
International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 12, December 2015

ISSN (Online): 2409-4285 www.IJCSSE.org Page: 323-328

Using Machine Learning Techniques to Predict Introductory
Programming Performance

Susan Bergin1, Aidan Mooney2, John Ghent3 and Keith Quille4

1, 2, 4 Department of Computer Science, Maynooth University, Maynooth, Co. Kildare, Ireland

3 Sytorus, The Capel Building, Dublin 7, Ireland

susan.bergin@nuim.ie, 2aidan.mooney@nuim.ie, 3john.ghent@sytorus.com, 4keith.quille.2014@mumail.ie

ABSTRACT
Learning to program is difficult and can result in high drop out
and failure rates. Numerous research studies have attempted to
determine the factors that influence programming success and
to develop suitable prediction models. The models built tend to
be statistical, with linear regression the most common
technique used. Over a three year period a multi-institutional,
multivariate study was performed to determine factors that
influence programming success. In this paper an investigation
of six machine learning algorithms for predicting
programming success, using the pre-determined factors, is
described. Naïve Bayes was found to have the highest
prediction accuracy. However, no significant statistical
differences were found between the accuracy of this algorithm
and logistic regression, SMO (support vector machine), back
propagation (artificial neural network) and C4.5 (decision
tree). The paper concludes with a recent epilogue study that re-
validates the factors and the performance of the naïve Bayes
model.

Keywords: Learning to Program, Programming Predictors,
Machine Learning, Naïve Bayes.

1. INTRODUCTION

It is well established in the Computer Science Education
(CSEd) community that students have difficulty with
learning to program and this can result in high drop-out
and failure rates [4, 13, 22]. Identifying struggling
students at an early stage is not easy as introductory
programming modules often have a high student to
lecturer ratio (100:1 or greater) and early assessment
may not be a reliable indicator of overall performance.
Early assessment is also troublesome as carrying out
authentic assessment with manual correction can be a
slow process. By the time feedback is available to
students it may be too late for students to withdraw from
the course or for instructors to implement interventions
to prevent struggling students from failing. This is a
cause of great concern for educators and has led to a
body of research in the area [1, 2, 3, 4, 14, 22].

Coupled with this, it can be difficult to interpret the
findings of previous studies as they tend to have very
specific parameters, for example they use different
programming languages, have different educational
settings, different assessment structures and varying
student profiles. This can bias the findings, creating
undesired weightings on certain parameters and in turn
limiting the true universality of the study. In addition,
many of the studies are based on a small sample size and
no validation studies have been carried out to verify the
findings. These problems are compounded by the fact
that some studies provide only anecdotal evidence that
lacks scientific rigour whilst the best studies have only
ever attempted to use statistical techniques, such as
correlation and regression to predict performance. While
these techniques are well regarded, they are restricted by
underlying assumptions and thus may not yield the most
powerful models.
A review of the literature indicates that no longitudinal
study had attempted to evaluate the use of different
machine learning algorithms to predict introductory
programming performance. For such a study to have
considerable research value it would need to (1) be
multi-institutional to promote the generalizability of the
predictive models developed, (2) use factors that have
been determined as part of longitudinal research using
replicated studies to verify the most effective factors that
are truly universal and timeless, resilient to biasing even
when student profiles or landscape vary and, (3) develop
machine learning models that are accessible, un-
derstandable, and usable by the CSEd community.
Research that satisfies this set of criteria is presented in
this paper. A longitudinal study to determine factors that
influence programming success is described. Next, six
different machine learning algorithms for predicting
programming performance are presented. Our rationale
for selecting the algorithms is discussed and a detailed
evaluation on our results is presented. The paper

324

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 12, December 2015

S. Bergin et.al

concludes with a description of a very recent study that
used the approach described here on a new cohort of
students, demonstrating the same high level of accuracy
and providing further validating evidence on the value
of the model developed here.

