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ABSTRACT: The development of Adapted Caussinus–Mestre Algorithm for homogenising Networks of Temperature series
(ACMANT), one of the most successful homogenisation methods tested by the European project COST ES0601 (HOME)
has been continued. The third generation of the software package ‘ACMANT3’ contains six programmes for homogenising
temperature values or precipitation totals. These incorporate two models of the annual cycle of temperature biases and
homogenisation either on a monthly or daily time scale. All ACMANT3 programmes are fully automatic and the method
is therefore suitable for homogenising large datasets. This paper describes the theoretical background of ACMANT and the
recent developments, which extend the capabilities, and hence, the application of the method. The most important novelties in
ACMANT3 are: the ensemble pre-homogenisation with the exclusion of one potential reference composite in each ensemble
member; the use of ordinary kriging for weighting reference composites; the assessment of seasonal cycle of temperature
biases in case of irregular-shaped seasonal cycles. ACMANT3 also allows for homogenisation on the daily scale including
for break timing assessment, gap filling and ANOVA application on the daily time scale. Examples of efficiency tests of
monthly temperature homogenisation using artificially developed but realistic test datasets are presented. ACMANT3 can be
characterized by improved efficiency in comparison with earlier ACMANT versions, high missing data tolerance and improved
user friendliness. Discussion concerning when the use of an automatic homogenisation method is recommended is included,
and some caveats in relation to how and when ACMANT3 should be applied are provided.
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1. Introduction

For the analysis of climate change and climate variabil-
ity the accuracy of observational data is of key importance
(Williams et al., 2012; Acquaotta and Fratianni, 2014).
Although national meteorological services led by World
Meteorological Organisation (WMO) initiatives foster the
production of high quality and comparable climatic data
temporally and spatially, technical changes in the mea-
surement setup or observational practices often influence
the usability of climate data records. Observational data
can only be considered temporally homogeneous (here-
after: homogeneous) if temporal variations are exclusively
influenced by weather and climate. In practice, several
factors corrupt the homogeneity of climatic time series,
these include: station relocations, changes of instrumen-
tation, instrument position, site changes around the instru-
ment, changes of the timing of reading instruments, etc.
(Aguilar et al., 2003; Menne et al., 2009; Acquaotta et al.,
2016). A general observation is that long observational cli-
matic records are seldom homogeneous, and that the qual-
ity of climatic records may also be affected by occasional
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observational and data transfer errors. Certain data qual-
ity problems can be eliminated by general quality con-
trol (Durre et al., 2010; Menne et al., 2012), or with the
analysis of the documents of the history of observations
(so-called metadata, Bergstrom and Moberg, 2002; Pro-
hom et al., 2016). However, the statistical homogenisa-
tion of data provides additional quality control and allows
for improved temporal and spatial comparisons between
data for scientific purposes (Peterson et al., 1998; Beaulieu
et al., 2008; Venema et al., 2012). When observational net-
works are sufficiently dense, relative homogenisation (i.e.
homogenisation methods including spatial comparisons
of time series) can help to remove even relatively small
non-climatic biases from the data. Therefore, the statistical
methodology underpinning time series homogenisation is
a widely studied topic of climatology (e.g. Series of Data
Quality Control and Time Series Homogenisation, World
Meteorological Organisation, 1996–2014).

Both the most common and frequent form of inhomo-
geneity in a climate time series is the sudden shift of the
means, commonly referred to as a break or change-point.
A set of breaks can be searched and corrected one-by-one
in hierarchic structures (e.g. Alexandersson and Moberg,
1997), or jointly with appropriate mathematical tools.
When time series include multiple breaks, joint treatments
have theoretical advantages over hierarchic techniques
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(Szentimrey et al., 2014; Lindau and Venema, 2016), as
in hierarchic techniques early phase errors are delivered to
the later steps of the homogenisation process. For purposes
of this study ‘multiple break method’ means a method
with joint detection of inhomogeneities, and one which
incorporates the joint calculation of correction terms
for adjusting inhomogeneities. As observed temperature
time series include five to seven breaks per 100 years on
average (Menne et al., 2009; Venema et al., 2012), or even
more due to hidden short-term biases (Domonkos, 2011a;
Rienzner and Gandolfi, 2011) multiple break methods
are of key importance in providing high level solutions
for homogenisation tasks particularly in relation to the
homogenisation of temperature. Efficiency tests prove
that multiple break methods generally outperform other
homogenisation methods (Domonkos, 2011a,; Domonkos
et al., 2011; Venema et al., 2012). Although some inho-
mogeneities result in gradually increasing biases instead
of abrupt shifts of the means (e.g. urbanisation), this effect
has little impact on the rank order of method efficiencies
(Domonkos, 2011a).

The organisation of this paper is as follows: The devel-
opment of multiple break methods and particularly the
development of Adapted Caussinus–Mestre Algorithm for
homogenising Networks of Temperature (ACMANT) is
described in the next section; in Section 3, the novel fea-
tures of ACMANT3 compared with earlier ACMANT ver-
sions are presented; some efficiency results are presented
in Section 4; and the paper ends with a discussion and some
recommendations in Section 5.

