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The linear canonical transform (LCT) describes the effect of any quadratic phase system (QPS) on an input
optical wave field. Special cases of the LCT include the fractional Fourier transform (FRT), the Fourier trans-
form (FT), and the Fresnel transform (FST) describing free-space propagation. Currently there are numerous
efficient algorithms used (for purposes of numerical simulation in the area of optical signal processing) to cal-
culate the discrete FT, FRT, and FST. All of these algorithms are based on the use of the fast Fourier transform
(FFT). In this paper we develop theory for the discrete linear canonical transform (DLCT), which is to the LCT
what the discrete Fourier transform (DFT) is to the FT. We then derive the fast linear canonical transform
(FLCT), an N log N algorithm for its numerical implementation by an approach similar to that used in deriving
the FFT from the DFT. Our algorithm is significantly different from the FFT, is based purely on the properties
of the LCT, and can be used for FFT, FRT, and FST calculations and, in the most general case, for the rapid
calculation of the effect of any QPS. © 2005 Optical Society of America
OCIS codes: 080.2730, 100.2000, 070.4560, 200.2610, 200.3050, 200.4560, 200.4740.

1. INTRODUCTION

The one-dimensional linear canonical transform®~ (LCT)
is a three-parameter (a,B,7y) class of linear integral
transform. This can be further generalized to a five-
parameter transform, the special affine Fourier
transform,” " in which the additional two parameters are
shifts in the spatial and spatial-frequency domains that
have no effect on the numerical discussions in this paper.
The LCT is a unitary transform and includes as special
cases the Fourier transform® (FT), the Fresnel transform’
(FST), the fractional Fourier transform?® (FRT), and the
operations of scaling (magnification) and chirp multiplica-
tion (thin lenses).

Optical systems implemented with an arbitrary num-
ber of thin lenses and propagation through free space in
the Fresnel approximation or through sections of graded-
index (GRIN) media belong to the class of systems known
as quadratic phase systems7 (QPSs). The effect of all
QPSs can be described by use of the three-parameter
LCT. The kernel of the LCT can be shown to be equivalent
to chirp multiplication2 (the amount of chirp being quan-
tified by the first parameter «) followed by a scaled FT
(the amount of scale being quantified by the second pa-
rameter B) followed by chirp multiplication (the amount
of chirp being quantified by the third parameter y).

The chirp signals can cause rapid oscillation of the ker-
nel. They are the primary cause of problems in the nu-
merical simulation of the LCT and several of its special
cases, and can increase dramatically the number of
samples required to fully represent the information®'2
beyond that used to represent the original signal. This is
true in the general cases of the FRT and FST. In the spe-
cial case of the FT this chirping is not present (a=£=0),
and the same number of samples are used to fully repre-
sent the signal before and after the FT. Numerical imple-
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mentation of the FT is carried out by using the fast Fou-
rier transform (FFT) with a number of calculations of the
order NlogN. Several more questions arise when at-
tempting to digitally compute the LCT: Will the discrete
transform (i) be unitary and therefore invertible (this
property is particularly important when simulating en-
cryption schemes® that utilize the LCT and its special
cases), (ii) be additive (i.e., will application of two succes-
sive discrete LCT algorithm be equivalent to an easily de-
fined single discrete LCT algorithm in the same way as
we expect additively for the continuous LCT), and finally,
(ii1) will it well approximate the continuous LCT.

Numerous algorithms have been defined in the litera-
ture for efficient, fast numerical implementation of the
FT,”* FRT,”® FST,¥?* and LCT>® The first
algorithm25 used to digitally calculate the FRT decom-
posed the signal to be transformed into a summation of
the eigenfunctions of the FRT, i.e., the Hermite—Gaussian
functions, and then weighted them with appropriate ei-
genvalues. This method, however, requires N? calcula-
tions. Various methods have emergedl‘r’*18 that use the
FFT, enabling a more rapid calculation of the FRT. How-
ever, each of these algorithms is accurate only for certain
limited ranges of fractional order, and none is guaranteed
to be either additive or unitary. Recently it has been
shown!'®'2 that each algorithm provides identical results
if appropriate interpolation and decimation are applied at
well-defined critical stages in each algorithm, the only
significant difference being the amount of interpolation
and decimation necessary. It has also been shown!®! that
the algorithms can retain the continuous integral trans-
form’s unitary and additive properties if certain condi-
tions are applied. We note that all of these algorithms in-
volve the application of the FFT.