2. FACTORS THAT IMPACT
PROGRAMMING SUCCESS

For over ten years, the authors have carried out
numerous studies investigating early identifiable factors
that could influence programming performance. Ethical
approval for this work was attained and the agreed
protocol was carefully adhered to during all stages of the
research process, including, the voluntary nature of
participation, the right to withdraw at any stage and the
steps taken to protect and anonymize participant data.
The study reported on in this paper involved four third-
level institutions (post high-school) in the Republic of
Ireland. These institutions varied significantly in
classification (University, College and Community
College), academic entry requirements and student
demographic. In total 123 students enrolled on
introductory programming modules voluntarily
consented to participate in this study. The overall aim
of each module at each institution was to provide
students with introductory programming skills and the
content of each module was similar.
The study examined 25 factors that could influence
introductory programming performance. Each of these
factors can be identified at the start of a module when
students have had minimal exposure to programming
concepts. This is important so that early interventions
can be put in place. The factors examined can be
broadly grouped into three categories as outlined in
Table 1. Detailed data preprocessing procedures were
implemented prior to data analysis. Data pre-processing
involved several steps including data screening; tests of
uni-dimensionality; missing data analysis; and tests of
sample representativeness. In addition Principal
Component Analysis (PCA) was implemented to reduce
the dimensionality of the dataset. PCA takes a set of
data points and constructs a lower dimensional linear
subspace that maximizes the variability of the training
set. PCA essentially performs an orthonormal
transformation on the input data such that the variance
of the input data is accurately captured using only a few
of the resulting basis vectors. These basis vectors are
calculated in such a way that the squared difference
between the input data and the data as reconstructed
from the principal components is minimized.
Components that satisfied the Kaiser criterion
(eigenvalues greater than 1.0) were retained for use in
the predictive model [19]. Numerous models were

developed and three significant factors emerged: final
Mathematics examination result at second level, number
of hours playing computer games while taking the pro-
gramming course and the first principal component
derived from the programming self-esteem instrument.
A detailed review of the study and the significant
predictors found is provided in [4].

Table 1: Predictors of Programming Performance

Category Brief Description
Background
factors

Previous academic experience, for
example, Mathematics, Science and
Language grades achieved in
second level exit examinations;
previous experience of computer
applications, game playing, internet
usage and programming; number of
hours spent studying and working at
a part-time job etc.

Perceived
comfort level
factors at the
start of the
module

Assessed by three instruments: (1)
Nine questions on comfort-level
taken from a study by [5] that
examined a student's perception of
their level of understanding
compared to the rest of the class,
their ease at asking and answering
programming questions, their
general understanding of
programming concepts and their
ability to design and complete
assignments, (2) a programming-
self esteem questionnaire,
developed and validated by the
primary author based on the
Rosenberg Self-Esteem (RSE)
questionnaire [15], and (3) a
shortened version of the Computer
Programming Self-Efficacy Scale
[14] which asked students to judge
their capabilities in a wide range of
programming tasks and situations.

Motivation and
use of learning
strategies

As measured by the Motivated
Strategies for Learning
Questionnaire
(MSLQ). The MSLQ is a self-report
instrument used to measure college
students' motivation and use of
learning strategies [11].

3. MACHINE LEARNING ALGORITHMS

This study utilizes significant predictors that emerged as
a result of a longitudinal study carried out by the
authors. The predictors are thus in contrast to previous

325

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 12, December 2015

S. Bergin et.al

related programming studies in that they are useful
predictors at the very start of a module and do not
require students to have experienced detailed aspects of
the coursework, nor do they require the predictive
models to include in-course examinations. An accurate
computational model built using these attributes would
be particularly useful, as it would facilitate the de-
velopment of early interventions to assist struggling
students. In so far as was possible, the authors sought to
implement a blend of algorithms using diverse machine
learning techniques to determine their effectiveness at
predicting performance on an introductory programming
module. It is important that the models developed can be
interpreted and utilized by interested educators to
predict incoming student performance and thus the
machine learning algorithms selected should not require
highly specialized knowledge. Thus, the goals of this
paper are to: (1) determine the effectiveness of six ma-
chine learning algorithms for predicting introductory
programming performance and (2) determine if in a
brand new setting the algorithm detected as most
effective can produce a similar level of performance.