2. Development of multiple break methods and
ACMANT

Although statistical break detections and corrections
have been studied and applied for at least 90 years
(Conrad, 1925), the theory and development of multi-
ple break homogenisation appeared only in the 1990s
coincident with the more widespread use of personal
computers. At that time two approaches to multiple
break homogenisation were established, namely Mul-
tiple Analysis of Series for Homogenisation (MASH),
Szentimrey, 1996, 1999) and PRODIGE (Caussinus
and Mestre, 1996, 2004). These two methods differ
markedly from each other: MASH uses multiple reference
series, selects the set of breaks with hypothesis testing,
derives adjustments terms from the confidence intervals
belonging to the hypothesis test results, and the MASH
approach to the final solution is iterative. By contrast,
PRODIGE uses pairwise comparisons, optimal step
function fitting for break detection and the minimisation
of residual variance (ANOVA) for the adjustments of
inhomogeneities in a procedure without iteration. Both
MASH and PRODIGE were among the most successful
methods tested by the European project COST ES0601
(known as ‘HOME’, 2007–2011). During HOME,
two new multiple break methods were created based on
PRODIGE: one is the fully automatic ACMANT (Adapted

Caussinus–Mestre Algorithm for homogenising Networks
of Temperature series, Domonkos, 2011b) and the other
is Homogenization software in R (HOMER, Mestre et al.,
2013), the interactive homogenisation method officially
recommended by HOME. Both HOMER and ACMANT
provide additional functionality relative to the parent
method PRODIGE. Therefore recently, HOMER and
ACMANT have been applied more frequently than
PRODIGE.

After the termination of HOME, the development of
ACMANT has continued, and the second generation of
ACMANT (ACMANT2) already incorporated methods
for the precipitation homogenisation and for the treat-
ment of daily data through downscaling the monthly
homogenisation results to daily scale (Domonkos, 2014,
2015a). Most recently the development of ACMANT3 has
improved the efficiency and user friendliness further, and
some of these improvements are detailed below.

ACMANT3 is a complex software package incorporat-
ing six programmes, these are: temperature homogeni-
sation with a sinusoid annual cycle of biases; temper-
ature homogenisation with an irregular annual cycle of
biases; precipitation homogenisation. Each of the pre-
ceding three has monthly and daily homogenisation ver-
sions (http://www.c3.urv.cat/data.html); and in total the
six programmes incorporate 174 sub-routines. The soft-
ware package also includes auxiliary files to support net-
work construction. However, despite its complicated struc-
ture, ACMANT provides the fastest method implemen-
tation among all the available automatic homogenisation
methods.

As both HOMER and ACMANT have been developed
from PRODIGE, the two new multiple break methods
have several similarities. Table 1 summarizes the main
similarities and differences of the two methods. Note that
although HOMER is only for monthly homogenisation, the
joint use of HOMER and Spline Daily Homogenization
(SPLIDHOM, Mestre et al., 2011) can be applied for daily
data homogenisation (www.homogenisation.org), and in
Table 1 it is considered the daily homogenisation version
of HOMER.

3. Methodological novelties of ACMANT3

The full scientific description of ACMANT2 has been
published (Domonkos, 2014, 2015a), and therefore, only
the new features of ACMANT3 in comparison with the
earlier ACMANT versions are presented here. Appendix A
details the mathematical formulations of some steps of the
homogenisation connected to the content of this section.
Note that some less important details are not shown due to
the complexity of the methodology.

To aid interpretation of the present description of the
methodology, it should be recalled that in ACMANT, the
candidate series for homogenisation is compared with the
weighted average of other available series in the same
climatic area. This weighted average series is referred to
as composite reference series and the contributor series as
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Table 1. Similarities and differences between HOMER and
ACMANT.

HOMER ACMANT3

Temperature homogenisation X X
Precipitation
homogenisation

X X

Monthly homogenisation X X
Daily homogenisation X X
Pairwise comparison X
Composite reference series X
Optimal step function fitting X X
Derivatives of the C–L
criterion

X X

Network-wide joint
segmentation

X

Bivariate detection for
temperature (when
applicable)

X X

Bivariate detection for
precipitation (when
applicable)

X

Varied use of time resolution
in break detection

X

Ensemble
pre-homogenisation

X

Correction with ANOVA
model

X X

Iterations X
Monthly precision of breaks X X
Daily precision of large
magnitude breaks

X

Adjusting relative to the last
homogeneous section

X X

Quantile dependent daily
correction terms

X

High missing data tolerance Xa Xa

Completion of missing data X X
Completion of data before
break detection

X

Filtering of spatial outliers X X
Metadata use supported X
Graphical results X
Automatic execution X

aThe missing data tolerance of ACMANT is higher than that of HOMER
(results of authors’ experiments, not shown).

reference composites, respectively. The difference (ratio)
of the candidate and reference series is referred to as
relative time series in the homogenisation of temperature
(precipitation) series.