An exactly unitary, index-additive, discrete FRT matrix
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matrix has been derived?® based on the discrete counter-
parts of the Hermite—Gaussian functions. However, no
closed-form definition has been given, the transform re-
quires N? calculations, and only specific sampling inter-
vals can be used in the input and output domains. We be-
lieve that the derivation used in this paper may also be
applicable to this discrete-matrix transform, since our al-
gorithm is derived by using only the periodic and shift
properties of the continuous FRT and LCT.

Similarly for implementation of the FST, various FFT-
based algorithms have been presented.m_24 Each of these
algorithms is accurate only for certain limited ranges of
propagation distance. Once again, none of these algo-
rithms is guaranteed to be either additive or unitary. It
has also recently been shown!'®! that all of these algo-
rithms generate identical results by using appropriate in-
terpolation and decimation, and that they all can be made
both unitary and additive.

In this paper we first develop theory for the discrete
linear canonical transform (DLCT)—which is to the LCT
what the discrete Fourier transform (DFT) is to the FT—
based on direct discretization of the LCT kernel for any
input sampling interval. We have defined the output sam-
pling interval to be such that the transform is unitary. We
then derive the fast linear canonical transform (FLCT),
an N log N algorithm for its implementation, using an ap-
proach analogous to that used to derive the FFT for
implementation of the DFT. This is achieved by using the
periodicity and shifting properties of the DLCT to exploit
symmetries in the DLCT matrix, breaking down the origi-
nal matrix transform into identical transforms of smaller
sizes in the same way that the FFT breaks down the DFT.
To our knowledge the approach and result have never
been presented before. The resulting algorithm is inde-
pendent of the FFT and is based purely on the properties
of the LCT. In this way we derive a single N log N algo-
rithm that can be used to calculate the FT, the FRT, the
FST, and, in the most general case, the effect of any QPS.

In overview the paper is organized as follows. In Sec-
tion 2 we briefly discuss sampling and present two
equivalent expressions representing a sampled function.
In Section 3 we discuss the continuous LCT and its shift-
ing properties to derive the discrete space LCT (DSLCT),
which is the continuous LCT of a sampled input function.
In Section 4 we sample the continuous DSLCT to derive
the DLCT. In Section 5 we use the periodicity and shifting
properties of the DLCT to derive the FLCT algorithm. In
Section 6 we briefly discuss how to impose the additive
and unitary properties on our algorithm. In Section 7 we
present results produced using a single FLCT algorithm
to simulate the FT, FRT, FST, and a two-lens QPS. In Sec-
tion 8 we offer a conclusion.

2. SAMPLING

We define 8(x) as Dirac’s impulse having a value of 1 at
x=0 and a value of 0 at all other values of x. To obtain a
sampled version of some continuous signal, we multiply it
by a train of such impulse responses:
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Spx)= >, dx—nT), (1)

n=-

where n is defined as the sampling index, T is defined as
the sampling interval in x, and its inverse is the sampling
frequency f;. Here x denotes the space domain, although
we could allow it to denote the time domain. The sampled
version of a continuous signal f(x) is given by

fT@) = fx)8r(x) = >, fnT)dx —nT), (2a)

n=-o

which can also be written as a Fourier series,

ol
Fl) = Zflw) 2 exp(j2mhfse). (2b)
h=—ox

3. SHIFTING THEOREM OF THE LINEAR
CANONICAL TRANSFORM AND
DERIVATION OF THE DISCRETE SPACE
LINEAR CANONICAL TRANSFORM

The LCT with parameters «a, 8, and vy of a function f(x) is
defined as®

Lopy ) = 08 {f(0)}(y) = J K(x,y)fx)dx,  (3a)

where the LCT kernel is
K(x,y) = A expljm(ax® - 2xy + yy?)]. (3b)

0, is the LCT operator, and A is a complex constant
that is omitted in the following analysis. The LCT obeys
the following shift theorems:

0 .p,Lexp(127&x)f(x)](y) = exp(— jmye’/ B*)exp(j2my £v/ )
X 0 i)}y = &/B). (4a)

0 5,1 — H(y) = exp[— jmE (e - ya?/ )]
X exp[j2my &(yalB
- B)1O i f(0)}(y — éa/B).  (4b)

Equation (4a) indicates that if we apply a linear change in
phase to a signal in the space domain, the LCT of this sig-
nal is identical to the LCT of the original signal, except
that it has been shifted in the LCT domain by an amount
dependent on the change in phase in the space domain,
and there is the addition of a constant phase and a linear
phase, both dependent on the phase change in the space
domain. Equation (4b) shows the analogous effect of a
shift in the space domain.