3.1 Review of Classifiers

Learning to accurately classify is a common problem in
machine learning and data analysis. Several different
machine learning algorithms have been proposed and in
this paper six different types of algorithms are evaluated,
including, logistic regression, k-nearest neighbor,
backpropagation, C4.5, naïve Bayes and support vector
machines. Java implementations of these algorithms
from the Waikato Environment for Knowledge
Analysis, WEKA, as outlined in [20], were used in this
study.
Logistic regression is a statistical technique to predict a
discrete outcome, such as group membership from a set
of variables. The dependent variable does not need to be
linearly related to the independent variables,
homoscedasticity is not required nor do the variables
need to be normally distributed. The independent
variables can be continuous, discrete or dichotomous. It
is a particularly useful technique when there is a non-
linear relationship between the dependent variable and
one or more of the independent variables [19]. The
standard representation for logistic regression is given
by Equation 1:

ii Xbbi

e
P

01

1
 (1)

K-Nearest Neighbor (KNN) is an instance-based
learning technique. This type of learning is ‘lazy’ as it
defers generalization until the classification stage. The
nearest neighbor algorithm is based on the principal that
the properties of any particular instance are likely to be
similar to those instances within its neighborhood. Each
new instance is compared with existing ones using a dis-
tance metric and the new instance is classified based on
the majority class of the nearest K neighbors [10, 20].
Backpropagation is a learning algorithm that can be used
to train multi-layer feedforward networks. In the
backpropagation learning process one of the training
instances is applied to the network, and the network
produces some output based on the current state of its
weights (initially the output will be random). This
output is compared to the target output and an error
signal is calculated. The total error, E, over all of the
network output units is defined as:

Dd outputsk

kdkd otE 2)(
2

1
 (2)

where D is the set of training examples, outputs is the
set of output units in the network, tkd and okd are the
target and output values for the kth output unit for
training example d [10]. The error value is propagated
backwards through the network, and changes are made
to the weights in each layer. Weights can be updated
after every input-output case and therefore no separate
memory is required for the derivatives.
An alternative approach, which is used in this paper, is

to accumulate
w

E

 over all of the input-output cases

before changing the weights. Each weight is then
changed by an amount proportional to the accumulated

w

E

 and to the learning rate η:

w

E
w

 (3)

The whole process is repeated for each of the training
instances and the cycle is repeated until the overall error
value drops below a pre-determined threshold.
Naïve Bayes is a non-parametric probabilistic model
based on an assumption of conditional independence
among variable attributes. Although this assumption is
often violated, naïve Bayes classifiers have been shown
to work surprisingly well and have highly competitive
prediction performance even when compared with some
state-of-the art classifiers [9, 10]. A naïve Bayes
classifier is denoted by Equation 4.

ki

jijvvjn vaPvPbv
..1

)|()(maxarg

(4)

326

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 12, December 2015

S. Bergin et.al

Decision Trees involve the recursive partitioning of a
dataset. An attribute is selected to place at the root node
and a branch is created for each possible value. This
process is repeated recursively for each branch, using
only those instances that reach the branch. If all
instances at a node belong to the same class no further
partitioning is performed. C4.5 is a popular decision tree
algorithm, based on ID3 but contains several im-
provements, such as handling continuous attributes and
measures for choosing an appropriate attribute selection
scheme [16, 10, 20].
Support Vector Machines (SVMs) are a relatively new
generation of learning system based on advances in
statistical learning theory [17]. The principal idea behind
linear SVMs is the optimal hyperplane. During the
generation of a discriminant function, standard
techniques such as the Perceptron will stop as soon as
the last sample is classified without error. This provides
a quick but potentially poor solution as it leaves the
separation surface very close to the last sample
classified. This will classify all the data in the training
set correctly but may provide poor generalisation. To
counteract this problem the linear SVM learning
algorithm is modified so that the hyperplane is
positioned in an optimal location between the two
classes. To do this a conceptual margin is used. The
margin is the perpendicular distance between the closest
vector to the hyperplane and the hyperplane itself. The
optimal hyperplane is the one that maximises the margin
[8]. Suppose we have a dataset (x1,y1), ..., (xm,ym)∈
X×{±1} where X is some space from which the xi have
been sampled. The optimal hyperplane can be found by
solving the dual form Lagrangian:

)(
2

1
)(

1 1,
jij

m

i

m

ji
ijii xxyyW

(5)

which are subject to the constraints

iì 0 and

m

i
ii y

1

.0

(6)
The solution to Equation 5 is a set of α values [8].
Further details of the construction of Equation 5 can be
found in [17]. Although non-linear SVMs exist, given
their increased complexity, only a linear SVM using
Sequential Minimal Optimization (SMO) is
implemented in this study [12].

4. MEASUREMENT TECHNIQUES

Three measurement techniques were employed in this

study, specifically, overall classifier accuracy, sensitivity
and specificity. The simplest form of evaluation is
classification accuracy: the proportion of instances
correctly predicted. Using Table 2 for illustration, the
computation of this measure is given by Formula 7.

Table 2: Sample Confusion Matrix

 Predicted Class
 Yes No

Actual
Class

Yes TP FN
No FP TN

TP = True Positive, FP = False Positive
TN= True Negative, FN = False Negative

FNFPTNTP

TNTP

 (7)

Sensitivity is a measure of the proportion of actual
positive instances that are correctly classified, given by
Formula 8.

FNTP

TP

 (8)

Specificity is the proportion of actual negative instances
correctly classified, as illustrated by Formula 9.

FPTN

TN

 (9)

5. RESULTS

All algorithms were implemented using 10-times 10--
fold stratified cross validation. This involves splitting
the data into 10 parts, with each part representing the
same proportion of each class. Each part is held out in
turn and the learning scheme is trained on the remaining
9 parts, then the error rate is calculated on the holdout
set. Thus the procedure is executed 10 times on different
training sets. This whole procedure is repeated 9 more
times and the results are averaged for the 100 testing
datasets. The advantage of this method is that all
instances can be used for training and testing thus it
reducing bias in partitioning data and increasing overall
confidence in the generalizability of the models.
Accuracy, sensitivity and specificity measures for the
algorithms are given in Table 3.
Based upon the accuracy measure, the most successful
algorithms in descending order are naïve Bayes, SMO,
logistic regression, backpropagation, C4.5 and 3-NN.
Although, overall accuracy is important in this study the
sensitivity measure is also valuable. While ideally, we
would like to predict the performance of all students
accurately; misclassifying strong students as weak is far
less detrimental than misclassifying weak students as

327

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 12, December 2015

S. Bergin et.al

strong. In the latter case suitable interventions may not
be put in place to prevent weak students from failing but
providing good students with extra attention un-
necessarily is at worst a waste of resources. In order of
importance based on the sensitivity measure, the
algorithms of choice are naïve Bayes, SMO, C4.5,
logistic regression, backpropagation and 3-NN. In terms
of the specificity measure, although not as critical a
measure in this study, the best algorithms, in order, on
this measure were naïve Bayes, logistic regression,
SMO, backpropagation, 3-NN and C4.5.

