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Abstract In recent years there has been a rapid growth in the number of studies that
have used the GMM estimator to decompose the earnings covariance structure into
its permanent and transitory parts. Using a heterogeneous growth model of earnings,
we consider the performance of the estimator in this context. We use Monte Carlo
simulations to examine the sensitivity of parameter identification to key features such
as panel length, sample size, the degree of persistence of earnings shocks and the
specification of the earnings model. We show that long panels allow the identification
of the model, even when persistence in transitory shocks is high. Short panels, on the
other hand, are insufficient to identify individual parameters of the model even with
moderate levels of persistence.
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1 Introduction

In recent years there has been a rapid growth in the number of studies that
have used the Generalised Method of Moments (GMM) estimator to estimate the
covariance structure of earnings. In these models, earnings are written as the sum
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of permanent and transitory components and the estimated parameter values are
then used to construct measures of permanent and transitory inequality and to trace
their evolution over time. Distinguishing between these two components is important
because they have different policy implications; moreover the distinction can provide
insight into the functioning of the labour market.

The GMM estimator uses panel data to estimate these models by matching
the sample variances and covariances of earnings to their population counterparts.
The model is identified from the long covariances. In these latter moments, the
contribution of the transitory shock is negligible, which in turn allows researchers
to recover the parameters associated with the permanent component. However long
panels are not always available to researchers and as a result a number of recent
studies, for example Ramos [34], Doris et al. [13, 14], Cervini and Ramos [9] and
Sologon and O’Donoghue [36], have been constrained to use relatively short panels,
with eight or nine years of data. It is unclear whether panel lengths of this order are
sufficient to identify these models.

Although the performance of the GMM estimator has been evaluated elsewhere
(e.g. Tauchen [40], Kocherlakota [26], Hansen et al. [23], Altonji and Segal [1], Clark
[10], Stock and Wright [39], Blundell and Bond [4] and Pozzi [33]), as yet there has
been no detailed study of the estimator for the type of earnings covariance models
or the data structures often found in the empirical literature. In this paper, we use
Monte Carlo techniques to consider identification of these models and discuss the
consequences for estimation and inference.

2 The GMM approach to estimating earnings covariance structures

The GMM approach to parameter estimation is now well established in the econo-
metric literature, having been introduced by Hansen [22]. Hall [20] and Cameron and
Trivedi [5] provide comprehensive discussions of the approach. GMM estimation en-
tails minimizing a criterion function which measures the distance between population
and sample moment expressions. The GMM estimator will identify the model if the
probability limit of the GMM criterion function is uniquely minimised at the true
parameter vector, ϕ0. The order condition for identification requires that the number
of moment conditions, k, exceeds the number of parameters, p. The rank condition
requires that the information provided by the k moment conditions, E

[
m(yi; ϕ)

] = 0,
must differ; that is, as the p components of ϕ vary in the neighbourhood of ϕ0, the k
components of E[m(yi; ϕ)] vary in p independent directions (see for example [20],

Chapter 3). Equivalently, the matrix E
[

δm
δϕ′

∣∣
∣
ϕ0

]
must be of full column rank. If a

model is not identified, there exist at least two distinct data generating processes
(DGPs), characterised by different parameter vectors, which cannot be distinguished
by any function of the data, even with infinitely large samples.

In recent times there has been a growing interest in problems of weak iden-
tification in econometric models [38]. Weak identification occurs when the moment
condition is not zero but still very small at parameter values other than ϕ0. This
gives rise to criterion functions with ridges or near flat spots in the region of the
true parameter vector, ϕ0. Stock and Wright [39] show that the asymptotic theory
devised for the GMM estimator when applied to identified models is not valid when
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the model is weakly identified, even for very large but finite sample sizes. They
illustrate their findings using both a simultaneous equation model and a consumption
based asset pricing model. GMM estimation of the consumption based asset pricing
model was also analysed in studies by Tauchen [40] and Kocherlakota [26]. Blundell
and Bond [4] consider GMM estimation of a production function with persistent
data and short panels. They argue that the poor performance of the GMM estimator
in this context reflects a weak instrument problem. In our paper, we also consider
GMM identification with panel data but in a different context, where the objective is
to estimate the covariance structure of earnings.

The standard approach to estimating the covariance structure of earnings is to
write earnings as the sum of two components. The first is a permanent component,
which, once acquired, is maintained throughout an individual’s working career. This
may reflect pre-labour market characteristics such as the level of education and/or
shocks that have permanent effects, such as involuntary job loss. The second com-
ponent is a transitory one, reflecting temporary shocks that are mean-reverting. The
objective is to measure the separate roles played by the permanent and transitory
shocks in determining inequality and to examine how this may have changed over
time. Table 1 provides an overview of the range of models used to date in the
empirical literature. These papers vary in the specification of both the permanent
and transitory components of the earnings process. When modelling the permanent
component, it is typical to use either a Random Walk (RW) model [12], where
individuals are subject to persistent shocks while facing similar life-cycle profiles, or a
Random Growth (RG) model [2, 11, 18, 19], where the experience-earnings profile is
individual-specific. A small number of papers have estimated covariance models that
combine both the Random Walk model and the Random Growth model (RG+RW)
[24, 31, 34]. When modelling the transitory component of earnings, researchers have
recognised the importance of allowing for persistence in this component. This is
generally modelled by specifying either an AR or ARMA process for the error term.
Many papers also allow for the possibility that the earnings process is affected by the
age/experience cohort to which the individual belongs.

In this paper, we consider earnings models that are representative of the variety of
models shown in Table 1. Initially we consider an RG model and an ARMA process
in the transitory component, although later we extend the model to include both a
random walk and a random growth element in the permanent component, and cohort
effects.

Earnings for individual i, with x years of experience at time t, yixt, are given by

yixt = ptαix + λtvit (1)

where E(αix) = E(νit) = 0. The factor loadings, pt and λt, allow variances to change
over time in a way that is common across individuals. The inclusion of factor loadings
[29] was an important innovation in the modelling of earnings dynamics in that they
allow for time trends in the earnings process. For the RG model, the permanent
component is

αix = αi(x−1) + βi (2a)

where E(β i) = 0. The random growth terms αi0 and β i have variances σ 2
α and

σ 2
β respectively and covariance σαβ . Thus each individual may have a different

permanent life-cycle growth rate of earnings, β i, which may be correlated with



346 A. Doris et al.

T
ab

le
1

Su
m

m
ar

y
of

lit
er

at
ur

e

A
ut

ho
r,

Y
ea

r
T

M
ea

n
N

P
er

m
an

en
t

T
ra

ns
it

or
y

C
oh

or
t

ρ
θ

σ
2 α

σ
2 β

σ
α
β

σ
2 w

σ
2 v
1

σ
2 ε

pe
r

ye
ar

co
m

po
ne

nt
co

m
po

ne
nt

ef
fe

ct
s

M
of

fi
tt

&
G

ot
ts

ch
al

k
[3

1]
18

1,
40

0
R

W
A

R
M

A
(1

,1
)

N
0.

64
1

−0
.3

67
0.

05
6

–
–

0.
00

1
–

0.
11

7
B

ak
er

[2
]

20
53

4
R

G
A

R
M

A
(1

,2
)

N
0.

67
4

−0
.1

87
0.

13
9

0.
00

04
−0

.0
04

–
n.

r.
n.

r.
20

53
4

R
G

A
R

M
A

(1
,1

)
N

0.
74

5
−0

.2
60

0.
10

2
0.

00
03

−0
.0

03
–

n.
r.

n.
r.

D
ic

ke
ns

[1
2]

21
62

,6
37

R
W

A
R

M
A

(1
,1

)
Y

0.
95

6
−0

.5
69

–
–

–
0.

00
1–

–
0.

02
4

0.
00

7
C

ap
pe

lla
ri

[6
]

15
10

,6
05

R
G

A
R

(1
)

N
0.

80
1

–
0.

20
2

0.
00

03
−0

.0
09

–
0.