We now apply the LCT to the sampled function fZ(x).
Since we have two equivalent expressions for fT(x) in Eq.
(2), we can deduce two expressions for its LCT. First we
return to Eq. (2b) and apply the LCT to both sides:
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1>
Oupf0}Hy) = 7 > {expl—jm(k/T)?y/B%]
h=—x

X explj2m(k/T) yy! B1O (pAf(x)}(y — k/ITP)}.
(5)

This provides insight into the periodicity of the LCT of the
sampled signal. Provided that the sampling is such that
aliasing does not occur, the magnitude of ®aﬁ7{fT (x)}y) is
identical to the magnitude of 0 ,4,{f(x)}(y) repeated peri-
odically with period 1/T8. The phase of @aﬁy{fr (x)}y) is
equivalent to the phase of © ,4,{f(x)}(y) repeated periodi-
cally with period 1/T8, but also includes phase factors
(constant and linear) that are different for every period.
Using Eq. (2a), we can also write that

+o0

0T ()} () = f l > fn)dla - nT)}eXp(—jZWBxy)

n=-—o

X exp[—jm(ax? + yy?)]dx

=exp(jmyy? >, f(nT)expljma(nT)?]

Xexp(-j2mBynT). (6)

We will refer to Eq. (6) as the DSLCT, and we shall denote
it using the operator 90 ,4,. If we set a=y=0 and =1 Eq.
(6) reduces to the discrete time (space) Fourier transform
(DTFT), and Eq. (5) indicates a periodicity in both magni-
tude and phase. We note the importance of this periodic-
ity in the DTFT, since it allows the reduction in complex-
ity of certain computations that allow the development of
fast algorithms and rapid convolution summations. We
also note that certain types of periodicity that have been
referred to as chirp periodicity' exist in Eq. (5). In this
paper we use the existence of this chirp periodicity to cre-
ate our FLCT algorithm.

4. SHIFT THEOREM OF THE DISCRETE
SPACE LINEAR CANONICAL TRANSFORM
AND DERIVATION OF THE DISCRETE
LINEAR CANONICAL TRANSFORM

Equation (6) shows how to obtain the DSLCT of a discrete
function fT(x), which we can also write as f(nT). We now
obtain the DSLCT of this function if it has been shifted by
[ samples as

30,5 fl(n = DTTHy) = exp(jryy?) >, fl(n - T]

n=—o

X expljma(nT)?lexp(-j2mBynT).
(7a)

Setting i=n-1 gives

90 s AL (n - DTTHy) = exp(imyy®) >, FGT)

i=—00

Xexp{jmal(i +1)T]?}
Xexp[-j2mRy (i +1)T]
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=expljn(IT) (e — ya?/8?)]
Xexplj2mylT(ay/B - B)]

+00

x > fliT)exp{inlaGT)? - 2B T(y

i=—

- adT/B) + Yy — ATIB)]}. (7b)

The above analysis gives the following shift theorem for
the DSLCT:

90 o, (0 = DTTH(y) = expl—jl*T*(a ~ ya?/ )]
X exp[j2mylT(yal B = B)]9O p,{f(x)}
X(y —1Talp), (8)

which shows that if we shift the original discrete function
and apply a DSLCT to the resultant, the outcome will be
identical to the DSLCT of the original discrete function
except that it has been shifted by some amount propor-
tional to the shift in our input function and it has a linear
phase factor and a constant phase factor, both of which
are dependent on the number of samples by which it was
shifted. As expected, it is identical in form to Eq. (4Db).

The two problems that exist in working with the
DSLCT are that (a) the summation is infinite and (b) that
y is a continuous variable. We overcome (a) by using a suf-
ficiently large but finite number of samples that ad-
equately describe the signal:

N/2-1

exp(jmyy? >, finDexpljma(nT)lexp(-j2mpynT). (9)

n=-N/2

In Eq. (9) y is still continuous. However, only N parts can
be independent in the y domain since it is composed of N
sample values. This follows from the number of degrees of
freedom. In the case of the DTFT we have periodicity in y
with a period of 1/T, so we can take our N samples in the
y domain over any range 1/T we wish. In the case of the
DSLCT, we must take into account that the DSLCT is not
periodic in y because of the addition of different phase fac-
tors in each period. For the moment, we continue and
choose to take our N samples in the range that is unaf-
fected by the chirp periodic factors,

