Hopfield Networks, Neural Data Structures and the Nine Flies Problem:
Neural Network Programming Projects for Undergraduates

John G. Keating

Department of Computer Science,
St. Patrick's College, Maynooth, Co. Kildare, IRELAND.

INKEATING@VAX1.MAY.IE

ABSTRACT

This paper describes two neural network programming
projects suitable for undergraduate students who have
already completed introductory courses in Programming
and Data Structures. It briefly outlines the structure and
operation of Hopfield Networks from a data structure
stand-point and demonstrates how these rype of neural
networks may be used to solve interesting problems like
Perelinan's Nine Flies Problem. Although the Hopfield
model is well defined mathematically, students do not
have to be very familiar with the mathematics of the
model in order to use it to solve problems. Students are
actively encouraged to design modifications to their
implementations in order to obtain faster or more accurate
solutions. Additionally, students are also expecied (o
compare the neural network’s performance with iraditional
approaches, in order that they may appreciate the
subileties of both approaches. Sample results are provided
from projects which have been completed during the last
three-year period.

INTRODUCTION

The N-Queens Problem (NQP) is concerned with placing
N queens on a square NXN chessboard in such a way that
no more than one queen appears in any row, column or
diagonal of the board. Despite the fact that only one queen
appears in any row or column, finding one (or all)
solutions to the problem is a reasonably time-consuming
task as there are still N! arrangements along the diagonals
to be examined. The NQP is just one of many
combinatorial optimization problems which have resisted
centuries of attempts at providing analytical solutions; in
the case of the NQP, this requires finding some systematic
method of placing a queen on the board in order to
preclude attacks by future placements. Traditionally, this
problem may be solved using Backtracking (see
McCracken and Salmon, 1987), but in recent times,
methods of obtaining solutions using Neural Networks
have appeared in the literature (Shackleford, 1989; Dory,
1990; Mandziuk and Macukow, 1992).

SIGCSE

BULLETIN Vol. 25 No. 4

Dec. 1993

33

An interesting variation of the NQP has been presented by
Perelman in his wonderful book "Fun with Maths and
Physics". It is the so-called Nine Flies Problem (NFP),
and may also be solved by computer using Backtracking
or with a Hopfield network. The problem is as follows:
"Nine Flies are sitting on a chequered window curtain (see
Figure 1). They happened to have arranged themselves so
that no two flies are in the same row, column or diagonal.
After a while three flies shifted into neighbouring,
unoccupied cells and the other six stayed in the same
place. Curiously enough, the nine flies still continued to
be arranged so that not a single fly appeared in the same
direct or oblique line. Find which three flies moved, and
the new arrangement” (after Perelman, 1987). The
proposed projects require students to solve the NQP and
the NFP using using both Hopfield Networks and
Backtracking.

DI-IDIDID DIII%EDID
LIE
in ED
L]
Al LIE]

L=
EIII_'.]EEIIEJID DIDIDI[]IE]

Figure 1. Perelman's Nine Flies Problem. The diagram on
the left shows the arrangement of the flies initially (the
squares occupied by flies are shown as black squares). The
diagram on the right shows which three flies moved, and the
new arrangement.

L]
[
[]

DﬁD@DﬁD
ﬁﬂﬁ.ﬁﬂﬁ
I 1E 1
DEDEIED

LIE
n
L

ﬂDID@D%
ENENEN N
e

Schweller and Plagman (1989) and Wallace and Wallace
{1991) agree that it is extremely important that students
are introduced to both interesting and active research areas
early in the curriculum, and strongly emphasise the
importance of exposing them to neural network
programming. It also familiarizes students with a non-
traditional programming paradigm. They have found that
successful completion of such assignments gives students

a sense of accomplishment, demystifies neural networks
and encourages active student participation in meaningful
research and investigation. I believe that students will gain
a full appreciation of problem-solving using neural
networks, only if they solve first problems using
traditional methodologies and then compare the methods
used with the connectionist approach,

Junior students who have completed introductory courses
in Programming and Data Structures should, having had
two lectures on associated background information,
complete both projects in about 8-10 hours. The projects
may also be assigned to senior students taking a course in
Neural Networks. These students could be given a
statement of the problem together with a number of
introductory and more detailed references from which they
may determine, for themselves, how both problems might
be solved.