09
7

0.
15

5
H

ai
de

r
[1

9]
25

1,
40

0
R

G
A

R
M

A
(1

,1
)

N
0.

63
9

−0
.2

64
0.

29
5

0.
00

04
−0

.0
08

–
n.

r.
n.

r.
C

ap
pe

lla
ri

[7
]

P
ub

lic
se

ct
or

13
49

,5
41

R
G

A
R

(1
)

Y
0.

53
6

–
0.

00
5

0.
00

00
0.

00
0

–
0.

00
4

0.
01

4
P

ri
va

te
se

ct
or

13
14

,0
31

R
G

A
R

(1
)

Y
0.

84
1

–
0.

00
8

0.
00

02
0.

00
0

–
0.

02
8

0.
01

1
R

am
os

[3
4]

9
2,

51
8

R
G

+R
W

A
R

(1
)

Y
0.

30
–

0.
27

0.
00

03
−0

.0
1

0.
00

5
0.

01
–0

.1
4

0.
10

B
ak

er
&

So
lo

n
[3

]
17

25
,2

30
R

G
+R

W
A

R
(1

)
Y

0.
54

0
–

0.
13

4
0.

00
01

−0
.0

03
0.

00
7

n.
r.

–
C

ap
pe

lla
ri

[8
]

17
55

,0
20

R
G

A
R

(1
)

Y
0.

94
1

–
0.

02
1

0.
00

02
0.

00
2

–
0.

04
52

–
K

al
w

ij
&

A
le

ss
ie

[2
5]

27
66

,0
00

R
W

A
R

M
A

(1
,4

)
Y

0.
98

0
−0

.5
00

0.
00

1
–

–
n.

r.
n.

r.
n.

r.
G

us
ta

vs
so

n
[1

6]
9

37
,1

67
R

W
A

R
(1

)
Y

0.
55

5
–

0.
04

7
–

–
0.

00
5,

0.
03

1–
0.

36
9

–
0.

00
1

Sa
nt

os
&

So
uz

a
[3

5]
9

34
2,

45
0

R
G

A
R

M
A

(1
,1

)
N

0.
40

4
−1

0.
40

0.
24

0
0.

00
09

−0
.0

03
–

–
0.

00
1

M
of

fi
tt

&
G

ot
ts

ch
al

k
[2

9]
30

1,
03

5
R

G
+R

W
A

R
M

A
(1

,1
)

N
0.

84
7

−0
.5

74
0.

09
01

0.
00

00
−0

.0
02

0.
00

3
–

–
C

er
vi

ni
-P

la
&

R
am

os
[9

]
8

2,
57

6
R

G
A

R
(1

)
Y

0.
58

3
–

0.
52

4
0.

00
02

−0
.0

1
–

0.
29

2–
1.

06
1

0.
06

8
L

ill
a

&
St

af
fo

la
ni

[2
7]

W
hi

te
co

lla
r

15
19

,6
58

R
G

A
R

(1
)

Y
0.

18
6

–
0.

39
7

0.
00

04
−0

.0
12

–
0.

43
9

0.
34

5
B

lu
e

co
lla

r
15

37
,9

81
R

G
A

R
(1

)
Y

0.
11

8
–

1.
49

9
0.

00
05

−0
.0

27
–

0.
55

8
0.

22
6

M
yc

k,
O

ch
m

an
n

&
Q

ar
i[

32
]

13
95

2
R

E
A

R
M

A
(1

,1
)

Y
0.

83
9

−0
.4

31
0.

09
8

–
–

–
0.

05
4

0.
03

3
G

us
ta

vs
so

n
[1

7]
31

36
,9

25
R

W
A

R
M

A
Y

0.
57

3,
−0

.2
58

,
0.

08
5

–
–

0.
01

0–
–

0.
05

3
0.

81
9

−0
.5

05
0.

01
7

D
or

is
,O

’N
ei

ll
&

Sw
ee

tm
an

[1
3]

8
R

E
A

R
M

A
(1

,1
)

N
0.

63
5

−.
23

0
0.

13
8

–
–

–
0.

11
2

0.
04

5



Identification of the covariance structure of earnings 347

G
uv

en
en

[1
8]

26
n.

r.
R

G
A

R
(1

)
N

0.
82

1
–

0.
02

2
0.

00
04

−0
.2

3
–

0.
04

7
0.

02
9

H
of

fm
an

n
[2

4]
L

ow
ed

uc
at

io
n

30
13

,9
80

R
G

+R
W

A
R

(1
)

Y
0.

88
7

–
0.

01
8

0.
00

00
0.

00
00

0.
00

07
0.

03
3

M
ed

iu
m

ed
uc

at
io

n
29

16
4,

36
9

R
G

+R
W

A
R

(1
)

Y
0.

86
2

–
0.

03
0

0.
00

00
0.

00
02

0.
00

11
0.

00
9

H
ig

h
ed

uc
at

io
n

29
17

,2
92

R
G

+R
W

A
R

(1
)

Y
0.

84
7

–
0.

02
9

0.
00

00
0.

00
02

0.
00

05
0.

02
5

n.
r.

So
lo

go
n

&
O

’D
on

og
hu

e
[3

6]
a

G
er

m
an

y
8

n.
r.

R
G

A
R

(1
)

Y
0.

35
8

–
7.

26
1

0.
00

24
−0

.1
31

–
0.

00
4–

0.
08

3
0.

25
8

D
en

m
ar

k
8

n.
r.

R
W

A
R

(1
)

Y
0.

54
7

–
0.

00
97

–
–

0.
00

14
0.

02
5–

0.
03

7
0.

13
1

N
et

he
rl

an
ds

8
n.

r.
R

G
A

R
(1

)
Y

0.
32

9
–

0.
19

13
0.

00
02

−0
.0

05
–

0.
01

1–
0.

04
1

0.
12

6
B

el
gi

um
8

n.
r.

R
E

A
R

Y
0.

62
8

–
0.

06
98

–
–

–
0.

03
6–

0.
06

4
0.

24
4

F
ra

nc
e

8
n.

r.
R

E
A

R
Y

0.
39

9
–

0.
16

53
–

–
–

0.
04

9–
0.

10
4

0.
79

7
L

ux
em

bo
ur

g
7

n.
r.

R
E

A
R

Y
0.

23
9

–
0.

10
71

–
–

–
0.

02
2–

0.
10

6
0.

01
9

U
K

8
n.

r.
R

G
A

R
Y

0.
45

1
–

0.
04

67
0.

00
01

−0
.0

02
–

0.
03

1–
0.

07
9

0.
07

0
Ir

el
an

d
8

n.
r.

R
G

A
R

Y
0.

29
1

–
0.

05
64

0.
00

02
−0

.0
03

–
0.

06
9–

0.
09

4
0.

02
8

It
al

y
8

n.
r.

R
G

A
R

M
A

(1
,1

)
Y

0.
64

4
−0

.2
51

0.
03

25
0.

00
01

−0
.0

01
–

0.
02

8–
0.

05
2

0.
05

8
G

re
ec

e
8

n.
r.

R
G

A
R

M
A

(1
,1

)
Y

0.
59

9
0.

14
9

0.
07

79
0.

00
02

−0
.0

03
–

0.
05

7–
0.

10
1

0.
11

8
Sp

ai
n

8
n.

r.
R

G
A

R
M

A
(1

,1
)

Y
0.

84
9

−0
.3

64
0.

29
40

0.
00

00
−0

.0
06

–
0.

05
2

0.
09

9
P

or
tu

ga
l

8
n.

r.
R

E
A

R
Y

0.
77

8
–

0.
25

61
–

–
–

0.
04

3
0.

25
8

A
us

tr
ia

7
n.

r.
R

E
A

R
Y

0.
70

1
–

0.
08

11
–

–
–

0.
07

5
0.

48
3

F
in

la
nd

6
n.

r.
R

G
A

R
Y

0.
29

0
–

0.
06

16
0.

00
01

−0
.0

02
–

0.
04

6–
0.