1 1 1

_ﬁ$y$ﬁ_1\/_ﬂ3 (10)

in steps of T,,=1/NTB. We know that this range describes
0,5,{f(x)}(y), and outside this range we find the same
function repeated but with additional phase factors intro-
duced by the discretization of the LCT kernel as seen in
Eq. (5). Then
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N/2-1 +o0
exp[jmymT,)?] X fnT)explima(nT)?] NTB 3, {expljmykNT)*|exp|- j2mxy(kNT)f(x - ENT)}.
n=-N/2 k=-x

xexp|-j2mBnT)(mT,)]

(14)

m N/2-1 We note that by sampling in the y domain, our original

=exp { J7T‘y< ) ] E f(nTexpljma(nT)?] discrete function f(nT) becomes infinitely periodic in the
NTB/ 1.2 ne original x domain with a period of NT in x and also that it

j2mmm has different constant factors in each period. Again there

Xexp(— ), (11a) is a chirp periodicity, this time applied to the input func-

N tion of the LCT. We note that substituting e=1/tan 6, 8

=1/sin 0, and y=1/tan 6, giving the normalized FRT, the

where m takes the values over the range DLCT is exactly equivalent to the discrete FRT derived in
-N2<=m<N/2-1. (11b) Ref. 10 by using the properties of the Fourier transform.

We call relations (11) the DLCT.

We now investigate the effect of sampling in the y do-
main on the input function in the x domain. We recall that
the DSLCT is simply the LCT of a discrete function in the
x domain. We take the LCT as defined in Eq.(3) and
sample it at intervals of T,=1/NTp. Using the definition
in Eq. (2b), we obtain

400

1
Lip)= g Lusi) 2 esplizmh(UT) (12)

We now apply the inverse LCT to this to return to the x
domain:

O, LT )

aBy
1 =

=0_, 54 ;Lam)kE explj27k(1/T,)y] ((x). (13)
y =—00

Using the shifting property of the inverse LCT, which is
identical to that of the LCT, we find that Eq. (13) is equal
to

Property 1

5. FAST LINEAR CANONICAL TRANSFORM
AS A MEANS OF CALCULATING THE
DISCRETE LINEAR CANONICAL
TRANSFORM

To carry out the derivation of the DLCT from the FLCT,
we must understand the shifting properties of the DSLCT
with discrete variables. These are similar to the proper-
ties given in Eqgs. (4) and Eq. (8), except that both the in-
put and output domains are discrete, and they will be
used directly in the derivation of the fast algorithm. The
first result (Property 1 below) describes the effect of a lin-
ear phase added to the discrete input and its effect on the
discrete output. We find that it produces a shifting of the
output and the addition of both constant and linear phase
terms. The second result, Property 2, describes the effect
of a linear phase added to the discrete output; it produces
both a shift in the input domain and the addition of both
constant and linear phase.

m \?| 2 j2mnm
exp| jmy| — NTS > [finT)exp(i2ménT)lexpljma(nT)lexp| -

oo N
£\? J2mymé m—§éNT J2mn(m - éNT)
=exp|:—j7ry<lg) ]EXP<W)GXP|:jW7(N—T’,B) }Ig}wfnT)exp[]wa(nTﬁ]exp[ T} (15)
Property 2
Jj2mém m \?| & j2mnm
exp( NTE ) P[J y( NT B) }Exf(nT)exp[iwa(nW]exp(— N )

m \? Jj2mantT jmad? _ £ 2 j2mm(n - &TR)
exp|jmy| —— NTB 2_ f(nT)exp| —— P exp| - 7 exp)jma n—ﬁ T| rexp —T . (16)

These two properties will be used in conjunction with the
chirp periodicity of the DLCT to derive the FLCT algo-
rithm.

Various FFT algorithms for determination of the DFT
can be derived by use of time (space) decomposition and
frequency (spatial frequency) decomposition. In the fol-
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lowing we use a mixture of both types of decompositions
to derive a fast algorithm for determination of the DLCT.
We begin with the equation describing the DLCT,

DL,s,(mT,) = DO 2 f(nT)|(mT,)
N/2-1 9
= E f(nT)exp[jTra(nT)z]exp(—J nm)
n=-N/2
m \2
X exp J’JT’}/(NTB) (17)

where D@ﬁ;ﬁ\; is the operator notation for the DLCT and m
has the range defined in relation (11b). Impose the follow-
ing relationship between N and T*

T =h/\N, (18)

where & is chosen to satisfy Eq. (18) for both number of
samples and the range over which they have been taken.
We rewrite the DLCT in Eq. (17) as

. N/2-1 jma(nh)?
D®a/37{f(nT)}(mTy)= E f(nT)exp| ———
n=-N/2 N
( ijmm) m(m>2
Xexp| — N exp N \hp .