3.1. Ensemble pre-homogenisation

The aim of doing pre-homogenisation prior to the
main homogenisation is to remove relatively large biases
before the main homogenisation. This excludes the pos-
sibility of potentially large biases in the reference com-
posites during the main homogenisation affecting the
accuracy of the final homogenisation results. The con-
cept for ACMANT1 and ACMANT2 was that during the
pre-homogenisation of the reference series of the later
candidate series, the later candidate series was excluded
from that pre-homogenisation. The pre-homogenisation

routines employed by ACMANT3 are completely different
and their core is the search for and application of ensemble
minimums as adjustment terms. The underpinning concept
is that the application of false adjustments can be excluded
with high certainty by the use of ensemble minimums.

In the first phase, an ensemble of pre-homogenisation
is produced, and this always excludes one potential refer-
ence component from the homogenization. The main steps
of the pre-homogenisation are (1) creating relative time
series; (2) break detection on an annual scale and; (3) cal-
culation of adjustment terms with ANOVA (Caussinus and
Mestre, 2004; Domonkos, 2014) are performed for each
ensemble member. The adjustment terms indicated by the
ensemble members are stored but not applied in this phase.
In the second phase, the minimum absolute value of the
stored adjustment terms is calculated for each time series
and each year, and then, it is applied for obtaining the
pre-homogenisation result. If the signs of the adjustment
terms of ensemble members are mixed for a particular year
of a particular time series, then the result adjustment term
is zero. See also Appendix A1.4.

If univariate detection is applied, then the monthly
adjustment terms of pre-homogenisation are constant
within a particular year, while the shape of the annual cycle
of adjustment terms is predefined when bivariate detection
is applied (Domonkos, 2014). The pre-homogenisation
is performed twice in any programme of ACMANT3.
In the first execution the cp coefficient of the modified
Caussinus–Lyazrhi (C–L) criterion (Appendix A1.3,
formulas (8) and (9)) is elevated with 40%. The purpose
of this distinction in parameter cp according to the stage
of ACMANT3 procedure is to focus on the elimination of
large inhomogeneities in the first pre-homogenisation.

3.2. Ordinary kriging for determining the weights of
reference components

Ordinary kriging is a widely applied tool for the produc-
tion of optimally interpolated values of a meteorological
variable to a given location. Theoretically, ordinary kriging
provides the optimal weights of reference series compos-
ites (Szentimrey, 2010), as the purpose of building com-
posite reference series is to have another series beyond the
candidate series (i.e. the reference series) whose climatic
variability is the same as that of the candidate series. How-
ever, in practice, the unavoidable inaccuracy of the large
number of parameter estimates incorporated in ordinary
kriging has the potential to reduce the efficiency. The more
traditional way is applying the squared spatial correlations
of increment time series as weights of the reference com-
posites (Peterson and Easterling, 1994).

If the number of reference composites is N, then the
number of estimated parameters is N in the traditional
method, while for ordinary kriging it is 0.5×N × (N − 1)
as ordinary kriging uses the entire covariance matrix of
the candidate series and reference composites. According
to tests (not shown) ordinary kriging performs better than
the traditional weighting of reference composites if it is
applied with some restrictions: (1) Ordinary kriging is
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applied only when N ≥ 6; (2) when an estimated weight
is negative, the applied weight is 0, as a negative weight
for a reference composite has no physical interpretation;
(3) when an estimated weight would be higher than 0.4,
the weights of the other reference composites are slightly
elevated in order to reduce the overly strong influence
of the most highly correlated reference composite. It is
applied to reduce the likelihood of importing any potential
inhomogeneity from the most closely correlated reference
composite.

3.3. Irregular annual cycle of biases for temperature
inhomogeneities

In the tropics and monsoon regions, the annual cycle of
irradiation markedly differs from the semi-sinusoid cycle
of the mid- and high-latitude regions. Therefore, the annual
cycle of temperature biases is not sinusoid everywhere. In
addition, biases of daily temperature minima are affected
more by the frequency of clear sky and calm weather
conditions than by the annual cycle of irradiation. In
ACMANT2, the model annual cycle of biases was constant
when the sinusoid model was not applicable. ACMANT3
provides season-dependent adjustments for these cases, in
spite of the generally lower signal to noise ratio in the esti-
mates for seasonal than annual characteristics. The assess-
ment of the seasonal cycle of biases includes three main
steps: (1) Optimal step function fitting (Appendix A1.3)
is applied to the annual series of monthly temperatures
for each calendar month, with coarser time resolution than
in the default application, this to allow for the lower sig-
nal to noise ratio for monthly compared to annual values.
Here, the minimum distance between two adjacent breaks
is 5 years. (2) ANOVA is applied to the annual series of
monthly values. In this step, the same ensemble procedure
is included for each month as in the pre-homogenisation
(Appendix A1.4). (3) Finally, monthly estimates of adjust-
ment terms derived from the ensemble calculations are
smoothed (Appendix A1.6).