07
1

0.
05

5
D

or
is

,O
’N

ei
ll

&
Sw

ee
tm

an
[1

4]
G

er
m

an
y

8
27

50
R

E
A

R
M

A
(1

,1
)

N
0.

63
0

−0
.3

40
0.

10
0

–
–

–
0.

08
0.

05
0

D
en

m
ar

k
8

11
80

R
E

A
R

N
0.

53
0

–
0.

06
0

–
–

–
0.

06
0

0.
03

0
N

et
he

rl
an

ds
8

23
27

R
E

A
R

N
0.

41
0

–
0.

09
0

–
–

–
0.

06
0

0.
09

0
B

el
gi

um
8

12
18

R
E

A
R

N
0.

53
0

–
0.

07
0

–
–

–
0.

05
0

0.
06

0
F

ra
nc

e
8

24
47

R
E

A
R

M
A

(1
,1

)
N

0.
55

0
−0

.2
40

0.
09

0
–

–
–

0.
08

0
0.

07
0

U
K

8
17

98
R

E
A

R
M

A
(1

,1
)

N
0.

83
0

−0
.3

10
0.

10
0

–
–

–
0.

11
0

0.
07

0
Ir

el
an

d
8

11
74

R
E

A
R

N
0.

30
0

–
0.

16
0

–
–

–
0.

15
0

0.
02

0
It

al
y

8
26

14
R

E
A

R
N

0.
44

0
–

0.
06

0
–

–
–

0.
05

0
0.

03
0

Sp
ai

n
8

21
74

R
E

A
R

M
A

(1
,1

)
N

0.
48

0
−0

.3
60

0.
16

0
–

–
–

0.
08

0
0.

06
0



348 A. Doris et al.

T
ab

le
1

(c
on

ti
nu

ed
)

A
ut

ho
r,

Y
ea

r
T

M
ea

n
N

P
er

m
an

en
t

T
ra

ns
it

or
y

C
oh

or
t

ρ
θ

σ
2 α

σ
2 β

σ
α
β

σ
2 w

σ
2 v
1

σ
2 ε

pe
r

ye
ar

C
om

po
ne

nt
C

om
po

ne
nt

E
ff

ec
ts

P
or

tu
ga

l
8

20
58

R
E

A
R

N
0.

59
0

–
0.

16
0

–
–

–
0.

09
0

0.
07

0
A

us
tr

ia
7

13
80

R
E

A
R

M
A

(1
,1

)
N

0.
82

0
−0

.3
10

0.
06

0
–

–
–

0.
10

0
0.

07
0

F
in

la
nd

6
92

2
R

E
A

R
N

0.
42

0
–

0.
10

0
–

–
–

0.
09

0
0.

08
0

So
lo

go
n

&
O

’D
on

og
hu

e
[3

7]
17

90
,2

95
R

W
A

R
M

A
(1

,1
)

Y
0.

96
4

−0
.2

06
0.

01
22

–
–

0.
00

04
–

0.
00

0–
0.

06
0

0.
00

0
0.

01
06

n.
r.

m
ea

ns
‘n

ot
re

po
rt

ed
’.

‘M
ea

n
N

pe
r

ye
ar

’r
ef

er
s

to
th

e
av

er
ag

e
nu

m
be

r
of

in
di

vi
du

al
s

in
ea

ch
w

av
e

of
th

e
pa

ne
ld

at
a.

R
E

is
‘R

an
do

m
E

ff
ec

t’
–

a
m

od
el

w
it

h
an

in
di

vi
du

al
-s

pe
ci

fi
c

in
te

rc
ep

t,
bu

tn
o

he
te

ro
ge

ne
it

y
in

th
e

sl
op

e
of

th
e

ea
rn

in
g

fu
nc

ti
on

;R
G

an
d

R
W

as
ex

pl
ai

ne
d

in
te

xt
.‘

C
oh

or
tE

ff
ec

ts
’i

nd
ic

at
es

th
at

pa
ra

m
et

er
s

ca
pt

ur
in

g
co

ho
rt

ef
fe

ct
s

w
er

e
al

so
es

ti
m

at
ed

in
th

e
m

od
el

.W
he

re
au

th
or

s
re

po
rt

m
or

e
th

an
on

e
sp

ec
if

ic
at

io
n,

bu
t

id
en

ti
fy

a
‘p

re
fe

rr
ed

m
od

el
’,

on
ly

th
at

m
od

el
is

re
po

rt
ed

.W
he

re
tw

o
es

ti
m

at
es

or
a

ra
ng

e
of

es
ti

m
at

es
ar

e
pr

es
en

te
d,

th
is

is
be

ca
us

e
th

e
m

od
el

al
lo

w
ed

fo
r

va
ri

at
io

n
ei

th
er

in
ag

e
or

by
co

ho
rt

in
th

e
re

le
va

nt
pa

ra
m

et
er

a
W

ei
gh

te
d

nu
m

be
r

of
ob

se
rv

at
io

ns
gi

ve
n;

da
ta

is
E

C
H

P
,w

hi
ch

ty
pi

ca
lly

gi
ve

1,
00

0
to

5,
00

0
in

di
vi

du
al

s,
de

pe
nd

in
g

on
th

e
co

un
tr

y



Identification of the covariance structure of earnings 349

initial earnings, αi0. Persistence in the transitory shock, vit, is modelled using an
ARMA(1,1) process with AR parameter ρ and MA parameter θ . Specifically,

vit = ρvi(t−1) + εit + θεit−1 (2b)

where εit is a random variable with variance σ 2
ε . The recursive nature of the transitory

process requires consideration of initial conditions. Since the assumption of an
infinite history is untenable in this context, we follow the approach suggested by
MaCurdy [28] and widely adopted in the literature. This approach treats the variance
of the initial condition at the start of our sample period, σ 2

ν1, as an additional
parameter to be estimated.

The GMM estimator matches sample variances and covariances to their popu-
lation counterparts. In the model specified by Eqs. 1, 2a and 2b the true variance-
covariance matrix at time t has diagonal elements:

σ 2
1 = [

p2
1(σ

2
α + σ 2

β X2
1 + 2σαβ X1)

] + [
λ2

1σ
2
v1

]
for t = 1

σ 2
t = [

p2
t (σ

2
α + σ 2

β X2
t + 2σαβ Xt)

]+
[

λ2
t

(

ρ2t−2σ 2
v1 + σ 2

ε K
t−2∑

w=0

ρ2w

)]

, for t > 1 (3)

and off-diagonal elements:

Cov(yt,y(t+s))= pt pt+s(σ
2
α +σ 2

β Xt X(t+s)+σαβ(Xt + X(t+s)))+λtλt+s(ρ
sσ 2

v1+ρs−1θσ 2
ε ),

for t = 1, s > 0

Cov(yt,y(t+s)) = pt pt+s(σ
2
α + σ 2

β Xt X(t+s) + σαβ(Xt + X(t+s)))

+λtλt+s

(

ρ2t+s−2σ 2
v1 + ρsσ 2

ε K
t−2∑

w=0

ρ2w + ρs−1θσ 2
ε

)

,

(4)

for t > 1, s > 0, where K = (1 + θ2 + 2ρθ), Xt is average experience at time t, and
X2

t is the average value of experience-squared at time t.
The parameter vector to be estimated is given by ϕ = {σ 2

α , ρ, σ 2
ε , σ 2

v1, p1...pT ,

λ1...λT , σ 2
β , σαβ, θ}. Identification requires a normalization of the factor loadings

and in keeping with the literature we set p1 and λ1 equal to one. We then use
the estimated parameter vector to recover the individual components of aggregate
inequality. The permanent component at time t is given by the corresponding first
term in square brackets in Eq. 3 while the second term in square brackets is the
transitory component.

GMM estimation requires the selection of an appropriate weighting matrix; based
on the work of Altonji and Segal [1] and Clark [10], it is standard practice in the
earnings covariance literature to use the identity matrix as the weighting matrix, and
we follow this practice here to ensure comparability of our results with the existing
literature.