(19)

Once again m has the range defined in relation (11b). For
ease, we rewrite the kernel in Eq. (19) as

_— jma(nh)? ( j27mm> jm/( )2
N’h—exp N exp| — N exp hﬁ

(20)

We call this the “LCT twiddle factor,” and in the case of

the FT parameters a=vy=0, 8=1 it reduces to the twiddle

factor found in the derivation of the FT in Refs. 27-29.

Using Egs. (18) and (20) we rewrite Properties 1 and 2 as
Property 1

= j2ménh
Ef(nT)exp< = )W?V:';:

AY

ol o) ol )
=eXx — ] - ex
Pl =/ 5 p N

+00

X > An DW=, (21)

n=—o

n=—o

Property 2

= j2mém
(nT)WyT, ex )
;;?mf o p( hl;vﬁi

& j2manéh -
_.eXp<]7Ta2;-> :E:fzn]vexp<-——;51;__)VVXZde%BLm.

n=—wo

(22)
We wish to calculate the DLCT of the function
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fnT), -N2<n<N/2-1, (23)

which is split (following from the procedure for FFT fre-
quency decomposition) into

a(n) =f(nT),

b(n) =fl(n+N/2)T],

We rewrite Eq. (19) using the functions defined in Eq. (24)
as

N2<sn<-1. (24)

N/2-1 -1
DOINfnT)}mT)) = 2 fnDWy= > [a(n)

n=-N/2 n=-N/2

+b(n) Wi, (25)

where m has the range defined in relation (11b). We can
rewrite this using Property 2 as

-1

DOLNfnT)}mT)) = >, {aln b(n)expljmah?(n
n=-N/2
+N/4)]exp(—jmm) Wy} (26)

We introduce a new function
c(n)=b(n)pe(n),  po(n) = expljmah®(n + N/4)],
(27)
and we rewrite the right-hand side of Eq. (26) as

-1
> [a(n) +c(n)exp(~ jmm) Wi (28)
n=-N/2
Taking even and odd m values in expression (28), we get,
respectively,
-1

DOLNnDNemT,) = 3 [aln)+emIWR",

n=-N/2
(29a)

-1
DO fnT)[2m + 1T,] = EN/ [a(n) - c(n)]WyEm,
n=-N/2

(29Db)

where in Eq. (29), m is now over the range -N/4<m
<N/4-1. This concludes the frequency decomposition
part of the algorithm derivation. We now apply time de-
composition. Defining four new functions by splitting up
the input functions in Eqgs. (29) into their even and odd
samples, we define

p(n)=a@n) +c(2n),
gn)=a@n+1)+c(2n+1),
r(n) =a(2n) -c(2n),

s(n)=a@n+1)-c2n+1), (30)

where in each of the cases in Eqs. (30) n takes values in
the range —-N/4<n<-1. We rewrite Eqs. (29) as
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DOGHnTNEmT,) = X [p) WP +qm)WiEs: "],

n=-N/4
(31a)
-1
DOLNfnTH(Em + VT, = > [r)WiyEmD
n=-N/4
+s(n)WigpD @m ], (31b)

We note that the LCT twiddle factor has the property

Making use of this property we rewrite Eqgs. (31) as

-1 9
¢
DOTNIfnT)}(2mT,) = >, p(n>W<N/4>h+exp(”Z )exp(

n=-N/4

We then set é=hpB/ VN so that the shift disappears. We
could have arranged for an integer shift, which would be
equally manageable, since we could ignore the integer
shift and then determine the required output by making
use of Eq. (5), which defines the chirp periodicity. This
would require the rotation of the output by an amount
equal to the integer involved and use of an appropriate
complex term. This step allows for the derivation of many
different fast algorithms. To proceed we apply this substi-
tution to Eq. (34), which becomes

-1 . 2
Jjmah
DOINIAnT}2mT,) = > p(n)W?N'/'fn,weXp( N )

n=-N/4
( j47'rm)
Xexp| ———
o . )
=A(m) + u(m)B(m), (35)
where
Jjmah? Jj4mm
R L )
jamanh?
Ho(n) = eXp(,B—N>’
-1
Am)= 2 p)Wiy s
n=-N/4
-1
B(m)= %/4[‘1(")#2(”)]W?N%),h- (36)

Equation (35) is made up of two quarter-size DLCTs with
output ranges over —-N/4<m<N/4-1. This is twice as

hBN/4
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-1

D@gﬁ]\; (nT)}2mT,) = 21\//4 e (M) Wik, +q(n) WEI'QH)/%Z ™,
(33a)
DOTNIfnT))(2m + VT, = 2 [r() W2
n=-N/4
+smWiR ™). (33b)