HOPFIELD NETWORKS - BACKGROUND

The Hopfield network (Hopfield and Tank, 1985, 1986;
Tank and Hopfield, 1987) is usually implemented as a
single layer of laterally connected binary-valued or analog
neurons. All neurons in the network function in the exact
same manner: each neuron sums it's weighted input
signals and produces an output based on it's transfer
function. Discrete neurons compare the weighted sum of
inputs against some threshold and output a 1 if the
weighted sum is greater than the threshold, otherwise a
is output. Continuous neurons, on the other hand, produce
an output (usually between O and 1) based on the weighted
sum and a transfer function which is usvally a nonlinear
symmetric sigmoid.

Hopfield networks have shown to be useful both as both
autoassociators and as optimizers. In order to create an
autoassociater, each neuron is connected to all other
neurons in the network, and is trained by directly
calculating the network weights, or connection matrix,
using a qualitative application of the Hebb rule (Hebb,
1949). 1t is necessary, therefore, that all of the patterns to

T— L

L ?—
i .

-

VN VS V2 V1
Figure 2. A laterally-connected Neural Network. Note that
the input to each neuron is the output of all other neurons in
the network. These inputs are multiplied by the connection
weights (1'jj) which may be excitatory or inhibitory (after
Dory, 1990).

SIGCSE . 1993
BULLETIN Vol. 25 No. 4 Dec 9

34

be learned by the network must be available at the very
outset, and these patterns form the stable states of the
network. In general, the maximum number of patterns
which may be stored by a Hopfield network is
approximately .15 times the number of neurons in the
network. When used as an optimizer, the network
structure and weights usunally depend on specific
constraints associated with the problem under
consideration. Stable states of the network correspond to
solutions of the problem, and these states may be found
by following a path of energy minimization for the total
energy associated with the network. The rest of this section
briefly summarises Hopfield's treatment of laterally-
connected neural networks.

Consider a laterally-connected network consisting of N
neurons as shown in Figure 2, and let T; represent the
connection weight between neuron / and neuron j. Tj; may
be either positive (an excitatory stimulus) or negative
(inhibitory stimulus). The sum of the inputs (or the input
potential) to any neuron i is given by

N

ZTUV,, J#i
J...

D

where Vj is the output (or the output potential) of the
other N-1 neurons in the network. In the case of
continuous Hopfield neurons, the output potential is
usually given by

1

T+ 005 @

Vi=

where G is the gain of the sigmoid function. For
sufficiently large values of G, the neuron is of binary
character as V(U) is approximately represented by

0if U<0
VU= 1ifu>0
Hopfield noticed a simularity between the network's
behaviour and certain physical systems (Spin Glasses),
and applied some results from statistical physics in order
to examine the progression of the network towards
stability. He associated an energy, E, with the state of the
network, and showed that as the network approaches
stability, the energy function decreases towards a local
minimum. For the network shown in Figure 2, the cnergy
function is given by

ivj 3

an

1
=§§

This approach generated renewed interest in neural
networks and has, without doubt, been responsible for the
advancement of the field.

Training a Hopfield network to be used as an optimizer is
a two stage process: (i) choose a network structure which

appropriately models the problem, and (ii) find the
weights which minimize the network's energy function,
The latter task is usually the harder, as it necessitates
finding an expression for the energy of the system, and
then minimizing it. This is usuvally achieved by
initializing the weights to some random value and
repetedly adjusting them until the energy is minimized.
Weight adjustment should be performed systematically
using a method which ensures the network does not get
bound in some local energy well, for example, Simulated
Annealing.

Recently, this method was used effictively by Mandziuk
and Macukow (1992) to find solutions to the NQP. They
represented the NQP as a two-dimensional interconnected
array of Hopfield neurons whose stable states corresponded
to solutions. The energy associated with this network is
given by

2E = AS; + BSy + CS3 +n_S4 4)
where A, B, C and n_ are positive constants, and Sy, Sy,
S3 and §4 are sums responsible for interactions between
rows, columns and diagonals in the network. This method
is similar to that used by Hopfield and Tank (1985) to
obtain solutions to the Travelling Salesman Problem.

NEURAL DATA STRUCTURES

I encourage students to use the data-structure approach
outlined by Shackleford (1989) to obtain solutions to the
NQP and NFEP rather than the mathematical method
described above. This approach is readily understood by
almost all students, and is especially useful to use with
students who have difficulty understanding the selection of
an appropriate energy equation and method of
minimization. Shackleford describes a method whereby N
neurons are combined to form a laterally connected layer
(as shown in Figure 1) with all of the Tj; set to -1. This
system of interconnections is known as lateral inhibition,
a term borrowed from biologists. All neurons in the layer
have the same gain, &, and recieve an additional excitatory
stimulus X which tends to drive each neuron's output
towards 1. These type of neural data structures are called
N-flops as they have N stable states (one neuron
outputting a 1 and all others outputting 0), and may be
represented diagramaticaly as shown in Figure 3.

