGROUN D

The Hopfield network (Hopfield and Tank, 1985, 1986 ;
Tank and Hopfield, 1987) is usually implemented as a
single layer of laterally connected binary-valued or analog
neurons . All neurons in the network function in the exac t
same manner: each neuron sums it's weighted inpu t
signals and produces an output based on it's transfe r
function . Discrete neurons compare the weighted sum of
inputs against some threshold and output a 1 if th e
weighted sum is greater than the threshold, otherwise a 0
is output . Continuous neurons, on the other hand, produc e
an output (usually between 0 and 1) based on the weighte d
sum and a transfer function which is usually a nonlinea r
symmetric sigmoid .

Hopfield networks have shown to be useful both as both
autoassociators and as optimizers . In order to create an
autoassociater, each neuron is connected to all other
neurons in the network, and is trained by directly
calculating the network weights, or connection matrix ,
using a qualitative application of the Hebb rule (Hebb ,
1949) . It is necessary, therefore, that all of the patterns to

Figure 2. A laterally-connected Neural Network . Note that
the input to each neuron is the output of all other neurons in
the network . These inputs are multiplied by the connection
weights (Tip which may be excitatory or inhibitory (afte r
Dory, 1990) .

be learned by the network must be available at the ver y
outset, and these patterns form the stable states of th e
network. In general, the maximum number of pattern s
which may be stored by a Hopfield network i s
approximately 0 .15 times the number of neurons in th e
network. When used as an optimizer, the network
structure and weights usually depend on specifi c
constraints associated with the problem unde r
consideration . Stable states of the network correspond to
solutions of the problem, and these states may be foun d
by following a path of energy minimization for the tota l
energy associated with the network .The rest of this sectio n
briefly summarises Hopfield's treatment of laterally -
connected neural networks.

Consider a laterally-connected network consisting of N
neurons as shown in Figure 2, and let Tij represent the
connection weight between neuron i and neuron j . Tij may
be either positive (an excitatory stimulus) or negative
(inhibitory stimulus) . The sum of the inputs (or the inpu t
potential) to any neuron i is given by

N
Ui = ITijVi, jai

	

(1)
j=1

where Vj is the output (or the output potential) of the
other N- 1 neurons in the network. In the case o f
continuous Hopfield neurons, the output potential i s
usually given by

where G is the gain of the sigmoid function . For
sufficiently large values of G, the neuron is of binary
character as V(U) is approximately represented by

_
O if U< 0

V(U) l if U> 0

Hopfield noticed a simularity between the network' s
behaviour and certain physical systems (Spin Glasses) ,
and applied some results from statistical physics in orde r
to examine the progression of the network towards
stability . He associated an energy, E, with the state of th e
network, and showed that as the network approache s
stability, the energy function decreases towards a loca l
minimum. For the network shown in Figure 2, the energ y
function is given by

N N

E_ - 1 E E TijV i Vj
2 j=1i= 1

This approach generated renewed interest in neural
networks and has, without doubt, been responsible for the
advancement of the field.

Training a Hopfield network to be used as an optimizer i s
a two stage process : (i) choose a network structure which

VN

	

V3 V1V2

1
V i =

(1 + e-GUi)
(2)

(3)
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appropriately models the problem, and (ii) find the
weights which minimize the network's energy function .
The latter task is usually the harder, as it necessitate s
finding an expression for the energy of the system, an d
then minimizing it . This is usually achieved b y
initializing the weights to some random value an d
repetedly adjusting them until the energy is minimized .
Weight adjustment should be performed systematicall y
using a method which ensures the network does not ge t
bound in some local energy well, for example, Simulated
Annealing .

Recently, this method was used effictively by Mandziuk
and Macukow (1992) to find solutions to the NQP . They
represented the NQP as a two-dimensional interconnecte d
array of Hopfield neurons whose stable states corresponde d
to solutions . The energy associated with this network is
given by

	

2E = AS] + BS2 + CS3 + n_S4

	

(4)

where A, B, C and n_ are positive constants, and SI, S2 ,
S3 and S4 are sums responsible for interactions betwee n
rows, columns and diagonals in the network . This method
is similar to that used by Hopfield and Tank (1985) t o
obtain solutions to the Travelling Salesman Problem .