First we deal with the even m samples. Invoking the
Property 2 shift theorem we rid ourselves of the shift
present in Eq. (33a) and obtain

2
j2mém ) 54)

- J2mnaé T
S q<n>exp(—, )wzm 6o
n=-N/4 ,BVN/

[

large as is necessary since we can make use of the chirp
periodicity, so that we need calculate only half of these
samples. Using the discussion in Section 4, we can calcu-
late the samples of the two quarter-size DLCTs A and B
in the range —-N/8<m <N/8-1 directly from Eqgs. (36).
Over the range -N/4<m<-N/8-1,

N N
A(m)=A<m+Z),u3(rn), B(m)=B<m+Z>M3(m),

JmNy
—4h2/32 exp| —

and in the range N/8<m=<N/4-1,

12
! my), (37)

ug(m) = eXP(- W

N N
A(m) =A<m - Z)m(m), B(m) =B<m - Z)m(m),

jmy2m —N/4)}
— s (38)

lu’4(m) = exp[ hQBZ
We now carry out a similar decomposition for the odd
samples of our output function. We recall Eq. (33b) and,

applying Properties 1 and 2, we obtain
DOLNfn D (2m + 1)T, ]

aBy!
-1 -1

12 1/2),(m+1/2
= 2 rWEERY + 2 s Wi
n=-N/4 n=-N/4

(39)

-1

-3

n=-N/4

-1
+ E s(n)exp(—

n=-N/4

J2 @h ) exp (JZ mqnh ) Wi
VN/4 VN/4 ’

j27rqnh>
VN/4

r(n)exp(—

) WE;LV+/-i)/’2}L),(m+1/2) ) (40)
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Once again we could choose a value of ¢ to give a more
manageable integer shift in the output domain, but we
choose to eliminate the half shift, so we set g=1/h\N;
then

DOLMAnT(2m + 1)T,]

. i4 -1
=exp( 7Y )exp(J wmy) 2 r(n)

B*h*N R*BN | 2

jammn " Jjmy Jammy
Xexp _T Wigiiay » + exp PN exp 2N

-1 .
jamn
e P
n=-N/4
-1
= us(m) D () pe(m) Wik 4
n=-N/4
-1
+us(m) 2 s(n)us(m) W2, (41)
n=-N/4

where

Jmy Jammy
/J“S(m)ZeXp Bzth €xp hZBZN ’

(42)

j477n)
N

me(n) = eXp(- — |

We are now in a position identical to that in Eq. (35). To
rid ourselves of the shift in the input domain of the second
of these DLCTs, we carry out the same procedure, giving

DO n DY (2m + 1T, ] (43)

aBy
=us(m)C(m) + wrus(m) ui(m)D(m),

pq = exp(= 27/N),

where m has the range -N/4<m<N/4-1, the constant
term u; is a result of using both Properties 1 and 2 to-
gether, and

-1

Cm)= 2> r(n)us)Wiik 1,
n=-N/4

-1

Dim)= 2 s()uem) () Wiy . (44)
n=-N/4

Once again for C(m) and D(m) we need only calculate half
the range of m and find the second half by using the chirp
periodicity of the DLCT. We calculate the samples of the
two quarter-size DLCTs C and D in the range —-N/8<m
<N/8-1 directly from Eqs. (44).

Over the range -N/4<m<-N/8-1,

C(m)=C(m + N/4)us(m), D(m)=D(m + N/4)us(m),
(45)
and in the range N/8<m<N/4-1,
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D(m)=D(m — N/4)uy(m), D(m)=D(m - N/4)uy(m).

(46)

This completes our derivation of the FLCT algorithm as
a means of calculating the DLCT defined in Egs. (11). We
have explicitly presented a method to decompose an
N-point DLCT into four N/4-point DLCTs. Computation
directly by Eqs. (11) requires N? calculations. We note
that this algorithm is radix 4 and that the size of the in-
put data must be N=2". If n is odd, we use the fast algo-
rithm recursively until the DLCT has been broken down
into 2 X2 blocks that are then calculated directly by Eq.
(11a) in the same way as the FFT finishes with the FFT
butterﬂy.wf29 If n is even, we use the fast algorithm re-
cursively until the DLCT has been broken down into 4
X 4 blocks that are then calculated directly by Eq. (11a).