If the neuron outputs are initialized to some random
starting value between O and 1, then with time, one
neuron will start to predominate, thus forcing other
neurons in the layer towards 0. This in turn lessens the
inhibitory effect on the predominating neuron and allows
it to use the energy derived from the X input to drive it
towards 1. This one-of-¥ behaviour is dependent on the
values of G, K and N, otherwise more than one neuron
will predominate and the network will behave as an M-of-
N behaviour may be determined from parameter sensitivity
studies. Typical values of G and XK for an 8-flop with

SIGCSE
BULLETIN Vol. 25 No. 4 Dec. 1993

35

| ¢

W Y Y Vi
Figure 3. An N-flop (Shackleford, 1989). The layer is just a
Hopfield network with connection weights equal to -1, in
other words all lateral connections are inhibitory (depicted by
circles on the inputs). Every neuron in the network also

recives the same excitatory input, K.

lateral inhibition are 7.0 and 0.75 respectively
(Shackleford, 1989),

N-flops may also have the additional consraint that the
sum of all of the outputs will be close to some value; in
the case of the N-flop this should be 1. This constraint is
called global inhibition, and is implemented as follows:
(i) compute the sum of all outputs, (ii) subtract the desired
total value from this sum, and (iii) send the final value to
an ihibitory input on all neurons in the N-flop. The net
effect of global inhibition is to drive the outpts towards 1,
while that of lateral inhibition is to ensure a one-of-N
state. In fact, Shackleford (1989) has shown that global
inhibition also increases the range of values of G and K
for which one-of-N states may be obtained.

To solve the NQP using N-flops, take N2 neurons and
arrange them in N rows of N neurons, with each neuron
having inhibitory connections to the other neurons in its
row, column and diagonals. This data structure is usually
referred to as an NxN-flop. Solutions to the NQP are
obtained by initializing all the neurons to some unstable
state, and repcatedly computing the next state of the
network until stability is reached. In practice, however,
the network may not be able to place all N queens on the
board, as it becomes stuck in some local energy
minimum. This usually means that the network does not
have sufficient energy to return from the energy well. An
NxN-flop may also be used to solve the NFP - it differs
from the NQP in the way the data structure is used to
obtain solutions.

THE N-QUEENS PROBLEM

Hopfield network solutions to the NQP should be readily
found using the method outlined in the previous section
provided the following preliminary studies are carried out
first:

(i) Write and debug a program which implements an N-
flop for variable N, G and K.

(i) Ensure that the N-flop behaves as it should, ie, that
each of the N states has an equal probability of occurting.
A common mistake made by students is to update the N-
flop sequentially, which results in one state occurring
with a probability greater than 1/N. The students should
be reminded that each neuron should be computing an
output continiously, and in parallel with the other
neurons. Parallelism may be simulated by repeatly
choosing a neuron at random and computing its output -
iteration stops when stability is reached, ie. when the
output of all neurons do not change with time.

(iii) Carry out a parameter sensitivity simulation of an 8-
flop for both lateral inhibition and global inhibition cases,
and confirm that this simulation produces similar results
to those in the Shackleford paper for various combinations
of Gand X.

(iv) Before using an 8x8-flop to find solutions to the
NQP, students should carry out a parameter sensitivity
simulation for to determine suitable values for G and K.
This is necessary because the 8x8-flop is actually 64
interdependent N-flops with N in the range 22 to 28. This
investigation shows that it is reasonable to use the same
G and K for every neuron in the network.

The network should be run a number of times (say 100)
and the following items should be recorded: (i) the
percentage number of solutions found, (ii) the number of
different solutions found and (iii) the time taken to find a
solution. The accumulation of these results can be
combined with parameter sensitivity tests to produce
neiwork performance tables for both lateral and global
inhibition cases. The tables may then be used to compare

G K=05 K=10 K=15 K=20 K=25
2.0 - - - 7 21
2.5 - - 43 42 21
3.0 - 39 43 38 20
3.5 - 36 41 31 21
4.0 - 35 36 29 20
4.5 25 28 31 28 5
5.0 24 32 22 27 2
5.5 16 27 22 25 1
6.0 13 24 18 23 1
6.5 12 22 19 22 -
7.0 13 22 19 19 -
1.5 10 22 14 20 -
8.0 9 25 16 19 -
8.5 8 19 17 17 -
9.0 8 22 15 14 -
9.5 7 23 15 18 -
10.0 9 19 15 15 -

Table 1. Simulation of Eight Queens Problem using a
Hopfield Network: Lateral Inhibition case. The table gives
the number of solutions found in 100 trials for various
combinations of the network parameters G and K. Dashes
represent combinations of G and K for which no solutions
were found.