As noted earlier, identification using the GMM estimator requires that the matrix
of derivatives of the moment conditions be of full column rank. Key columns of
the matrix relevant to our model are presented in Table 2. It is well known that
strong persistence in the transitory term, as measured by ρ, may cause problems
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of identification in this model. This can be most easily seen by assuming that the
time trends on the permanent and transitory components are equal and that ρ = 1.
In this case, the derivatives of the moment conditions associated with σ 2

α (Table 2,
Column 2) and σ 2

v1 (Table 2, Column 6)) are identical, resulting in rank deficiency
of the derivative matrix. In practice, whenever ρ is close to one, only the sum of
these two parameters will be identified and this is insufficient to allow consistent
estimation of the transitory and permanent components of the model. Provided ρ

is not equal to one, longer panel lengths will aid identification because the term
involving ρ to various powers of t in Column 6 will differ increasingly from one
for higher t. Although researchers have long been aware that it is higher order
covariances that identify these models, particularly when persistence is high, it has
never been clear what constitutes strong persistence and/or what panel length is
needed to achieve identification. In this paper we use Monte Carlo simulations
to illustrate the consequences of different degrees of persistence in data sets with
sample sizes and panel lengths typically observed in empirical research.

We further show that identification may depend on the evolution of inequality
itself. To see this, suppose that the permanent factor loadings are constant but the
transitory factor loadings are falling over time. Considering the derivatives of the
moment conditions associated with σ 2

α and σ 2
v1, we now see that even with a relatively

high ρ, the declining λs may induce an identification effect that mimics what would be
observed with much lower persistence. We use Monte Carlo evidence to demonstrate
the effect of alternative time trends on identification and consider the importance of
these trends in the light of the available empirical evidence.

3 The data generation process

To generate the data for our Monte Carlo analysis, we calibrate the earnings model
described in Section 2 using the parameter estimates from the existing studies
outlined in Table 1 as a guide. We draw the initial value of v1 from a normal
distribution with mean zero and variance σ 2

v1 = 0.3. In each period the ε terms are
drawn from i.i.d. normal distributions with mean zero and variance σ 2

ε = 0.2. To
allow for correlation between the slopes and intercepts of the earnings profiles, α

and β are drawn from a bivariate normal distribution with means zero, variances
σ 2

α = 0.5 and σ 2
β = 0.0004 and covariance σαβ = −0.01. The MA parameter of the

error process, θ , is set equal to −0.5, although our results are robust to variations
in θ within the range observed in the empirical literature. The negative value for θ

generates a fall in the first order correlation, which is consistent with that observed
in real world data. Since the parameter ρ plays a key role in identifying these models,
we consider various values of ρ between 0.3 and 0.95; these are in keeping with the
range of estimates reported in the literature to date.1

As noted in the previous section, the evolution of inequality over time may also
play an important role in identification of these models, so we experiment with

1Specification of an ARMA(1,1) model introduces a problem if ρ ≈ −θ . This ‘common factors’
problem is well known in time-series econometrics (e.g. [21] page 60). We avoid this complication by
not considering values of ρ that are close to −θ .
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different patterns of inequality. We first consider a case where both permanent and
transitory inequality are rising, by allowing pt and λt to increase by 0.01 and 0.03 per
year respectively. These increments are plausible given reported results. Alternative
trends are considered later.

To generate heterogeneous growth profiles, we need to specify the ages of the
individuals in our sample. In most of our analysis, we consider a balanced sample
in which we observe individuals from the start of their working lives. This data
structure is typical of cohort studies such as the NCDS in the UK and the NLSY in
the US. Other panel data sets such as the BHPS (UK) or the PSID (US) observe
people at different stages of their working lives in any given wave. As a result
researchers often allow the earnings process to vary among cohorts. We discuss the
consequences of introducing cohort heterogeneity and unbalanced data later in the
paper.

Having generated the data, the models are estimated using gmmcovearn, a user-
written Stata program for GMM estimation of earnings covariance models [15]. For
each Monte Carlo experiment, we generate 1,000 samples and follow Kocherlakota
[26] in starting the minimisation routine at the true parameter values in each sample.
The sample sizes and panel lengths are varied across the experiments to examine
their impact on identification.

4 Results

We begin by considering identification when the panel is long and the sample is large.
In particular the top panel of Table 3 and Fig. 1a and b report the results for a
panel length of 25 years and a sample size of 40,000 and ρ = 0.8. Data sets of this
nature, typically administrative data, have been used by Dickens [12], Gustavsson
[17] and Kalwij and Alessie [25]. The means and standard deviations of the estimates
from the 1,000 simulations are given in Columns 2 and 3 respectively of the table.
For each simulation, the standard GMM formula is used to calculate the asymptotic
standard error for each parameter (see for example Cameron and Trivedi [5] page
174), and the average of these asymptotic standard errors is reported in Column
4. Columns 5 to 7 give additional summary details of the empirical distributions of
the parameter estimates. Column 8 reports p-values for two tests of the hypothesis
of normality of the distribution of the estimator, the sktest and the Kolmogorov-
Smirnov test. Column 9 reports the empirical size of a 5% two-tailed test of the
null hypothesis that the parameter equals the value specified in the DGP. Figure 1a
provides a normal quantile plot of the parameter estimates to illustrate the validity
of the normal approximation. Since the policy focus of papers in this literature is
typically on the evolution of the permanent and transitory components of inequality,
it is also important to compare the average predictions from the estimated model
with the true profiles, calculated from the parameters of the DGP. This information
is provided in Fig. 1b.

The results in Columns 1 and 2 of the top panel show that all the parameters are
consistently and precisely estimated with this data structure when ρ is 0.8. As a result,
for each of the permanent and transitory components, the estimated and true profiles
given in Fig. 1b are very similar.
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Table 3 Monte Carlo simulations for DGP with N = 40, 000 and T = 25 (1000 replications)

Parameter Monte Monte Asymptotic 10th Median 90th Normality Emp.
Carlo Carlo s.error percentile percentile a.Sktest size
average st.dev b.Ksmirnov (nominal

(p-values) 5%)

ρ = 0.8
ρ .8000 .0035 .0036 .7954 .8001 .8043 a .0135 .048

b .5290
σ 2

α .4998 .0099 .0095 .4870 .4993 .5129 a .0229 .058
b .4820

σ 2
ε .1998 .0034 .0035 .1953 .1999 .2043 a .6234 .056

b .9630
σ 2

v1 .2999 .0089 .0088 .2885 .3006 .3108 a .0067 .052
b .1920

σ 2
β .00040 .00001 .00002 .0004 .00040 .00043 a .0000 .037

b .1820
σαβ −.0100 .0007 .0007 −.0109 −.0100 −.0090 a .0425 .048

b .4030
θ −.5000 .0034 .0035 −.5042 −.5000 −.4957 a .1451 .041

b .3990
ρ = 0.9

ρ .8998 .0032 .0033 .8957 .9000 .9037 a .2856 .048
b .8550

σ 2
α .5148 .3051 .1144 .4248 .4842 .5789 a .0000 .113

b .0000
σ 2

ε .1986 .0048 .0048 .1927 .1984 .2045 a .0001 .087
b .6640

σ 2
v1 .2860 .2904 .1115 .2226 .3172 .3735 a .0000 .112

b .0000
σ 2

β .0004 .0003 .0001 .0003 .0004 .0005 a .0000 .127
b .0000

σαβ −.0107 .0076 .0021 −.0116 −.0102 −.0089 a .0000 .023
b .0000

θ −.50001 .0026 .0026 −.5033 −.4998 −.4968 a .3216 .049
b .8410

ρ = 0.95
ρ .9469 .0045 .0042 .9409 .9472 .9528 a .0148 .109

b .2060
σ 2

α .7695 1.1027 2.41 .0930 .1864 2.773 a .0000 .677
b .0000

σ 2
ε .1969 .0078 .0047 .1918 .1967 .2026 a .0000 .133

b .0000
σ 2

v1 .0408 1.0585 2.315 −1.884 .5991 .6910 a .0000 .674
b .0000

σ 2
β .00047 .00059 .0012 .00008 .00018 .0015 a .0000 .569

b .0000
σαβ −.0157 .0230 .0515 −.0561 −.0035 −.0018 a .0000 .676

b .0000
θ −.4991 .0024 .0023 −.5020 −.4990 −.4961 a .0606 .072

b .8650

True Parameter Values: σ 2
α = 0.5, σ 2

ε = 0.2, σ 2
v1 = 0.3, σ 2

β = 0.0004, σ 2
αβ = −0.01, θ = −0.5. pt

increasing by 0.01 and λt increasing by 0.03 in successive periods
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Fig. 1 a Normal quantile plots of GMM estimator with long panel, large sample and moderate
persistence in transitory earnings. b True and estimated components of inequality with long panel,
large sample and moderate persistence in transitory earnings
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Fig. 2 a Normal quantile plots of GMM estimators with long panel, large sample and high
persistence in transitory earnings. b True and estimated components of inequality with long panel,
large sample and high persistence in transitory earnings