NEURAL DATA STRUCTURES

I encourage students to use the data-structure approach
outlined by Shackleford (1989) to obtain solutions to th e
NQP and NFP rather than the mathematical metho d
described above . This approach is readily understood by
almost all students, and is especially useful to use with
students who have difficulty understanding the selection o f
an appropriate energy equation and method o f
minimization . Shackleford describes a method whereby N
neurons are combined to for€ n a laterally connected laye r
(as shown in Figure 1) with all of the Tij set to -1 . This
system of interconnections is known as lateral inhibition ,
a term borrowed from biologists . All neurons in the laye r
have the same gain, G, and recieve an additional excitator y
stimulus K which tends to drive each neuron's output
towards 1 . These type of neural data structures are called
N-flops as they have N stable states (one neuro n
outputting a 1 and all others outputting 0), and may b e
represented diagramaticaly as shown in Figure 3 .

If the neuron outputs are initialized to some rando m
starting value between 0 and 1, then with time, one
neuron will start to predominate, thus forcing othe r
neurons in the layer towards O. This in turn lessens th e
inhibitory effect on the predominating neuron and allow s
it to use the energy derived from the K input to drive it
towards 1 . This one-of-N behaviour is dependent on th e
values of G, K and N, otherwise more than one neuron
will predominate and the network will behave as an M-of -
N behaviour may be determined from parameter sensitivity
studies . Typical values of G and K for an 8-flop wit h
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Figure 3 . An N-flop (Shackleford, 1989) . The layer is just a
Hopfield network with connection weights equal to -1, i n
other words all lateral connections are inhibitory (depicted b y
circles on the inputs) . Every neuron in the network als o
recives the same excitatory input, K .

lateral inhibition are 7 .0 and 0.75 respectivel y
(Shackleford, 1989) .

N-flops may also have the additional consraint that th e
sum of all of the outputs will be close to some value ; in
the case of the N-flop this should be 1 . This constraint i s
called global inhibition, and is implemented as follows :
(i) compute the sum of all outputs, (ii) subtract the desire d
total value from this sum, and (iii) send the final value t o
an ihibitory input on all neurons in the N-flop . The ne t
effect of global inhibition is to drive the outpts towards 1 ,
while that of lateral inhibition is to ensure a one-of- N
state . In fact, Shackleford (1989) has shown that globa l
inhibition also increases the range of values of G and K
for which one-of-N states may be obtained .

To solve the NQP using N-flops, take N2 neurons and
arrange them in N rows of N neurons, with each neuro n
having inhibitory connections to the other neurons in it s
row, column and diagonals . This data structure is usuall y
referred to as an NxN-flop . Solutions to the NQP are
obtained by initializing all the neurons to some unstable
state, and repeatedly computing the next state of th e
network until stability is reached. In practice, however ,
the network may not be able to place all N queens on the
board, as it becomes stuck in some local energ y
minimum. This usually means that the network does no t
have sufficient energy to return from the energy well . An
NxN-flop may also be used to solve the NFP - it differ s
from the NQP in the way the data structure is used t o
obtain solutions .

THE N-QUEENS PROBLEM

Hopfield network solutions to the NQP should be readil y
found using the method outlined in the previous section
provided the following preliminary studies are carried ou t
first :

(i) Write and debug a program which implements an N-
flop for variable N, G and K.
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(ii) Ensure that the N-flop behaves as it should, ie . tha t
each of the N states has an equal probability of occurring .
A common mistake made by students is to update the N-
flop sequentially, which results in one state occurrin g
with a probability greater than 1/N. The students shoul d
be reminded that each neuron should be computing an
output continiously, and in parallel with the othe r
neurons . Parallelism may be simulated by repeatl y
choosing a neuron at random and computing its output -
iteration stops when stability is reached, ie . when th e
output of all neurons do not change with time .

(iii) Carry out a parameter sensitivity simulation of an 8 -
flop for both lateral inhibition and global inhibition cases ,
and confirm that this simulation produces similar result s
to those in the Shackleford paper for various combination s
of G and K.

(iv) Before using an 8x8-flop to find solutions to th e
NQP, students should carry out a parameter sensitivit y
simulation for to determine suitable values for G and K .
This is necessary because the 8x8-flop is actually 64
interdependent N-flops with N in the range 22 to 28 . Thi s

investigation shows that it is reasonable to use the sam e
G and K for every neuron in the network .