SIGCSE

BULLETIN Vol

25 No. 4 Dec. 1993

36

the method against performance tables obtained using a
Backtracking method. Some of the simulation data for the
Eight Queens Problem are given in Tables 1, 2 and 3.

G K=05 K=10 K=15 K=20 K=25
2.0 - - 42 44 49
2.5 - 37 37 39 36
3.0 - 37 41 36 41
3.5 - 34 36 37 40
4.0 29 30 32 34 38
4.5 25 31 37 34 35
5.0 26 30 31 32 32
5.5 21 30 33 30 30
6.0 18 27 35 29 25
6.5 13 27 36 33 19
7.0 12 27 41 25 20
7.5 11 25 42 28 16
8.0 12 26 42 28 17
8.5 9 24 43 25 17
9.0 10 25 40 30 14
9.5 10 23 45 31 18
10.0 10 23 46 29 18

Table 2. Simulation of Eight Queens Problem using a
Hopfield Network: Global Inhibition case. The table gives
the number of solutions found in 100 ftrials for various
combinations of the network parameters G and K. Dashes
represent combinations of G and K for which no solutions
were found.

Tables 1 and 2 show that both lateral and global
inhibition are equally good at obtaining solutions: in the
tests networks obtain solutions less than 50% of the time.
The global inhibition simulation, however, performed
better over a greater range of G and K., The performance of
these networks arc considerably worse than the one
described by Mandziuk and Macukow (1992), but the
approach is more easily understood and implemented by
students unfamiliar with this programming paradigm.

Shackleford (1989) makes the point that having examined
of the solutions to the NQP it becomes evident that
quecns are usually a Knight's Jump away from each other,
and that if this was incorporated into the simulation it
might improve the quality of the results. This task has
been assigned as an additional exercise to students who
have had little difficulty with the other tasks. Each neuron
in the network gets an extra excitation from every other
neuron a knight's jump away in addition to its usual
inhibitory stimulus. Neurons on the border of the
chessboard get an excitatory stimulus from wraparound
neurons a knight's jump away on the other borders.

Table 3 shows a network performance table for a global
inhibition simulation with an additional knight's jump
excitation applied to every neuron. The maximum
percentage number of solutions is 69% (K'=2.5, G=2.5),
which is a significant increase over the case where no
excitation was used. It is evident from this simulation that
the performance of the network may be improved
considerably with simple but elegant changes.

G K=05 K=10 K=15 K=20 K=25
2.0 - 30 57 63 64
2.5 11 59 59 63 69
3.0 46 46 53 48 53
3.5 38 52 46 47 46
4.0 38 54 41 44 4]
4.5 41 36 50 42 41
5.0 27 33 36 39 45
5.5 34 45 49 35 38
6.0 27 48 25 31 33
6.5 36 40 42 41 26
7.0 29 47 37 28 31
7.5 28 47 25 37 22
8.0 30 58 28 29 29
8.5 21 51 44 28 35
9.0 26 66 41 29 25
9.5 27 63 41 30 25
10.0 21 57 36 32 28

Table 3. Simulation of Eight Queens Problem using a
Hopfield Network: Global Inhibition plus Knight's Jump
Excitation case. The table gives the number of solutions
found in 100 trials for various combinations of the network
parameters G and K. Dashes represent combinations of G and
K for which no solutions were found.

Having run the simulations, it should be obvious to the
students that the critical difference between the Hopfield
Network and Backtracking is concerned with finding all
solutions to the NQP. The Hopfield network does not
guarantee to deliver all solutions, whercas the
Backtracking method does. This has also been found by
Mandziuk and Macukow (1992) who used a more
sophisticated method to obtain solutions than has been
outlined here. As N increases, however, the Hopfield
network tends to a single solution faster than the
Backtracking method.