Consideration of the other results in the top panel of Table 3 shows that the
asymptotic standard errors are very close to the Monte Carlo standard deviation.
Furthermore, the distribution of the estimator is well approximated by a normal
distribution. This is evident from both Column 8 of the table and Fig. 1a. Finally,
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Fig. 3 a Normal quantile plots of GMM estimator with long panel, large sample and very high
persistence in transitory earnings. b True and estimated components of inequality with long panel,
large sample and very high persistence in transitory earnings

Column 9 shows that the empirical sizes of our hypothesis tests are close to their
nominal values. These all support the validity of inferences based on the GMM
estimator for these parameter values and this data structure.

To examine the sensitivity of identification to the degree of persistence in the
transitory error term, we next consider models with values of ρ equal to 0.90 and
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0.95.2 When ρ is equal to 0.9 (middle panel, Table 3 and Fig. 2a and b), small biases
in the parameters σ 2

α and σ 2
v1 become evident; unreported estimates of the factor

loadings also indicate small biases in the estimates of the pt and λt. Consequently,
small differences between the estimated and true components of inequality begin
to emerge. This is shown in Fig. 2b. In addition the standard errors on σ 2

α and
σ 2

v1 are large and the asymptotic standard errors are substantially lower than the
Monte Carlo standard deviations. Normality is rejected for most of the parameters,
as evidenced by the tests in Table 3 and graphs in Fig. 2a. As a result the empirical
sizes of hypothesis tests are distorted.

When ρ is equal to 0.95 (bottom panel, Table 3 and Fig. 3a and b), the results are
considerably worse. The estimators for σ 2

α and σ 2
v1 are biased, with average values of

0.77 and 0.04 respectively; the unreported estimates of the factor loadings also indi-
cate biases in the estimates of pt and λt. Consequently the estimated predictions of
the permanent and transitory components are misleading; the permanent component
is substantially overestimated and the transitory component is underestimated. This
is shown in Fig. 3b.

In addition to these large biases, we also see that these parameters are imprecisely
estimated. Indeed the lack of precision is such that over 25% of the estimates of σ 2

v1
are negative. Reports of negative variances are not unusual in this literature and
are often interpreted as a sign that the underlying model is mis-specified or that
the researcher has used poor starting values for the optimisation routine. However,
our analysis, in which mis-specification cannot be an issue and which uses the true
parameter values as starting values, shows that negative variances may be a symptom
of weak identification and researchers should be aware of this possibility before
considering adjusting their model.

Figure 3a shows that the biases in the asymptotic standard errors and the de-
partures from normality are also more apparent when ρ = 0.95 than when ρ =
0.9. Indeed the bottom panel of Table 3 reveals empirical sizes as high as 68% for
tests with a nominal size of 5%. The tendency to over reject when the model of
earnings covariance is weakly identified is consistent with previous work on weak
identification of the GMM estimator: in a consumption based asset pricing model,
Kocherlakota [26] reports empirical sizes of up to 40% in his Monte Carlo analysis.
Our results illustrate the well-known identification problem associated with high
persistence in covariance models that was noted in Section 2 and show that even
the very long panels and large sample sizes chosen in these experiments may be
insufficient to identify the model when ρ is as high as 0.95.

Many panel data sets based on household survey data, such as the PSID, ECHP
and BHPS, have considerably fewer than 40,000 observations. To examine iden-
tification with smaller samples, we choose a sample size of 3,000 but keep the panel
length at 25. This combination is similar to that found in the PSID data used, for
example, by Moffitt and Gottschalk [31] and Haider [19]. The results when ρ is equal
to 0.8 are given in Table 4 and Fig. 4a and b. The results show that the parameter
estimates are reasonable and as a result, the estimated and true profiles shown in
Fig. 4b are similar. Therefore with relatively small samples, researchers are likely to

2We also considered models with ρ less than 0.8 and all parameters were consistently and precisely
estimated.
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Table 4 Monte Carlo simulations for DGP with N = 3000 and T = 25 (1000 Replications)

Parameter Monte Monte Asymptotic 10th Median 90th Normality Emp.
Carlo Carlo s.error percentile percentile a.Sktest size
average st.dev b.Ksmirnov (nominal

(p-values) 5%)

ρ = 0.8
ρ .8017 .0129 .0131 .7853 .8015 .8182 a .2855 .048

b .8390
σ 2

α .5031 .0390 .0386 .4569 .5003 .5492 a .0000 .043
b .0000

σ 2
ε .1995 .0127 .0131 .1832 .1997 .2159 a .3710 .051

b .7410
σ 2

v1 .2967 .0381 .0370 .2522 .2998 .3371 a .0000 .060
b .0000

σ 2
β .00046 .0002 .00014 .00035 .00043 .00056 a .0000 .018

b .0000
σαβ −.0098 .0028 .0029 −.0129 −.0102 −.0061 a .0000 .081

b .0000
θ −.50 .0125 .0126 −.5177 −.5010 −.4850 a .2228 .053

b .6030

True parameter values: σ 2
α = 0.5, σ 2

ε = 0.2, σ 2
v1 = 0.3, σ 2

β = 0.0004, σ 2
αβ = −0.01, θ = −0.5. pt in-

creasing by 0.01 and λt increasing by 0.03 in successive periods

get reliable predictions of the components of inequality, even when persistence is
relatively strong, provided they have access to a long panel.3

The averages of the asymptotic standard errors are close to the Monte Carlo stan-
dard deviations. However the distributions of the estimators deviate from normality,
as can be seen from the tests in Table 4 and the graphs in Fig. 4a. This leads to
some distortion in the empirical sizes given in Column 9 and therefore care is needed
when conducting hypothesis tests based on parameter estimates obtained using this
data structure.