3.4. Daily precision of large-size breaks

A step function with exactly one break is fitted to daily data
of relative time series in a section, which includes both the
preceding and subsequent 6 months of the pre-estimated
timing of the break. Univariate detection is applied, and
the break is accepted in a narrower window only, which
includes the preceding and subsequent 2 months of the
pre-estimated timing. This operation is done only when the
pre-estimated break magnitude is not lower than the 75%
of the empirical standard deviation of daily data, this also
considers either the entire window (1 year) or the narrower
window (4 months). When this operation is omitted for a
break of relatively small magnitude, the default timing of
the last calendar day of the pre-estimated month of the
break is retained.

3.5. Treatment of daily data when monthly outliers are
detected

A monthly outlier or an outlier value of the mean of a few
months period may indicate that on daily scale either a

platform-shaped inhomogeneity exists, or the daily values
are very scattered with significant mean bias. For identi-
fying the former case (which is likely the more frequent),
a step function with two steps is fitted to the daily data
of the relative time series spanning the period that starts
4 months before the outlier and ends 4 months after the
outlier (‘wide window’). The two breaks are searched
across a narrower window, specified for 1 month before
and after the outlier period with a minimum platform
length of 10 days, and univariate detection is applied.
No platform-shaped inhomogeneity is identified when (1)
there are less than 4 months with observed monthly data
of the candidate series among the 8 months before and
after the narrow window but within the wide window; or
(2) the standard deviation of the relative time series values
within the candidate platform-shaped inhomogeneity is at
least twice as high as for all the values within the wide
window. If a platform-shaped bias cannot be identified,
then all the daily data of the outlier period are treated as
missing data.

3.6. ANOVA on daily scale

In the late phase of daily homogenisation, the break times
are provided at daily resolution and ANOVA is then
applied to the daily resolution data to provide direct daily
adjustment terms. The equation system for the practical
solution of the minimisation of the residual variance with
ANOVA (Domonkos, 2014, 2015a) can be applied on any
time scale.

3.7. Selective exclusion of years with too few observed
data from the homogenisation

ACMANT’s default operational mode is to first infill
data gaps with interpolated values, and all the routines
of the software use continuous time series. However,
when the number of synchronously available observed
data in the network is very low, the reliability of inter-
polated values is correspondingly low, and hence, can
affect the efficiency of homogenisation. In ACMANT3,
years with too few observed values are excluded from
most steps of the homogenisation procedure and are
only included in the final interpolations for completing
time series and for applying final adjustments to correct
inhomogeneities.

Typically, years with intact observed data from less
than three stations are excluded. A yearly observation
is classified as intact when the year has at least nine
observed monthly values (at least 9 months with at least
75% complete observed daily values) in the case of
monthly (daily) input data. Whereas in the case of pre-
cipitation, only one missing daily data value excludes the
entire month from contributing positively to the evalu-
ation of the intact or non-intact character of the yearly
observation.

3.8. Elevated missing data tolerance

Time series must comprise at least ∼10 years observed
data, more precisely 114 monthly observations and a series
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may have more than a 100-year data gap. (See more
requirements for data input in the ACMANT3 Manual,
http://www.c3.urv.cat/data.html.)

As relative time series often have different lengths
(Domonkos, 2011b, 2014), long data gaps would result
in some reference series including virtual composites, i.e.
composites without their own observational data. In the
present parameterisation scheme of ACMANT3, a ref-
erence composite can be included if it has at least 12
observed monthly values falling within the corresponding
period of the target relative series. This threshold is low,
since experience with ACMANT3 shows that the inclusion
of a very few additional observed values compensates well
for the uncertainty associated with the inclusion of inter-
polated values.

3.9. Modifications in the interpolation of monthly
values for substituting missing data

The interpolation for a missing value of a candidate series
is provided by the weighted average of the anomalies
in other series of the network (‘partner series’) applied
to the missing data points, and these are then adjusted
to the climatic mean of the candidate series (Appendix
A1.5). Two changes are incorporated compared to earlier
ACMANT versions: (1) Only the homogenized periods
of partner series are taken into account other than at the
early phase of the homogenisation procedure, or when
the interpolation is for a missing value out of the homog-
enized period of the candidate series; (2) changes to the
parameterisation scheme.

3.10. Gap filling of daily data before homogenisation

The advantage of gap filling on data at daily scale before
homogenisation is that temporally fragmented observed
values can be incorporated into the homogenisation. The
interpolation of daily values is performed in the same way
as that of the monthly values in monthly homogenisation,
other than for some changes in the parameterisation
scheme applied. This interpolation is repeated several
times during a homogenisation procedure, as after the
adjustments for biases caused by inhomogeneities, more
accurate interpolated values can be provided for infilling
data gaps.

3.11. Completion of time series

For ACMANT3, even if the input data comprises time
series of various lengths, the homogenized output series
are (optionally) completed with data for the same time
period. These are generally from the earliest year with
available observational data in the network through until
the latest year with observational data in the network.