Table 3: Comparison of Classifier Performance

Algorithm Accurac
y

Sensitivity Specificity

Naïve Bayes 78.3% 87% 66%

SMO 77.5% 87% 63%

Logistic Regression 76.5% 84% 65%

Backpropagation 75.5% 84% 63%

C4.5 74.5% 85% 63%

3NN 71.6% 77% 58%

6. DISCUSSION

A review of the accuracy, sensitivity and specificity
measures in Table 3 indicated that naïve Bayes and
SMO were the top performers with many of the al-
gorithms having highly comparable results. Given such
similar results selection of the choice of algorithm to use
is not obvious. As interested parties may have a
preference for the choice of algorithm they would like to
implement it is important to know if the use of a
particular algorithm(s) would result in a statistically
lower performance. To test the hypotheses that there
would be statistically significant differences between the
algorithms based on the accuracy, sensitivity and
specificity measures, ANOVA tests with Tukey post-hoc
analysis were implemented [19].
With regard to the overall accuracy measure an ANOVA
test revealed that there were statistical differences
between the algorithms, F (5, 594) = 4.134, p < 0.001.
Post-hoc analysis revealed that there were no statistical
differences between naïve Bayes, logistic regression,
SMO, backpropagation and C4.5. However, 3-NN was
found to have statistically significant lower accuracy
than naïve Bayes, logistic regression and SMO but no
statistically significant differences were found between it
and C4.5 or backpropagation. Similarly, an ANOVA test
revealed that there were significant statistical differences
between the algorithms based on the sensitivity measure,
F (5, 594) = 6.496, p < 0.001. Post-hoc analysis found
this difference to be between 3-NN and all the other
algorithms, with 3-NN having significantly lower
sensitivity. No other differences were found. In terms of

the specificity measure, although not as critical a
measure in this study, no statistically significant
differences were found between the algorithms.
Using the sensitivity measure to choose an algorithm, it
would appear that any algorithm except for 3-NN is
reasonable. However, naïve Bayes achieves the best
results. In addition, an ANOVA test based upon the
training times of each of the algorithms indicates that
statistically significant differences exist, F (5, 594) =
3282.24, p < 0.001. Post-hoc analysis reveals that
logistic regression, SMO and backpropagation have
statistically significant higher training times than naïve
Bayes and C4.5. This provides further evidence on the
selection of naïve Bayes to predict introductory
programming performance.

7. EPILOGUE STUDY

In the academic year 2014 to 2015 students enrolled on
an introductory programming module, in a community
college, participated in a study to verify the
effectiveness of the naïve Bayes model at predicting
programming performance and at the same time
validating the study on a modern cohort of students.
This was a significant piece of work due to the
significant changes in the information technology
landscape since the original study was undertaken in
2005/2006. Students were asked to answer questions
based on the three factors: that is their mathematics
result (high school exit examination), the number of
hours spent playing computer games and ten questions
to measure their programming self-esteem. All
questions were taken directly from the original study
and were not changed in any way. All of the 26 students
who completed the module participated in the study.
The study was carried out at the start of the academic
year after a very brief introduction to programming had
been given (variable declaration, printing and selection
statements).
The full set of students (n = 26), were used as the
training instances to validate the naïve Bayes model
using 10-fold cross validation. The model achieved an
overall prediction accuracy of 80.76% (6 students were
misclassified). This was compared to the original study’s
prediction accuracy of 80.32%. A Welchs T-test,
showed that there was no statistical difference between
the accuracies produced in the two studies, with values
of: T value of 0.7858 and a p value of 0.4342.
A follow up experiment was created in which the orig-
inal participants’ data was used as the training set and
the new study data was used as the test set, this was to
investigate that the model was truly timeless and
enduring with the accuracies not diminishing as the
environment evolved. This experiment produced an

328

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 12, December 2015

S. Bergin et.al

accuracy of 76.92%. The slight dip in accuracies could
be caused by the institution representation in the original
study. A community college only had a 7%
representation in the original study, whereas in the new
study it was 100% of the students. However, this study
further confirms the effectiveness of the naïve Bayes
model at predicting programming performance and that
the factors identified are still valid.

8. CONCLUSIONS

This paper makes two significant contributions. First, it
describes a longitudinal study to identify the most
appropriate machine learning algorithm for predicting
novice performance. Typically, models built to predict
programming performance are statistical, with linear
regression the most common technique used and thus
the investigation of a suite of machine learning
techniques to solve this problem is notable. The second
contribution of this paper is that it provides a recent
validation study. This is important as (1) it provides an
opportunity to verify the performance of the naïve Bayes
model and (2) it provides evidence on the gen-
eralizability of the findings. Studies of this nature are
vital as too many one-off studies exist, making it
difficult to interpret and use their findings.
The work described in this paper provides a baseline for
further studies on the application of machine learning
techniques to predict programming performance.
Although the accuracy of the developed models is very
high, 20% of students are still misclassified and further
work to identify other significant factors and to optimise
the models is warranted.