In addition to having moderate sample sizes, some of the data sets that have
been used for analysis of the earnings covariance structure are relatively short. For
example, the European Community Household Panel (ECHP), which is the only
available panel data for some European countries, has at most 8 years of data. We
run a Monte Carlo simulation for this type of data structure, by setting T = 8 and
N = 3,000. The top panel of the Table 5, along with Fig. 5a and b consider the case
where ρ = 0.8. The estimators of σ 2

α , σ 2
v1 σ 2

β and σ 2
αβ all exhibit large biases. The

unreported factor loadings also show substantial biases. Consequently the estimated
profiles differ from the true profiles, particularly in the early period; this is seen in
Fig. 5b. The identification problems again give rise to a very large number of negative
variances, with over 40% of the simulations reporting a negative variance for at least
one of σ 2

α , σ 2
v1 or σ 2

β .
As well as problems of inconsistency, the standard errors on the estimated

parameters are very large, and are not well estimated by the asymptotic standard
errors. With the exception of ρ, normality is overwhelmingly rejected by the formal

3Additional simulations indicate that a panel of at least 20 years is needed to obtain good point
estimates and predictions.
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Fig. 4 a Normal quantile plots of GMM estimators with long panel, small sample and moderate
persistence in transitory earnings. b True and estimated components of inequality with long panel,
small sample and moderate persistence in transitory earnings

normality tests; inspection of the graphs in Fig. 5a confirm that the asymptotic ap-
proximation of the estimator is poor for all these parameters. As a result, hypothesis
tests will be unreliable. This is confirmed in Column 9 of Table 5’s top panel, where
the empirical sizes are as large as 41% for a 5% test. Overall, the results for the
estimator when applied to this data structure are unsatisfactory when the magnitude
of ρ is of the order of 0.8.
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Table 5 Monte Carlo simulations for DGP with N = 3000 and T = 8 (1000 replications)

Parameter Monte Monte Asymptotic 10th Median 90th Normality Emp.
Carlo Carlo s.error percentile percentile a.Sktest size
average st.dev b.Ksmirnov (nominal

(p-values) 5%)

ρ = 0.8
ρ .7835 .1112 .0897 .6352 .7850 .9170 a .6645 .277

b .0000
σ 2

α .6804 1.231 2.9881 −.0324 .5922 .9071 a .0000 .418
b .0000

σ 2
ε .2014 .0255 .0261 .1739 .1998 .2285 a .0000 .154

b .0040
σ 2

v1 .1432 1.0927 1.7199 −.1196 .2826 .7701 a .0000 .245
b .0000

σ 2
β .0404 .3853 1.9041 −.0018 .0055 .0241 a .0000 .251

b .0000
σαβ −.0419 .2854 .9798 −.0775 −.0190 .0471 a .0000 .307

b .0000
θ −.4832 .0574 .0514 −.5449 −.4946 −.4007 a .0000 .160

b .0000
ρ = 0.3

ρ .2950 .0926 .0999 .1735 .2931 .4217 a .0044 .040
b .4710

σ 2
α 1.5376 4.6871 11.30 .1528 .5420 3.0503 a .0000 .116

b .0000
σ 2

ε .1882 .0435 .0624 .1509 .1939 .2186 a .0000 .026
b .0000

σ 2
v1 .2795 .1032 .1157 .18230 .2978 .3183 a .0000 .046

b .0000
σ 2

β 1.8180 6.1038 15.69 .0011 .0091 5.7842 a .0000 .070
b .0000

σαβ −1.4274 5.3642 12.97 −4.1136 −.0441 .0932 a .0000 .129
b .0000

θ −.5038 .1282 11.90 −0.6825 −.4923 −.3443 a .0021 .052
b .0001

True parameter values: σ 2
α = 0.5, σ 2

ε = 0.2, σ 2
v1 = 0.3, σ 2

β = 0.0004, σ 2
αβ = −0.01,θ = −0.5. pt increas-

ing by 0.01 and λt increasing by 0.03 in successive periods
For ρ = 0.8, 10 out of the 1000 simulations failed to converge after reaching the Stata limit of 16000
iterations. For ρ = 0.3, 117 out of the 1000 simulations failed to converge after reaching the Stata
limit

A number of studies using data sets of this size report estimates of ρ that are much
smaller than 0.8. For instance, Cervini-Pla and Ramos [9] report an estimated ρ of
0.27, while Ramos [34] reports a range of estimates from 0.3 to 0.4. In the bottom
panel of Table 5 and Fig 6a and b we consider estimation of the model with eight
years of data and N = 3,000 and ρ = 0.3. These results are surprisingly poor given the
low persistence of the transitory shock. The estimators of σ 2

α , σ 2
β and σαβ are biased

and imprecisely estimated. Furthermore, the asymptotic approximations are poor.4

4Although the results improve with larger samples, even with a sample size of 250,000, the average
of the sample estimates differ from the true values.
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Fig. 5 a Normal quantile plots of GMM estimators with short panel, small sample and moderate
persistence in transitory earnings. b True and estimated components of inequality with short panel,
small sample and moderate persistence in transitory earnings

The estimator also had difficulty estimating the factor loadings, with both the λts and
the pts exhibiting large biases. However, when we consider the predicted profiles
associated with these estimates, shown in Fig. 6b, we see that these are surprisingly
good. On closer inspection, the identification problem in this case appears to differ
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Fig. 6 a Normal quantile plots of GMM estimators with short panel, small sample and low
persistence in transitory earnings. b True and estimated components of inequality with short panel,
small sample and low persistence in transitory earnings

from that associated with higher persistence. Unlike the previous case, the estimates
of σ 2

v1 and σ 2
ε are now reasonable. The problem now is not in distinguishing the

permanent from the transitory component, but rather in distinguishing among the
components of permanent inequality, namely σ 2

α , σ 2
β and σαβ .
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The source of this identification problem is not immediately obvious from inspec-
tion of the derivatives of the moment conditions. The problem in part reflects the
very low value of σ 2

β typically observed in the literature. When we run additional
simulations with the same data structure and level of persistence but with a substan-
tially higher value for σ 2

β , the individual parameters of the permanent component
are consistently estimated. However the value needed is of the order of 0.04 rather
than the value of 0.0004 typically observed.5 The problem also reflects the limited
extent to which age variation is used in the estimation of the above model; Xt

changes very little over such a short panel. When we extend the panel length to
25 years but maintain ρ = 0.3, the problem is no longer evident. This is because
the moment conditions for the longer panel now span a sufficiently wide age range
to allow identification of the heterogeneous growth pattern. We return to this point
in Section 5.2.

5 Extensions

As noted in Section 2, the evolution of inequality can play a role in identifying
earnings covariance models. We consider this issue in Section 5.1. Sections 5.2
and 5.3 consider the impact of cohort heterogeneity and unbalanced data on iden-
tification. Finally Section 5.4 examines the sensitivity of our findings to changes in
the specification of the earnings process.

5.1 Time trends

As illustrated in Sections 2 and 4, high persistence in the transitory error process
can make identification of the permanent and transitory components difficult. This
problem is well known in the literature and we showed in Table 3 that with a
reasonable parameterization, the model is poorly identified when ρ is equal to 0.95,
even with long panels and large sample sizes. However what seems less well known
is the role of time trends in determining identification. In Section 2, we noted that
certain patterns of inequality may accommodate identification. To illustrate this, we
now consider a DGP which is identical to that used in the bottom panel of Table 3
(ρ = 0.95), except that λt falls by 0.035 in each successive period, This is similar to
the trend reported by Sologon and O’Donoghue [37].

The results are given in Table 6 and Fig. 7a and b. For ease of comparison we also
reproduce the results for the original time trends in the bottom panel of the table.
In contrast to the earlier results for T = 25 and N = 40,000, we find that with the
alternative time trends, the model is well identified by the GMM estimator, even
with ρ as high as 0.95.6 All of the parameters are now precisely and consistently
estimated. The analytical standard errors are much closer to the empirical standard
deviations, while the departure from the normal approximation is less pronounced.
Consequently, the empirical sizes reported in the last column are much closer to the
nominal sizes. To the extent that identification has been considered in this literature,

5See Baker [2] for a related discussion.
6We were unable to find any set of factor loadings that eliminated the identification problems for a
data structure with T = 8 and N = 3,000.
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Table 6 Monte Carlo simulations for DGP with N = 40,000 and T = 25 (1000 replications)

Parameter Monte Monte Asymptotic 10th Median 90th Normality Emp.
Carlo Carlo s.error percentile percentile a.Sktest size
average st.dev b.Ksmirnov (nominal

(p-values) 5%)