4. Efficiency tests

For measuring the efficiency of homogenisation methods,
artificially generated test datasets are needed, in which
the positions, shapes and magnitudes of inhomogeneities

Table 2. Summary statistics for the proportion of the test time
series completeness and the extent of missing data. Completeness
and exterior missing data are proportional to the entire period
examined (100 years), while interior missing data to the periods

of observations. All values are in percentage units.

Completeness Exterior
missing

data

Interior
missing

data

Dataset (A) 89.0 10.0 1.1
Dataset (B) 50.1 39.2 17.7

are known. In good test datasets, both the climatic and
inhomogeneity characteristics should be realistic and the
dataset should be of sufficient size to make confident sta-
tistical estimations (Domonkos, 2013). In this section,
the efficiencies of the earlier and new ACMANT ver-
sions are compared for the homogenisation of monthly
temperatures with regular annual cycle of biases using
two test datasets. The homogeneous dataset was taken
from the HOME benchmark, its large, 200 network sized
version is used (Venema et al., 2012). For the exercise
here, climatic trends, additional noise and various kinds
of inhomogeneities have been added (Appendix A2). The
two test datasets differ only in the number and com-
pleteness of their time series, and in the spatial corre-
lations between the test series. Each dataset consists of
200 networks of 100-year long time series. In dataset
(A), the spatial correlations are around 0.9, and each net-
work includes 10 time series with a low missing data
ratio. In dataset (B), the mean spatial correlation is 0.8,
each network contains 15 time series, and the missing
data ratio is elevated. Table 2 summarizes the missing
data characteristics of datasets (A) and (B) where miss-
ing data due to the shortage of the period of observa-
tions are referred to external missing data, and those
within the period of observations internal missing data,
respectively.

It can be seen that although in dataset (B) networks
include 15 time series, the total number of observed val-
ues is lower with 16% in dataset (B) than in dataset (A).
Homogenisation efficiency measures are presented here
via the comparison of the residual errors with the raw data
errors. The examined efficiency measures are: (1) monthly
root mean squared error (RMSE), (2) annual RMSE, (3)
absolute trend bias of individual time series, (4) absolute
network mean trend bias, (5) systematic network mean
trend bias. Figures 1 and 2 present the raw data errors and
the errors after the ACMANT homogenisation with three
ACMANT versions from the earliest to the most recent:
ACMANT1 (AC1), ACMANT2 (AC2) and ACMANT3
(AC3).

Dataset (B) cannot be homogenized with AC1. In the
other homogenisation results, three test statistics are
shown for each method version and the associated effi-
ciency measure: mean error, value of percentile 0.95 and
maximal error, other than for the systematic network mean
error where only the mean error is presented.

© 2016 Royal Meteorological Society Int. J. Climatol. 37: 1910–1921 (2017)
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(a) (b)

(c) (d)

Figure 1. Errors of raw data and those of ACMANT homogenisation products for dataset (A). (a) Monthly RMSE, (b) annual RMSE, (c) trend bias
for individual series, (d) network mean trend bias. Smean means systematic trend bias.

The main characteristics of the results are as follows:

1 The statistics are always better for the ACMANT
homogenisation results than for the raw data with
the exception of maximum monthly RMSE in dataset
(B). The largest reduction of raw data errors (∼75%)
are associated with the individual trend bias and
systematic network mean trend bias in dataset (A).
However, it is also worth noting that the improvement
is strongly related to the statistical characteristics of the
inhomogeneities in the data.

2 Although inhomogeneities are inserted into datasets
(A) and (B) according to the same rules, the raw
data errors are slightly lower in dataset (B) than in
dataset (A). This is because the mean length of peri-
ods with observed data is shorter in dataset (B) than in
dataset (A).

3 Residual homogenisation errors for dataset (B) are con-
sistently higher than for those of dataset (A), but the dif-
ferences are generally not very large; e.g. the increment
is smaller than 50% for the mean errors (except for the
systematic network mean bias) and the 0.95 percentile

values (with the exception of monthly RMSE). The dif-
ference between the two datasets is more marked in
relation to the maximal residual errors having occurred
in the homogenisation of the 200 networks. Consid-
ering that in dataset (B) both the amount of observed
data and the spatial correlations are lower, and that the
internal missing data ratio is higher than in dataset (A),
the efficiency of the homogenisation of dataset (B) with
ACMANT2 or ACMANT3 is acceptable.

4 The comparison of residual errors between ACMANT
versions shows a slight but consistent improvement of
efficiency in the transition from older versions to newer
versions based on each efficiency measure and the test
statistic applied. Relatively large improvement can be
seen in the residual trend biases, particularly at the 0.95
percentile and in the systematic network mean trend bias
as well.