REFERENCES

[1] Bergin, S., & Reilly, R. (2005). Programming: Factors
that influence success. ACM SIGCSE Bulletin, 37 (1),
411-415.

[2] Bergin, S., & Reilly, R. (2005). The influence of
motivation and comfort-level on learning to program.
Proceedings of the 17th Workshop on Psychology of
Programming, PPIG'05, 293-304.

[3] Bergin, S., & Reilly, R. (2005). Examining the role of
Self-Regulated Learning on Introductory Programming
Performance. Proceedings of the 2005 International
Workshop on Computing Education Research,
ICER, 81-86.

[4] Bergin, S., & Reilly, R. (2006). Predicting introductory
programming performance: A multi-institutional multi-
variate study. Computer Science Education, 16(4), 303-
323.

[5] Cantwell Wilson, B. & Shrock, S. (2001). Contributing
to success in an introductory computer science course:

A study of twelve factors. ACM SIGCSE Bulletin
33(1), 184-188.

[6] Chih-Chung Chang, & Chih-Jen Lin (2001). LIBSVM:
a library for support vector machines. Available:
http://www.csie.ntu.edu.tw/cjlin/libsvm.

[7] Dietterich, T.G. (1997). Machine-learning research:
four current directions. AI Magazine, 18, 4, 97-136.

[8] Ghent, J. (2005) A Computational Model of Facial
Expression. PhD thesis, National University of Ireland
Maynooth, Co. Kildare, Ireland.

[9] Michie, D., Spiegelhalter, D.J. & Taylor, C.C. (1994).
Machine Learning, Neural and Statistical
Classification. Ellis Horwood.

[10] Mitchell, T. (1997). Machine Learning. McGraw-Hill.
[11] Pintrich, P., Smith, D., Garcia, T. & McKeachie,

W.(1991b). A manual for the use of the motivated
strategies for learning questionnaire. Technical Report
91-B-004. The Regents of the University of Michigan.

[12] Platt, J.C. (1998) Fast Training of Support Vector
Machines using Sequential Minimal Optimization.
Advances in Kernel Methods - Support Vector
Learning, B. Schoelkopf, C. Burges, and A. Smola,
eds., MIT Press.

[13] Price, Kellie, and Suzanne Smith (2014). Improving
student performance in CS. Journal of Computing
Sciences in Colleges 30, (2) 157-163.

[14] Ramalingham, V. & Wiedenbeck, S. (1998).
Development and validation of scores on a computer
programming self-efficacy scale and group analyses of
novice programmer self-efficacy. Journal of
Educational Computing Research, 19(4), 367-381.

[15] Rosenberg M. (1965). Society and the adolescent self-
image. Princeton, NJ: Princeton University Press.

[16] Russell, S. & Norvig, P. (2003). Artificial Intelligence:
A Modern Approach. Pearson Education, Inc. Second
Edition.

[17] ScholKopf, B & Smola, A. (2002) Learning with
Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond, MIT Press.

[18] Seewald, A.K. (2002). How to Make Stacking Better
and Faster While Also Taking Care of an Unknown
Weakness. Proceedings of the Nineteenth
International Conference on Machine Learning
554-561.

[19] Tabachnick, B.G., & Fidell, L.S. (2001). Using
Multivariate Statistics. Allyn and Bacon. Fourth
Edition.

[20] Witten, I.H. & Frank, E. (2005). Data Mining: Practical
machine learning tools and techniques. 2nd Edition.
Morgan Kaufmann, San Francisco.

[21] Wolpert, D.H. (1992). Stacked generalization. Neural
Networks, 5, 241-259.

[22] Yadin, A. (2011). Reducing the drop out rate in an
introductory programming course. ACM Inroads, 2
(4), 71-76.