ρ = 0.95, λt falling by 0.035
ρ .9500 .0030 .0031 .9464 .9500 .9537 a .0358 .038

b .7100
σ 2

α .5036 .0252 .0215 .4798 .5004 .5279 a .0000 .037
b .0000

σ 2
ε .1999 .0025 .0024 .1966 .1998 .2033 a .1348 .061

b .3820
σ 2

v1 .2970 .0245 .0206 .2737 .2994 .3203 a .0000 .039
b .0000

σ 2
β .0004 .00004 .00004 .00037 .0004 .0005 a .0000 .053

b .0000
σαβ −.0100 .0004 .0003 −.0104 −.0100 −.0097 a .0000 .037

b .0000
θ −.4999 .0023 .0023 −.5027 −.4999 −.4971 a .4309 .053

b .8410
ρ = 0.95, λt rising by 0.03

ρ .9469 .0045 .0042 .9409 .9472 .9528 a .0148 .109
b .2060

σ 2
α .7695 1.1027 2.41 .0930 .1864 2.773 a .0000 .677

b .0000
σ 2

ε .1969 .0078 .0047 .1918 .1967 .2026 a .0000 .133
b .0000

σ 2
v1 .0408 1.0585 2.315 −1.884 −2.020 −1.716 a .0000 .674

b .0000
σ 2

β .00047 .00059 .0012 .00007 .00002 .0015 a .0000 .569
b .0000

σαβ .0156 .0230 .0515 −.0562 −.0035 −.0018 a .0000 .676
b .0000

θ −.4991 .0024 .0023 −.5020 −.4990 −.4961 a .0606 .072
b .8650

True parameter values: σ 2
α = 0.5, σ 2

ε = 0.2, σ 2
v1 = 0.3, σ 2

β = 0.0004, σ 2
αβ = −0.01, θ = −0.5. pt increas-

ing by 0.01 in successive periods

the focus has been on the degree of transitory earning persistence. The results in this
section show that this reasoning is incomplete. Identification in these models depends
on the interaction of the degree of persistence with the time pattern of inequality in
the economy being studied.

5.2 Cohort effects

While panel data sets such as the NCDS and the NLSY follow a single cohort over
time, other data sets such as the BHPS and the PSID include individuals of different
ages. Recognising the possibility that earnings dynamics may differ across cohorts,
many studies have extended the model described in Section 2 to allow for cohort
heterogeneity. This is modelled by including cohort shifters that allow the permanent
and transitory components to vary across cohorts; additionally, some researchers
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Fig. 7 a Normal quantile plots of GMM estimators with long panel, large sample, very high
persistence in transitory earnings and diverging time trends. b True and estimated components of
inequality with long panel, large sample, very high persistence in transitory earnings and diverging
time trends

have allowed the initial transitory variances to vary by cohort. Specifically, earnings
for individual i, belonging to cohort c, with x years of experience at time t, yicxt is
given by

yicxt = qc ptαix + scλtvict (5)
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where qc and sc are cohort shifters on the permanent and transitory components
respectively and σ 2

v1c varies by cohort. The remainder of the model is as described in
Section 2. The resulting model is identical to that used by Sologon and O’Donoghue
[36]. This introduction of cohort effects increases the number of parameters by
3(c− 1), while increasing the number of moments by a factor of c.

To examine identification of the earnings covariance model in the presence of
cohort-specific effects, we consider a DGP that is identical to that used in Table 3,
except that we now introduce two cohorts.7 The total sample size, N, is 40,000, with
20,000 in each cohort, each observed for 25 years. Individuals in the young cohort
are observed from the beginning of their working lives, while observations on the
second, older cohort begin 10 years after this cohort enter the labour market. We
normalise q1 = s1 = 1 and calibrate q2 = 1.3 and s2 = 1.1; these are within the range
of the estimates reported in the literature. We set σ 2

v11 = 0.3 and σ 2
v12 = 0.6. With this

parameterisation, we repeat the analysis conducted in Table 3 for ρ = 0.8. The results
given in the top panel of Table 7 show that all the parameters of the model, including
the cohort shifters and initial variances, are well identified. Unreported simulations
for ρ = 0.95 suggest that the identification problems shown in Table 3 are still evident
in the model with cohort effects.

In Section 4 we noted that the limited age variation in short panels contributes
to weak identification of the individual components of permanent inequality even
when ρ is low. We now show how a model that distinguishes between different
cohorts can overcome this problem. The second panel of Table 7 reports simulation
results for the model given in Eq. 5, with ρ = 0.3, T = 8 and N = 3000. In contrast
to the results in Table 5, the individual components of permanent inequality are
now consistently estimated, despite the short panel. This is because the moment
conditions for this model are now specified separately for each cohort. Consequently
the age variation in the sample is exploited more effectively than in models that
combine all cohorts. We emphasise that it is the appropriate exploitation of the age
variation across cohorts and not the presence or absence of cohort effects per se
that is important in this case. Additional simulations not reported, show that the
components of permanent inequality are still identified even if all cohort shifters
and cohort variances are in fact equal. As a result researchers working with short
panels should consider models that distinguish between cohorts even when structural
differences across cohorts are limited.

5.3 Unbalanced samples

The DGPs we have examined so far have focused on balanced data, in which each
individual is present in every wave of the data and therefore contributes to every
moment condition. In the panel data sets used in practice, individuals are typically
missing in some waves. In these situations, researchers often work with unbalanced
data. Clearly, if movements in and out of the sample are random, the unbalanced
nature of the data may affect the precision of the estimator, through smaller sample
sizes, but not its consistency. However, care should be taken to ensure that the
sample sizes for estimation of long covariances are adequate.

7Experiments with larger number of cohorts show that our key results are not affected by the number
of cohorts.
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Table 7 Monte Carlo simulations for DGP with two cohorts (1000 replications)

Parameter Monte Monte Asymptotic 10th Median 90th Normality Emp.
Carlo Carlo s.error percentile percentile a.Sktest size
average st.dev b.Ksmirnov (nominal

(p-values) 5%)

ρ = 0.8, T = 25 and N = 40, 000
ρ .8003 .0043 .0043 .7946 .8003 .8056 a .694 .058

b .933
σ 2

α .5004 .0141 .0141 .4816 .5003 .5191 a .846 .050
b .882

σ 2
ε .2001 .0042 .0042 .1947 .2001 .2055 a .892 .054

b .977
σ 2

v11 .2996 .0142 .0144 .2811 .2992 .3178 a .642 .049
b .863

σ 2
v12 .6001 .0108 .0111 .5866 .6000 .6139 a .129 .040

b .360
σ 2

β .0004 .00002 .00002 .00037 .0004 .00041 a .392 .047
b .338

σαβ −.0100 .0004 .00038 −.01049 −.0100 −.0095 a .433 .042
b .822

θ −.5001 .0042 .0043 −.5054 −.5002 −.4932 a .662 .048
b .866

q2 1.2997 .0185 .0184 1.2776 1.2998 1.3239 a .240 .050
b .524

s2 1.1000 .0033 .0033 1.0959 1.0999 1.1044 a .054 .048
b .599

ρ = 0.3, T = 8 and N = 3000
ρ .2983 .0513 .0506 .2358 .2966 .3655 a .0389 .059

b .545
σ 2

α .4976 .0206 .0236 .4705 .4977 .5236 a .5265 .033
b .834

σ 2
ε .1970 .0188 .0186 .1732 .1984 .2193 a .0000 .048

b .212
σ 2

v11 .2985 .0161 .0158 .2785 .2997 .3173 a .0000 .032
b .017

σ 2
v12 .5986 .0237 .0238 .5680 .5983 .6280 a .7016 .056

b .790
σ 2

β .0005 .0003 .0003 .0003 .0005 .0007 a .0000 .063
b .000

σαβ −.0083 .0056 .0068 −.0142 −.0098 .0001 a .0000 .168
b .0000

θ −.5024 .0696 .0670 −.5905 −.4972 −.4197 a .0000 .038
b .003

q2 1.2593 .1852 .2099 .9895 1.2900 1.4818 a .0000 .144
b .000

s2 1.1000 .0094 .0091 1.0877 1.1002 1.1119 a .2897 .062
b .857

True parameter values: σ 2
α = 0.5, σ 2

ε = 0.2, σ 2
v11 = 0.3,σ 2

v12 = 0.6, σ 2
β = 0.0004, σ 2

αβ = −0.01, θ =
−0.5, q2 = 1.3, s2 = 1.1. pt increasing by 0.01 and λt increasing by 0.03 in successive periods

However, a common feature of a number of data sets used in this literature is
that the probability of being present in a particular wave of a survey is related to
an individual’s age. This may arise if younger people are absent from the labour



368 A. Doris et al.

force in the early years of the panel while in education, and if older people leave
in later years due to retirement. GMM still provides a consistent estimator of the

models considered in this paper in this setting because plim
(

1
N

N∑

i=1
mi(yi;ϕ0)

)
= 0

will continue to hold with unbalanced data whenever the model is identified using
the balanced data.