We also note that a similar procedure can be applied for
other radix prime numbers squared, e.g., radix 9, where
with each step, the algorithm will break down a large N
XN matrix into nine smaller matrices of dimension
(N/9XN/9). As mentioned earlier in this section, our
method permits the derivation of a large number of fast
algorithms, each of which uses of the order of N log N cal-
culations with the same efficiency as the FFT, and we
have outlined the procedure to derive only one of these.

Substituting a=1/tan §, B=1/sin §, and y=1/tan 6,
which gives us the normalized FRT, we now have a fast
FRT algorithm and, carrying out a similar substitution
for the Fresnel transform, we also have a new fast algo-
rithm for its determination. In Section 8 we present re-
sults obtained for these cases and others using our Fast
LCT Software Package (© Hennelly-Sheridan 2004) pro-
grammed in C++.

6. USING THE ALGORITHM: OUTPUT
EXTENSION AND INTERPOLATION
AND DECIMATION

The algorithm as it is described up to this point is unitary,
and an inverse transform can be applied to recover ex-
actly our initial discrete signal. However, we note the fol-
lowing concerning the output extent or function width.
The input in x was taken to be Wo=NT and from Eq. (5),
we deduced that the output samples would uniformly oc-
cupy a 1/7TpB extent in y. From the theory of the LCT,? we
know that the output extent will not in general be equal
to this value. We can expect both a change in the output
spatial extent W,, and in the output spatial-frequency ex-
tent (bandwidth) B,,, and therefore we can also expect a
change in their product [the signal space—bandwidth
product,”® (SBP)]; the SBP determines the number of uni-
form samples required fully to represent the signal. We
can account for these changes by tracking variations in
the shape of the Wigner distribution function!®:3
(WDF) as we apply a LCT.

Since in general 1/7B will not be equal to W, the ini-
tial signal must be interpolated or decimated so as to im-
pose this equality. For example, in the case of W, being
twice the value of 1/7T8 we must interpolate by a factor of
2 such that T—T/2. Efficient methods of interpolation
and decimation can be found in the literature.?’ We also
note that there may not be enough samples to adequately
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represent the continuous LCT. The SBP (W,B,,) may still
be larger than N, even after interpolation has been ap-
plied to increase or decrease the output extent. In this
case we apply zero padding of the input function until we
have equality between the two.

In the case of the continuous LCT, additivity implies
that

®a363y3{f(x)}(y) = ®a262y2{®a15171{f(x)}(y’)}(y), (473)

v/ Bs 1/83 } ~ [ Yol Bs 1/, }
—Bs+azys/Bs ayBs| |- Ba+asyelBs sl

% [ "/B1 1/, :|
-Bi+avilBr /B
(47b)

The relationship is particularly important when simulat-
ing the FRT and FST, and the question arises whether
our algorithm obeys Eq. (46). If the conditions concerning
interpolation and zero padding are met, and if we take ac-
count of the WDF shape at the output of our (ay,81,v1)
FLCT and use it as the input WDF shape to the
(a9, Ba, v9) FLCT, then the LCT additive property defined
in Eq. (46) will be met by the FLCT algorithm.%!°

Regarding sampling, we note that the LCT induces de-
formations of the finite area subtending the WDF, re-
ferred to as the support (where the original limits are
given by use of the power criterion), and will thus lead to
a distortion of the initial input rectangular sampled area.
This distortion means that although the signal may be ac-
curately represented by the exact same samples (follow-
ing transformation) the samples will no longer, in general,
occur inside a subtending rectangle in phase space. How-
ever, practical sampling typically involves use of a CCD
camera with a regular periodic pattern of pixels, which is
usually interpreted as corresponding to a regular (rectan-
gular in the one-dimensional signal case) area in phase
space. A skewed rectangle (following for example a
Fresnel transformation) in our procedure becomes a sub-
area inside a larger rectangle (unless parts of the original
subtending area are intentionally neglected). Thus the to-
tal number of samples necessary to ensure capture of all
the information input to the system will usually involve a
change in the sampling. Following the standard proce-
dure we assume sufficient regular sampling to ensure
that aliasing effects can be assumed negligible. While
some “oversampling” may occur compared to a situation
in which sufficient knowledge is available to allow a priori
preprocessing of the data,*? in our method no preprocess-
ing or postprocessing of the data is necessary.