THE NINE FLIES PROBLEM

This problem may be modelled using a 9x9-flop where
each neuron represents a square on the curtain. An output
close to one corresponds to the presence of a fly on the
square, and an output close to zero corresponds o the
absence of a fly. A neural network solution to the
problem may be found using the procedure shown in
Figure 4. This method produced the required solution after
four iterations of the procedure (about one minute using a
C implementation running under UNIX in a 486-based
workstation). Students should be able to make suitable
modifications to their NQP programs, in order to find a
solution to the NFP, As before, a parameter sensilivity
test for a 9x9-flop should be caried out in order to find the
most suitable values of G and K.

A Backtracking solution for the NFP was also developed,
and a performance evaluation for both methods was carried
out by the students, The results show that the
Backtracking method outperforms the Hopfield network

guGS_SEEﬁN Vol. 25 HNo. 4 Dec. 1993

37

1 Initialize neuron outputs with
a known solution.

V]

Randomly choose three neurons
and fix their output at zero.

3 For each chosen neuron,
initialize adjacent neurons
with random output.

4 Iterate network until
stability has been reached

5 If solution has not been
found then gocto 1

Figure 4. A Procedure which uses a Hopfield Network to find
solutions to the Nine Flies Problem (NFP).

approach on a number of counts: (i) it provides all
solutions to the NFP, (ii) it is faster than the Hopfield
network, and (iii) the Hopfield network cannot determine
if there is more than one solution. Using the Backtracking
method it was possible to find all possible starting states
for the NFP and all solutions for each of these starting
states. It is not possible to achieve this rate of success
using a Hopfield network.

CONCLUSION

I have described two neural network programming projects
suitable for undergraduate students - they are required to
solve the N-Queens Problem and Perelman's Nine Flies
Problem using a Hopfield Network and compare the
method’s performance with a more traditional method. The
students determine for themselves the benefits and
limitations of neural network approaches to problem
solving.

This project has proved to be very successful as the
students feel that they are participating in meaningful and
interesting research in the area of Neural network
computing. They are encouraged (i) to familiarize
themselves with various approaches to problem solving
and (ii) investigate the benefits and limitations of each
approach and (iil) make and informed choice based on their
own research. I believe this research certainly highlights
the importance of introducing students (0 new
programming paradigms early in the curriculum, and
giving them the opportunity to carry out research tasks as
early as possible.

ACKNOWLEDGEMENTS

I would like to express my thanks to my students for their
valuable comments and contributions over the past three
years.

*+++Hopfield Networks Continued On Page 0 kidd

procedure tshape.draw(view surface);
var
X, V¥ real;
x1l, vl, x2, y2, x3, y3 integer;
begin
xl = trunc(xspot/view.rtn_xfactor);
yl := trunc(yspot/view.rtn yfactor);
x2:=xl+trunc(side3/view.rtn xfactor);
y2:=yl;
x:=(sqgr(side3)+sgr (sidel) ~sqr(side2))

/(2*side3) ;
y:=sqrt (sqr(sidel) - sqr(x)):
x3:=xl+trunc(x/view.rtn_xfactor);
y3:=yl-trunc(y/view.rtn yfactor);

line (xl,yl,x2,vy2);
line (x2,y2,%x3,y3);
line(x3,y3,x1,yl);
readln;

end;

Notice that (x3,y3) represents the 'top'
point of the triangle so y is subtracted
from yl to go 'up' the screen.

Cshape, rshape, and sshape are all created
in similar, and much easier, fashions. The
main program asks for the horizontal screen
dimension which 1is passed into a surface
object using its method get scale.
Similarly, the dimensions of the particular
figures are retrieved and stored using
their inherited methods get_sides or
get_radius in the case of a circle.

var

screen surface;

tri tshape;

sl, s2, s3 real;

size real;

X, ¥y real;

grdriver, grmode integer;
begin

clrscr;

write ('What is the horizontal ');
write ('dimension of the screen? ');
readln (size) ;

screen.get scale(size);

write ('What are the dimensions ');
")

write ('of your triangle, largest
write (' side last? ');

readln(sl, s2, s3);
tri.get_sides(sl,s2,s3);

write ('Where (in & down) do you ');

write ('want the base located ') ;
write('— left corner? ');
readln(x,y);

tri.position(x,y);

detectgraph(grdriver, grmode) ;
initgraph(grdriver, grmode) ;
tri.draw(screen) ;

SIGCSE

BULLETIN Vol. 25 No. 4 Dec.

1993 40

The above code shows a partial listing
needed to draw a triangle. A fully
implemented program would allow graphical
representation of any of the four shapes

using any real-world dimensions. When
complete, this graphing problem represents
a fine classroom example of object

extensibility.