To illustrate this, we adjust the DGP discussed in Section 3. We allow for age
heterogeneity by considering a situation in which in any year we observe variation in
the ages of individuals in our sample. To keep things simple, we generate a 25 year
sample of 40,000 individuals, of which half have t years of experience at time t,
and the other half have (t + 5) years of experience. To generate unbalanced data,
we consider a missing mechanism where in the first year, only 50% of the younger
sample is observed, with a further 10% entering in each successive year, so that 100%
are observed by year 6. For older people, we assume that 10% exit in year 21, with an
additional 10% leaving in each subsequent year so that by year 25, 50% of the older
sample are missing. This results in a data structure where observations are missing
randomly conditional on age. Results for Monte Carlo simulations for this DGP with
ρ = 0.8 are shown in Table 8. As we can see, all the parameters are consistently and
precisely estimated, despite the unbalanced nature of the data.

Clearly if the probability of being missing from the sample is related to unob-
servable characteristics that are correlated with earnings, the GMM consistency
condition is likely to be violated. Consistent estimation of the earnings covariance
structure in this case will require specification of a missing mechanism for the data
and joint estimation of this mechanism with the earnings process. We know of no
study that has carried out such an exercise in this context.

Table 8 Monte Carlo simulations for DGP with N = 40000 and T = 25 and unbalanced data (1000
replications)

Parameter Monte Monte Asymptotic 10th Median 90th Normality Emp. size
Carlo Carlo s.error percentile percentile a.Sktest (nominal
average st.dev b.Ksmirnov 5%) two

(p-values) tail.

ρ = 0.8
ρ .8003 .00466 .0043 .7945 .8001 .8064 a .3899 .070

b .3000
σ 2

α .5002 .01299 .0127902 .4836 .5000 .5170 a .9521 .059
b .7050

σ 2
ε .1999 .00416 .0044842 .1944 .1999 .2051 a. 2093 .030

b .3690
σ 2

v1 .2997 .00804 .0085531 .2891 .2996 .3099 a .2589 .035
b .6310

σ 2
β .0004 .00003 .0000275 .00037 .0004 .00044 a .0000 .027

b .3330
σαβ −.0100 .00096 .0009495 −.0111 −.0100 −.0087 a .0001 .054

b .2520
θ −.5002 .0043 .0039467 −.5059 −.5002 −.4948 a .6252 .076

b .9280

True parameter values: σ 2
α = 0.5, σ 2

ε = 0.2, σ 2
v1 = 0.3, σ 2

β = 0.0004, σ 2
αβ = −0.01, θ = −0.5. pt increas-

ing by 0.01 and λt increasing by 0.03 in successive periods
In this case, asymptotic standard errors are calculated using the adjustment suggested by Haider [19]
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5.4 Combined random growth and random walk model

A small number of papers have estimated earnings covariance models that combine
the Random Growth and Random Walk models (e.g. [31, 34]). Earnings for individ-
ual i, with x years of experience at time t, yixt is then given by

yixt = ptαix + λtvit (6a)

αix = αi(x−1) + βi + wix (6b)

where E(αix)= E(βi)= E(wix)= E(νit)=0. αi0 and β i have variances σ 2
α and σ 2

β res-
pectively and covariance σαβ . As before, the first two terms of (6b) capture the random
growth component of earnings. wix is a shock that arrives randomly from a distribu-
tion with variance σ 2

w, but permanently alters an individual’s position in the earnings
distribution. The transitory component is modelled using an ARMA process as
before. The estimation of the combined Random Growth and Random Walk (RG+
RW) model introduces one extra parameter, σ 2

w, but no new moment conditions.
To examine the implications of estimating the RG+RW model, we consider a

DGP that is identical to that used in the model analysed in Table 3, but extend
the specification of the permanent component to incorporate a random walk as
well as a random growth process. We keep T = 25 and N = 40,000 and calibrate
σ 2

w = 0.005, which is consistent with estimates reported in the literature. We carry
out our simulations for ρ = 0.8 and present the results in Table 9. We see that the
estimator performs reasonably well, but there is evidence of a small bias in the point
estimates for σ 2

α and σ 2
v1. The estimator for σ 2

w is also biased, and the standard error

Table 9 Monte Carlo simulations for DGP with N = 40000 and T = 25 and combined random
growth and random walk model (1000 replications)

Parameter Monte Monte Asymptotic 10th Median 90th Normality Emp. size
Carlo Carlo s.error percentile percentile a.Sktest (nominal
average st.dev b.Ksmirnov 5%) two

(p-values) tail.

ρ = 0.8
ρ .8042 .0124 .0111 .7885 .8042 .8197 a .0009 .110

b .4920
σ 2

α .4893 .0335 .0281 .4481 .4929 .5274 a .0000 .077
b .0040

σ 2
ε .2019 .0060 .0060 .1943 .2020 .2095 a . 2365 .075

b .7720
σ 2

v1 .3112 .0351 .0293 .2705 .3085 .3561 a .0000 .085
b .0010

σ 2
β .0004 .00009 .00008 .0003 .0004 .0005 a .0002 .126

b .1330
σαβ −.0096 .0012 .0011 −.0109 −.0096 −.0081 a .0004 .097

b .6110
θ −.4990 .0047 .0044 −.5046 −.4994 −.4930 a .0006 .063

b .0940
σ 2

ω .0036 .0043 .0037 −.0020 .0035 .0090 a .1271 .105
b .6250

True parameter values: σ 2
α = 0.5, σ 2

ε = 0.2, σ 2
v1 = 0.3, σ 2

β = 0.0004, σ 2
αβ = −0.01, σ 2

ω = 0.005, θ =
−0.5. pt increasing by 0.01 and λt increasing by 0.03 in successive periods
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on this parameter is very large. The inability to estimate this parameter precisely
may lead to difficulties in determining the correct model when ρ is high. However,
further simulations suggest that the estimator performs well for this RG+RW model
provided ρ is less than 0.7. Therefore, although the presence of the random walk in
the DGP makes identification more difficult, results are still satisfactory for a wide
range of values of ρ.

6 Conclusion

In this paper we examine the performance of the GMM estimator in the context
of the covariance structure of earnings. We consider a range of models that are
representative of those previously estimated and which capture many of the key
features of earnings dynamics discussed in the literature. In particular the models
considered allow for heterogenous growth in permanent earnings profiles, persis-
tence in the transitory shocks, time trends in the earnings process and earnings
dynamics that differ across age cohorts. We use Monte Carlo simulations to examine
the sensitivity of parameter identification to key features such as data structure, the
degree of persistence of earnings shocks and model specification. We show that long
panels allow the identification of the model, even when persistence in transitory
shocks is high. Short panels, on the other hand, are insufficient to identify individual
parameters of the model even with moderate levels of persistence.

In terms of practical implications, since the estimate of ρ is reliable in each of the
models we consider, this parameter can form the basis of a check on identification.
However, it is not possible to establish a single cut-off value below which iden-
tification is guaranteed. Researchers with access to long panels should be wary if
ρ is above 0.9 and the estimated standard errors on σ 2

α and σ 2
v1 are large. When

using shorter panels, problems are more severe. Identification is problematic in these
models even for moderate values of ρ and researchers need to be very careful when
using the GMM estimator with short panels irrespective of the degree of earnings
persistence.
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