Figure 3 shows the accuracy of the interpolation for
missing monthly temperatures in datasets A and B in
function of the number of the partner series used. If no
partner series could be used then the empirical climatic
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(a) (b)

(c) (d)

Figure 2. The same as Figure 1, but for dataset (B).
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Figure 3. RMSE of interpolated monthly values of the homogenized
datasets A and B. In the horizontal axis, the number of partner series

used is shown.

mean substitutes the missing data, thus, the other pieces
of the results can be compared with the error of this
simple substitution occurred in dataset B. The results
show that the accuracy depends on the number of partner

series and the spatial correlations between time series.
The RMSE of interpolated values is mostly smaller with
45–65% than the RMSE of the empirical climatic mean.
Note that the accuracy of annual values is markedly
higher than that of the monthly values even when each
monthly value of the year is interpolated. For such years,
the mean residual annual RMSE is 0.29 ∘C in dataset
A and 0.34 ∘C in dataset B. These results indicate that
the accuracy of annual values from interpolated monthly
values tends to be slightly higher than the accuracy of
the annual values from observed monthly values before
homogenisation.

5. Discussion and recommendations

Approximately 20 years have passed since the multiple
break theory was proposed. The underpinning princi-
ple of this theory is simple and is not limited to the
topic of time series homogenisation: when a physical
problem includes mutually dependent factors, adequate
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mathematical methods must include the joint treatment of
these factors. Although the frequency of the application
of HOMER has increased exponentially in the recent
years (e.g. Freitas et al., 2013; Mamara et al., 2014;
Noone et al., 2016) due to the recommendation of HOME,
the overall frequency of using multiple break methods
is still low, and there are indications that the general
understanding of the multiple break homogenisation
concept is still missing. Although HOMER was the first
recommended method of HOME, we do not yet have clear
evidence whether MASH, HOMER or ACMANT have
the highest efficiency when they are applied to particular
homogenisation tasks. Considering the similarities of
the theoretical background of HOMER and ACMANT,
it seems reasonable to assume that the efficiency of
these two methods is likely to be similar. Therefore, the
choice between HOMER and ACMANT for particular
homogenisation tasks should be based on the dataset
characteristics rather than on the efficiency order (even if
this were known). The use of ACMANT is particularly
recommended for (1) datasets with little or no metadata;
(2) datasets from dense networks with large numbers of
time series and where there are high spatial correlations;
(3) very large datasets (>∼200 time series) for which the
use of automatic methods is the most feasible and easily
managed solution.

One important purpose of homogenisation is to deliver
regional and global mean temperature trend estimates
which are more accurate (Rohde et al., 2013; Rennie et al.,
2014; Venema et al., 2015). The efficiency tests presented
here provide firm indications that ACMANT3 can consid-
erably reduce initial regional trend biases at any spatial
scale, although the efficiency achieved depends both on
the spatial density and the extent of the intact record of
the observational data. Further research is needed in this
important and emerging area, for both the development
and testing of statistical methods (Domonkos and Gui-
jarro, 2015) and alongside an analysis of the causes of pos-
sible systematic biases in temperature records, with par-
allel measurements (http://www.surfacetemperatures.org/
databank/parallel_measurements).

Certainly in the case of ACMANT, there is still room
for further development and refinement. For instance, the
ACMANT3 daily homogenisation programmes do not
yet contain varied adjustment terms according to the per-
centiles of the probability distribution function, while such
procedures are included in some other homogenisation
methods, e.g. Della-Marta and Wanner (2006); Kuglitsch
et al. (2009); Mestre et al. (2011). The analysis of the
frequency changes of the 0 values in precipitation time
series can also be incorporated in automatic homogenisa-
tion as it is shown by Wang et al. (2010). Nevertheless it
is considered that the main phases in the development of
ACMANT as a fully automatic homogenisation method
for temperature and precipitation homogenisation have
been completed.

Beyond the methodological improvements, ACMANT3
is also more user-friendly. Of particular note, the soft-
ware package includes auxiliary files supporting input data

preparation and the joint use of ACMANT3 with the soft-
ware ‘Rclimdex-extraQC’ for the common quality control
of daily temperature and precipitation data.

The use of ACMANT is recommended with the follow-
ing caveats:

1. A general quality control of data before the applica-
tion of ACMANT is necessary. Date order errors or
accidental mixing of station series might cause serious
errors in the final results, and may even impede the
execution of the programmes. Physical outliers due
to data transcription errors (e.g. 100 ∘C instead of
10.0 ∘C) might result in serious biases in the calcu-
lation of climatic means affecting the final results of
homogenisation. At current development, the inner
quality control routine of ACMANT for filtering
spatial outliers is not sufficient without the previous
filtering of physically implausible values. Frequency
of zero precipitation events should be checked before
using ACMANT, as zeros are sometimes erroneously
shown instead of missing data code in climate
records.

2. Synchronous breaks might affect seriously the effi-
ciency of homogenisation, as the concept of relative
homogenisation is that breaks can be identified from
the differences of the candidate and reference time
series. The potential danger is obvious when the syn-
chronous break is present in at least in half of the
time series of a network and tests indicate (not shown)
that the efficiency declines even when the ratio of
affected time series is much lower than 50%. How-
ever, synchronous breaks are often the consequences
of new protocols in observing networks, and hence,
they are often well documented. It is recommended
to apply adjustments for known synchronous breaks
before using ACMANT, even if the precise break mag-
nitudes are not known.