The network should be run a number of times (say 100 )
and the following items should be recorded : (i) the
percentage number of solutions found, (ii) the number o f
different solutions found and (iii) the time taken to find a
solution . The accumulation of these results can b e
combined with parameter sensitivity tests to produc e
network performance tables for both lateral and globa l
inhibition cases . The tables may then be used to compare

G K=0.5 K=1 .0 K=1.5 K=2.0 K=2 .5
2 .0 - - 7 21
2 .5 - 43 42 2 1
3 .0 - 39 43 38 20
3 .5 - 36 41 31 2 1
4 .0 - 35 36 29 20
4 .5 25 28 31 28 5
5 .0 24 32 22 27 2
5 .5 16 27 22 25 1
6 .0 13 24 18 23 1
6 .5 12 22 19 2 2
7 .0 13 22 19 1 9
7 .5 10 22 14 2 0
8 .0 9 25 16 1 9
8 .5 8 19 17 1 7
9 .0 8 22 15 1 4
9 .5 7 23 15 1 8
10 .0 9 19 15 15

Table 1. Simulation of Eight Queens Problem using a
Hopfield Network : Lateral Inhibition case . The table give s
the number of solutions found in 100 trials for variou s
combinations of the network parameters G and K . Dashe s
represent combinations of G and K for which no solution s
were found .
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the method against performance tables obtained using a
Backtracking method . Some of the simulation data for the
Eight Queens Problem are given in Tables 1, 2 and 3 .

G K=0.5 K=1.0 K=1 .5 K=2.0 K=2 . 5
2 .0 - - 42 44 4 9
2 .5 - 37 37 39 3 6
3 .0 - 37 41 36 4 1
3 .5 - 34 36 37 40
4 .0 29 30 32 34 3 8
4 .5 25 31 37 34 3 5
5 .0 26 30 31 32 3 2
5 .5 21 30 33 30 3 0
6 .0 18 27 35 29 2 5
6 .5 13 27 36 33 1 9
7 .0 12 27 41 25 2 0
7 .5 11 25 42 28 1 6
8 .0 12 26 42 28 1 7
8 .5 9 24 43 25 1 7
9 .0 10 25 40 30 1 4
9 .5 10 23 45 31 1 8
10 0_ 10 23 46 29 18

Table 2 . Simulation of Eight Queens Problem using a
Hopfield Network: Global Inhibition case . The table give s
the number of solutions found in 100 trials for various
combinations of the network parameters G and K . Dashes
represent combinations of G and K for which no solution s
were found .

Tables 1 and 2 show that both lateral and global
inhibition are equally good at obtaining solutions : in the
tests networks obtain solutions less than 50% of the time .
The global inhibition simulation, however, performe d
better over a greater range of G and K . The performance of
these networks are considerably worse than the one
described by Mandziuk and Macukow (1992), but th e
approach is more easily understood and implemented b y
students unfamiliar with this programming paradigm .

Shackleford (1989) makes the point that having examine d
of the solutions to the NQP it becomes evident tha t
queens are usually a Knight's Jump away from each other ,
and that if this was incorporated into the simulation it
might improve the quality of the results . This task has
been assigned as an additional exercise to students wh o
have had little difficulty with the other tasks . Each neuron
in the network gets an extra excitation from every othe r
neuron a knight's jump away in addition to its usual
inhibitory stimulus . Neurons on the border of th e
chessboard get an excitatory stimulus from wraparound
neurons a knight's jump away on the other borders .

Table 3 shows a network performance table for a globa l
inhibition simulation with an additional knight ' s jump
excitation applied to every neuron . The maximum
percentage number of solutions is 69% (K=2.5, G=2.5) ,
which is a significant increase over the case where no
excitation was used . It is evident from this simulation that
the performance of the network may be improve d
considerably with simple but elegant changes .
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G K=0.5 K1 .0 K= 1 .5 K=2.0 K=2 .5

2 .0 30 57 63 64
2 .5 11 59 59 63 69
3 .0 46 46 53 48 5 3
3 .5 38 52 46 47 46
4 .0 38 54 41 44 4 1
4 .5 41 36 50 42 4 1
5 .0 27 33 36 39 4 5
5 .5 34 45 49 35 3 8
6 .0 27 48 25 31 3 3
6 .5 36 40 42 41 26
7 .0 29 47 37 28 3 1
7 .5 28 47 25 37 22
8 .0 30 58 28 29 29
8 .5 21 51 44 28 3 5
9 .0 26 66 41 29 25
9 .5 27 63 41 30 25
10 .0 21 57 36 32 28

Table 3 . Simulation of Eight Queens Problem using a
Hopfield Network : Global Inhibition plus Knight's Jump
Excitation case . The table gives the number of solution s
found in 100 trials for various combinations of the networ k
parameters G and K . Dashes represent combinations of G and
K for which no solutions were found.

Having run the simulations, it should be obvious to th e
students that the critical difference between the Hopfield
Network and Backtracking is concerned with finding al l
solutions to the NQP . The Hopfield network does not
guarantee to deliver all solutions, whereas th e
Backtracking method does . This has also been found by
Mandziuk and Macukow (1992) who used a more
sophisticated method to obtain solutions than has been
outlined here . As N increases, however, the Hopfield
network tends to a single solution faster than th e
Backtracking method .