7. NUMERICAL RESULTS

The algorithm derived in Section 5 was written in C++
code (Fast LCT © Hennelly-Sheridan 2004). In this sec-
tion we apply the FLCT to various special cases of the
LCT as well as a general, arbitrary QPS. We begin by
implementing the DFT of an input rectangular function®
that is equal to 1 in the range -1 to +1 and is equal to 0
everywhere else. We take 512 samples in the range -5 to
+5, and we set a=vy=0, f=1 in the FLCT algorithm. The
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Fig. 1. Magnitude of discrete Fourier transform calculated with
FLCT algorithm setting a=vy=0, B=1.
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Fig. 2. (a) Magnitude and (b) phase of discrete (normalized)
fractional Fourier transform (angle 6=w/4) calculated with
FLCT algorithm setting a=y=1/tan(w/4), B=1/sin(w/4).

resulting magnitude and phase of the DFT are shown in
Fig. 1. In this case the FLCT algorithm reduces to a mix-
ture of the well-known time and frequency decomposi-
tions, and the algorithm is numerically as efficient as the
standard FFT algorithms.9

Second, we apply the FLCT algorithm to calculate the
discrete (normalized) FRT of angle 6=n/4 of the same
function. Again we take 512 samples over the range -5 to
+5 and we set a=vy=1/tan(w/4), B=1/sin(w/4) in the
FLCT. The magnitude and phase of the resulting discrete
complex function are shown in Fig. 2. These results have
been verified as being identical to those found using algo-
rithms in the literature for the FRT.1%-14

Third, the FLCT algorithm is applied to calculate the
discrete FST for A=500 nm and z=10 mm. The input
function used is a rectangular function equal to 1 in the
range —0.5 mm to +0.5 mm and to 0 everywhere else.
2048 samples over the range -5 mm to +5 mm are neces-
sary because of the need for interpolating when imple-
menting the FST. We set a=vy=£=1/Az in the FLCT. The
magnitude and phase of the resulting discrete complex
function are shown in Fig. 3. These results were verified
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Fig. 3. (a) Magnitude and (b) phase of discrete Fresnel trans-
form calculated with FLCT algorithm setting a=y=8=1/\z.

Fig. 4. QPS with two lenses and three sections of free space.
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Fig. 5. Magnitude of DLCT of Rect(x/2) for the two-lens system
shown in Fig. 4 calculated with FLCT algorithm.

as being identical to those found using standard algo-
rithms for implementing the FST.'6-%!

A general LCT for an arbitrary bulk optical (QPS) sys-
tem is calculated. The two-lens system shown in Fig. 4 is
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simulated. We arbitrarily choose fi=f5=100 mm, d;
=10 mm, d9y=20 mm, d3=30 mm, for which we calculate
a=0.0756, y=0.00557, B=0.021459 by matrix LCT
theory.>® The input function is taken to be the rectangu-
lar function used in the previous case, and 2048 samples
are taken in the range -5 mm to +5 mm. The magnitude
and phase of the resulting discrete complex function are
shown in Fig. 5. While the result is a good approximation
to the continuous QPS output, we note that increasingly
accurate results can be found if the input function is in-
terpolated and zero-padded in accordance with the condi-
tions outlined in Section 7.5

We conclude this section by noting that the availability
of this fast LCT algorithm will find applications in the ar-
eas of both two-dimensional and three-dimensional holo-
graphic data encryption®*® and compression.®

8. CONCLUSION

We have discussed the existing algorithms for the nu-
merical implementation (for purposes of numerical simu-
lation in the area of optical signal processing) of the DFT,
FRT, and FST. All of the reported algorithms in the litera-
ture apply the FFT method. We have presented an ex-
pression for the discrete space linear canonical transform
(DSLCT) and the discrete linear canonical transform
(DLCT); the latter is to the LCT what the Discrete Fou-
rier transform (DFT) is to the FT and is based on a direct
discretization of the LCT kernel for any input sampling
interval. We then presented the fast linear canonical
transform (FLCT), an N log N algorithm for implementa-
tion of the DLCT that uses an approach similar to that
used in deriving the FFT from the DFT. This is achieved
by using the periodicity and shifting properties of the
DLCT to exploit symmetries in the DLCT matrix to break
down the original matrix transform into identical trans-
forms of smaller sizes in the same way as the FFT breaks
down the DFT.

The original N2> DLCT matrix transform has been de-
composed into four quarter-size discrete transforms of
identical type in the same way in which the FFT decom-
poses the N2 DFT matrix into two half-size DFT trans-
forms. A new group of fast algorithms that includes fast
fractional Fourier and Fresnel transforms was presented.
These new algorithms are entirely independent of the
FFT, are based purely on the properties of the LCT, and
can be used to directly analyze any QPS. We have dis-
cussed how the algorithm can approximate the continu-
ous LCT most accurately in terms of the LCT additive
property and in terms of output sample space and extent.
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