3. If a break magnitude is known from parallel measure-
ments, then it is the best to apply the known correction
term before using ACMANT.

4. The use of raw climate records is preferred as the
input for ACMANT rather than products of previ-
ous homogenisations or other kinds of secondary data
products. In the optimal case, the ACMANT input does
not contain interpolated values or adjustments based on
spatial comparisons other than the adjustments applied
for synchronous breaks if those are reasonable.

5. The maximum number of time series that can be
homogenized within one network is 99 using the
ACMANT homogenisation methods, and the use of
very large networks is not recommended. The opti-
mal size of networks is usually around 20–30 time
series, although when the potential reference series
are shorter than the candidate series or where they
are often incomplete, then the optimum number of
time series can be much higher. For large and dense
networks, it is recommended to apply automatic
networking following the suggestions of Domonkos
(2015b).
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The ACMANT3 software package together with its man-
ual is freely accessible from http://www.c3.urv.cat/data
.html.

Acknowledgements

The research was funded by the Spanish project
‘Multiple verification of automatic softwares homog-
enizing monthly temperature and precipitation series’
CGL2014-52901-P. JC acknowledge funding provided by
the Irish Environmental Protection Agency under project
2012-CCRP-FS.11.

Appendix A1: Mathematical formulations

A1.1. Explanation of symbols

A – time series of deseasonalized observed values
B – preliminary adjustment term
c, cp – parameter
d – internal distance
e – external distance
F – composite reference series
g – index of candidate series
h – length of period
h′ – number of available data in a period
h1, h2 – starting and ending points of period in any time

scale
i, i* – time point
j – year
j1, j2 – starting and ending years
k – serial number of break/step
K – total number of breaks
m – calendar month
n – number of years in time series
N – total number of stations in network or of reference

series
N′ – total number of usable reference series at a partic-

ular step
P – penalty term
Q – relative time series
r – spatial correlation
s – serial number of reference series
T – matrix
U – operator
w – weight
W – accumulated weight
x – serial number of ensemble homogenisation
Z, Z′ – adjustment term
upper stroke – section mean or mean of entire time

series

A1.2. Reference series and relative time series

Reference series (F) are built for candidate series (G)
are composed from the other time series (As) of the
same climatic network. The reference series often covers
only a section [h1, h2] of the candidate series. Reference
series usually contain entire years, but the reference series
with daily resolution for operations on daily scale are the
exceptions.

Fg[h1,h2] =
N∑

s=1

wgA
s[h1,h2]

g (A1)

The weights of the reference composites are deter-
mined by ordinary kriging (Szentimrey, 2010) if N > 5,
while by the spatial correlations with the candidate series
(Domonkos, 2011b) in the reverse case.

Break detection and outlier detection are performed on
relative time series (Q).

Qg = Ag[h1 ,h2] − Fg[h1,h2] (A2)

A1.3. Determination of the number of breaks and step
function fitting with predetermined number of steps

Optimal step function fitting with K steps:
The task of optimal step function fitting as a model of

time series is identical with the minimisation of the vari-
ance of internal distances (variation of observational data
within constant sections of the model) and maximisation
of the variance of external distances (variation of the mod-
elled values, Lindau and Venema, 2013). The step function
has K + 1 constant sections (k= 0, 1, 2, …K).

Internal distance (d):
d (U)i = U (q)i − U (q)k where i∈ k (A3)
External distance (e):
e (U)i = U (q)k − U (Q) where i∈ k (A4)
U is operator, most frequently (but not always) the

generator of time average.
(1) Univariate detection

min
[h1,h2,… hK]

{
K∑

k=0

hk+1∑
i=hk+1

(
d (U)k,i

)2

}
(A5)

(2) Bivariate detection

min
[j1,j2,… jK]

{
K∑

k=0

jk+1∑
i=jk+1

(
d
(
U1

)2

k,i
+ c

(
d
(
U2

)
k,i

)2
)}

(A6)
The bivariate detection is always performed on series

with annual resolution. c is empirical constant (c= 0.2) in
temperature homogenisation, while it is the squared ratio
of snowy months in proportion to the rainy months in
precipitation homogenisation.

For univariate detection on annual scale and for bivariate
detections:

jk+1 − jk ≥ j ∗ for every k ∈ {0 ≤ k ≤ K} (A7)

In most operations j*= 3, but in the break detection for
annual temperature series of particular calendar months
j*= 5.

In determining the optimal number of steps, the modi-
fied Caussinus–Lyazrhi criterion (C–L) is used, in which
expression (A8) is minimized. This criterion is used only
in annual scale detections.
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ln

⎧⎪⎪⎨⎪⎪⎩
1 −

K∑
k=0

(
jk+1 − jk

)
·
[(

e
(
U1

)
k

)2 + c
(
e
(
U2

)
k

)2
]

h∑
i=1

{(
U1 (q)i − U1 (Q)

)2
+ c

(
U2 (q)i − U2 (Q)

)2
}

⎫⎪⎪⎬⎪⎪⎭
+ P (A8)

P = cp
2K

h − 1
ln (h) (A9)

Note (1) that (A8) and (A9) differ only by the inclusion
of coefficient cp in the penalty term from the original
C–L (Caussinus and Lyazrhi, 1997); (2) When c= 0, the
formula is usable for univariate detection.