References

Borland International Inc. (1990) Turbo
] . 5.0 . Lde .
Scotts Valley, CA: Author.

Dixon C. (1991, June). An introduction to
object-oriented programming through

turbo pascal. SIGCSE RBulletin, pp.
35,38.

33-

The Whitewater Group. (1988).
1 ! . I .
programming. Evanston, Il: Author.

Hopfield Networks Continued From Page 37

The C programs used (o obtain solutions to the NFP and
NQP are available free of charge. Contact me at the above
address.

REFERENCES

Dory, R. A. (1990) Neural Networks, Computers in
Physics, May/June, 324-328.

Hebb, D. O. (1949) "The Organization of Behaviour",
Wiley, New York.

Hopfield, J. J. and D. W. Tank (1985) "Neural"
computation of decisions in optimization problems, Biol.
Cybern., 82, 141-152,

Hopfield, I. J. and D. W. Tank (1986) Computing with
nearal circuits: A model, Science, 233, 625-633.

Mandziuk, J. and B. Macukow (1992) A neural network
designed to solve the N-Queens Problem, Biol. Cybern.,
66, 375-379.

McCracken, D.D. and W.I. Salmon (1987) "A second
course in Computer Science with MODULA-2" John
Wiley and Sons, Toronto.

Perelman, P. (1987) "Fun with Maths and Physics", MIR
Publishers, Moscow.

Schweller, K. G. and A. L. Plagman (1989) Neural Nets
and Alphabets: Introducing Students to Neural Networks,
SIGCSE Bulletin, 21, 3, 2-7.

“+**Hopfield Networks Continued On Page 60****

don't complain. If you tell them
that, should you like it you might
buy 5 or 10, they get really
friendly, and problems of a
magnitude large enough will send a
friendly and well-trained (also
well-dressed, but that's by the
way) technician to fix you right
up, even though you haven't
actually paid for the thing yet.
On the other hand, if you decide
you want to buy the gizmo card and
have paid for 1it, problems of a
sufficient magnitude will bring
out a technician, still well-
dressed but perhaps not as well
trained, to look at the equipment
for $200 an hour, with a minimum
of 2 hours most of the time. And
you also have to pay for his
travel. And his new watch. And buy
him lunch. And maybe, if the moon
is aligned properly, he'll cone
and stare at it for an hour or two
and try to fix whatever is wrong.

This is an exaggeration, of
course, but you might be surprised
at how close this comes to the
truth sometimes. I can't say all
companies are like this; there
were some outstanding ones we
worked with who were always very
helpful, regardless of the
financial status. But there are
those bad ones that pop up every
once in a while.

overview

In general, I enjoyed my job
a great deal. I kept busy, and I
was happy with what I did (if the
other people working there were
happy with what I did is another
question, but I like to think they
were). I've learned quite a bit.
I've learned some skills which I
may not use again (three-
dimensional TTR displays are not
in high demand, or so I'm told),
but of course these are
specialized things and 1it's not

right to attach undue importance
to them.

On the other hand, though,
what is of importance are those

SIGCSE
BULLETIN Vol. 25 ©No. 4 Dec. 18383

60

things you can't really put on a
resume=-autonomy, confidence, the
ability to learn (learn quickly,
on occasion), and all of those
other warm glowing things which
sound like an Arny commercial, but
really are of great importance in
a job situation. They may not land
you a job, but they certainly will
keep you in the one you get, from
my limited point of view.

All of the students I know at
the SSC seem to have a lot of
strength of character. I like to
think that it's because of the
program--we really are working on
parts of projects that people all
over the world are going to be
concerned with, and we didn't do
things which are unimportant and
lead nowhere (well, sometimes we
did, that's «called evaluation,
though, and doing evaluation work
on a product that will not be used
again is sort of why you do it to
begin with). oOverall, there's a
sense (which I think is justified)
that we are important, and we do
contribute something tangible to
the premier science project in
existence.

***Hopfield Networks Continued From Page 40%**

Shackleford J. B. (1989) Neural Data Structures:
Programming with Neurons, Hewleti-Packard J., June,
69-78.

Tank, D. W. and J. J. Hopfield (1987) Collective
Computation in Neuronlike Circuits, Scientific American,
257, 104-114.

Wallace S. R. and F. L. Wallace (1991) Two Neural
Network Programming Assignments using Arrays, Proc,
Twenty-Second SIGCSE Tech. Symp. on Computer
Science Education, 43-47.