THE NINE FLIES PROBLEM

This problem may be modelled using a 9x9-flop wher e
each neuron represents a square on the curtain . An outpu t
close to one corresponds to the presence of a fly on th e
square, and an output close to zero corresponds to th e
absence of a fly . A neural network solution to the
problem may be found using the procedure shown i n
Figure 4 . This method produced the required solution after
four iterations of the procedure (about one minute using a
C implementation running under UNIX in a 486-base d
workstation) . Students should be able to make suitabl e
modifications to their NQP programs, in order to find a
solution to the NFP . As before, a parameter sensitivit y
test for a 9x9-flop should be caried out in order to find th e
most suitable values of G and K .

A Backtracking solution for the NFP was also developed ,
and a performance evaluation for both methods was carrie d
out by the students . The results show that th e
Backtracking method outperforms the Hopfield networ k

SIGCSE

	

Vol . 25 No . 4 Dec . 199 3
BULLETIN

Initialize neuron outputs with
a known solution .

Randomly choose three neurons
and fix their output at zero .

3

	

For each chosen neuron ,
initialize adjacent neuron s
with random output .

4

	

Iterate network unti l
stability has been reached

5

	

If solution has not been
found then goto 2

Figure 4 . A Procedure which uses a Hopfield Network to fin d
solutions to the Nine Flies Problem (NFP) .

approach on a number of counts : (i) it provides al l
solutions to the NFP, (ii) it is faster than the Hopfiel d
network, and (iii) the Hopfield network cannot determin e
if there is more than one solution . Using the Backtracking
method it was possible to find all possible starting state s
for the NFP and all solutions for each of these startin g

states . It is not possible to achieve this rate of succes s
using a Hopfield network .

CONCLUSIO N

I have described two neural network programming projects
suitable for undergraduate students - they are requi red to
solve the N-Queens Problem and Perelman's Nine Flie s
Problem using a Hopfield Network and compare th e
method's performance with a more traditional method . The
students determine for themselves the benefits an d
limitations of neural network approaches to proble m
solving.

This project has proved to be very successful as th e
students feel that they are participating in meaningful an d
interesting research in the area of Neural network
computing. They are encour aged (i) to familiarize
themselves with various approaches to problem solvin g
and (ii) investigate the benefits and limitations of eac h
approach and (iii) make and informed choice based on thei r

own research. I believe this research certainly highlight s
the importance of introducing students to ne w
programming paradigms early in the curriculum, an d
giving them the opportunity to carry out research tasks a s
early as possible.
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procedure tshape .draw(view : surface) ;
va r

x, y : real ;
xl, yl, x2, y2, x3, y3 : integer ;

begin
xl

	

trunc(xspot/view .rtn xfactor) ;
yl

	

trunc(yspot/view .rtn_yfactor) ;
x2 : =xl+trunc(side3/view .rtn_xfactor) ;
y2 : =yl ;
x : = (sgr(side3)+sqr(sidel)-sgr(side2) )

/(2*side3) ;
y :=sqrt(sqr(sidel) - sqr(x)) ;
x3 : = xl+trunc(x/view .rtn_xfactor) ;
y3 : =yl-trunc(y/view .rtn yfactor) ;

line(xl,yl,x2,y2) ;
line(x2,y2,x3,y3) ;
line(x3,y3,xl,yl) ;
readln ;

end ;

The above code shows a partial listin g
needed to draw a triangle . A full y
implemented program would allow graphical
representation of any of the four shape s
using any real-world dimensions . Whe n
complete, this graphing problem represent s
a fine classroom example of objec t
extensibility .

Reference s

Borland International Inc . (1990) .turbo
pasta- version 6 0 user's grid .
Scotts Valley, CA : Author .

Dixon C . (1991, June) . An introduction t o
object-oriented programming throug h
turbo pascal . SIGCSE .Bulle tin, pp . 33 -
35,38 .

Notice that (x3,y3) represents the 'top'

	

The Whitewater Group . (1988) .
point of the triangle so y is subtracted

	

Introduction to_o•ject-oriente d
from yl to go 'up' the screen .

	

124j.ramm%n cx . Evanston, I1 : Author .

Cshape, rshape, and sshape are all create d
in similar, and much easier, fashions . The
main program asks for the horizontal scree n
dimension which is passed into a surfac e
object

	

using

	

its

	

method

	

get scale ._
Similarly, the dimensions of the particula r
figures are retrieved and stored using
their inherited methods get_sides o r
get radius in the case of a circle .

va r
screen . surface ;
tri : tshape ;
sl, s2, s3 : real ;
size : real ;
x, y : real ;
grdriver, grmode : integer ;

begin
clrscr ;
write('What is the horizontal ') ;
write('dimension of the screen? ') ;
readln(size) ;
screen .get_scale(size) ;

write('What are the dimensions ') ;
write('of your triangle, largest') ;
write(' side last? ') ;
readln(sl, s2, s3) ;
tri .get sides(sl,s2,s3) ;

write('Where (in S. down) do you ') ;
write('want the base located ') ;
write(' left corner? ') ;
readln(x,y) ;
tri .position(x,y) ;

detectgraph(grdriver,grmode) ;
initgraph(grdriver,grmode) ;
tri .draw(screen) ;

***Hopfield Networks Continued From Page 37** *

The C programs used to obtain solutions to the NFP an d
NQP are available free of charge . Contact me at the above
address.

REFERENCES

Dory, R. A. (1990) Neural Networks, Computers i n
Physics, May/June, 324-328 .

Hebb, D. O . (1949) "The Organization of Behaviour" ,
Wiley, New York .

Hopfield, J . J. and D . W. Tank (1985) "Neural"
computation of decisions in optimization problems, Biol .
Cybern ., 52, 141-152.

Hopfield, J . J . and D . W . Tank (1986) Computing wit h
neural circuits : A model, Science, 233, 625-633 .

Mandziuk, J . and B . Macukow (1992) A neural network
designed to solve the N-Queens Problem, Biol . Cybern . ,
66, 375-379 .

McCracken, D .D. and W.I . Salmon (1987) "A second
course in Computer Science with MODULA-2" Joh n
Wiley and Sons, Toronto .

Perelman, P . (1987) "Fun with Maths and Physics", MI R
Publishers, Moscow .

Schweller, K. G. and A . L. Plagman (1989) Neural Nets
and Alphabets : Introducing Students to Neural Networks ,
SIGCSE Bulletin, 21, 3, 2-7 .

***Hopfield Networks Continued On Page 60****

SIGCSE

	

Vol . 25 No . 4 Dec . 199 3BULLETIN 40



6 0

don't complain . If you tell them
that, should you like it you migh t
buy 5 or 10, they get reall y
friendly, and problems of a
magnitude large enough will send a
friendly and well-trained (als o
well-dressed, but that's by th e
way) technician to fix you right
up, even though you haven' t
actually paid for the thing yet .
On the other hand, if you decid e
you want to buy the gizmo card an d
have paid for it, problems of a
sufficient magnitude will bring
out a technician, still well -
dressed but perhaps not as wel l
trained, to look at the equipmen t
for $200 an hour, with a minimum
of 2 hours most of the time . And
you also have to pay for hi s
travel . And his new watch . And buy
him lunch . And maybe, if the moo n
is aligned properly, he'll come
and stare at it for an hour or tw o
and try to fix whatever is wrong .

This is an exaggeration, o f
course, but you might be surprised
at how close this comes to the
truth sometimes . I can't say al l
companies are like this ; there
were some outstanding ones w e
worked with who were always very
helpful, regardless of the
financial status . But there are
those bad ones that pop up ever y
once in a while .

Overview

In general, I enjoyed my job
a great deal . I kept busy, and I
was happy with what I did (if the
other people working there were
happy with what I did is anothe r
question, but I like to think they
were) . I've learned quite a bit .
I've learned some skills which I
may not use again (three -
dimensional TTR displays are no t
in high demand, or so I'm told) ,
but

	

of

	

course

	

these

	

are
specialized things and it's no t
right to attach undue importanc e
to them .

On the other hand, though ,
what is of importance are thos e
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things you can't really put on a
resume--autonomy, confidence, th e
ability to learn (learn quickly ,
on occasion), and all of those
other warm glowing things which
sound like an Army commercial, but
really are of great importance i n
a job situation . They may not land
you a job, but they certainly wil l
keep you in the one you get, from
my limited point of view .

All of the students I know a t
the SSC seem to have a lot of
strength of character . I like t o
think that it's because of the
program--we really are working o n
parts of projects that people al l
over the world are going to b e
concerned with, and we didn't d o
things which are unimportant an d
lead nowhere (well, sometimes w e
did, that's called evaluation ,
though, and doing evaluation wor k
on a product that will not be use d
again is sort of why you do it t o
begin with) . Overall, there's a
sense (which I think is justified )
that we are important, and we d o
contribute something tangible t o
the premier science project i n
existence .
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