Usually cp = 1.4 in univariate detection and cp = 1.0 in
bivariate detection, but in the first pre-homogenisation the
coefficient is elevated with 40%.

A1.4. Taking the minimum correction terms of
ensemble homogenisation

Phase 1: Let us assume we have N time series in a given
network where the length of the studied period is n years.
For any time series s, the possible highest number of
ensemble members is N – 1, as it is the maximum possi-
ble number of reference components. Due to the different
lengths of time series or low spatial correlations the real
numbers of ensemble members (N′) for a particular sta-
tion and particular year can be lower, so that N′

s,j ≤ N − 1
for any s and j. For each ensemble member, the match-
ing adjustment terms (T) are calculated with ANOVA on
annual scale and these preliminary results are stored. T is
a three dimensional matrix with the dimensions of station
serial number (s), year (j), and the serial number of ensem-
ble experiment (x).

Phase 2: The final adjustment in a pre-homogenisation
procedure (Z) for any station s and year j is:

zs,j =
⎧⎪⎨⎪⎩

min
x=

{
1,N′

s,j

} |||ts,j,x||| if sign
(
ts,j,x

)
= c for every x

0 if sign
(
ts,j,x

)
≠ c for any x ∈

{
1,N′

s,j

} ⎫⎪⎬⎪⎭
(A10)

c = 1 or c = −1 (A11)

A1.5. Interpolation for substituting missing values

ag,i∗ =
1
W

N∑
s=1

c (h) r2
g,sas,h(s)[j1,j2] +

1
h′

j2(g)∑
i=j1(g)

ag,i (A12)

W = max

{
0.4,

N∑
s=1

c (h) r2
g,s

}
(A13)

The lengths of the periods (h) and the number of data
utilized (h′) for the calculation of empirical climatic mean
around the date for which the interpolation is performed
(i*) depend on the data availability in the partner series.
However, periods taken into account always include entire

years (i.e. they start with 01 January and end with 31
December). The weights are set subjectively, and they
depend on factors influencing the usability of values in
partner series in contributing to the accurate estimation of
the target value: (1) spatial correlation (rg,s); (2) data avail-
ability around i*; (3) whether data are pre-homogenized
or not; (4) the phase of the homogenisation (as the inter-
polation is repeatedly performed in ACMANT, with data
of increasing quality); (5) daily or monthly interpolation is
applied.

It follows from (A12) and (A13) that if no data of partner
series is available, then the missing data of the candidate
series will be substituted with the climatic mean.

A1.6. Smoothing of monthly adjustment terms

The connection between the preliminary adjustment terms
(b) and final adjustment terms (z′) is shown by (A14).

z′j,m = 0.3bj,m−1 + 0.4bj,m + 0.3bj,m+1 m = {1, 2, ...12}
(A14)

bj,0 = bj−1,12; bj,13 = bj+1,1 (A15)

Appendix A2: Additional noise, climatic trends and
inhomogeneities in test datasets (A) and (B).

Additional noise is applied only to dataset (B), while the
other operations are applied uniformly to datasets (A) and
(B).

A2.1. Definitions

1. Central series: The series which has the highest spatial
correlations on average with the other series of the
same network, is named the central series.

2. Limit bias: Biases of multiple inhomogeneities of the
same time series may be accumulated until the parame-
ter of subjectively defined limit values, they are named
limit biases.

3. Platform: Platform-shaped inhomogeneity, pair of
shifts of the same sign and opposite directions.

A2.2. Additional noise

A monthly series of normally distributed red noise with
0 mean and 0.15 autocorrelation is added. The variance
is a function of the spatial correlation with the central
series, and the parameters of this function are empirically
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determined for obtaining the target mean spatial correla-
tion in networks.

A2.3. Additional climatic trends

Each network receives one additional climatic trend. The
trend magnitude is a random variable of uniform distribu-
tion between 0 and 2 ∘C. The length of the trend section
varies between 1 and 100 years.

The climatic trend is added first to the central series,
then with little variation to the other time series. The
variation is random, proportioned to the network mean
change magnitude, and its possible highest value depends
on the spatial correlation with the central series. This
variation is generally small, and seldom exceeds 10% of
the magnitude of the network mean change.

A2.4. Inserted inhomogeneities

1 The positions and properties of inhomogeneities are
determined with the use of a random number genera-
tor. As a consequence, although all kinds of inhomo-
geneities fall with equal probability to any time series,
the number and sizes of inhomogeneities randomly vary
between networks and time series.

2 Forms of inhomogeneities: Sudden shift, trend and
short-term platform. All inhomogeneities are changes in
the means.

3 Mean frequency of inhomogeneities: sudden shift
with 4/100 year, trend with 1/100 year, platform with
3/100 year.

4 Magnitude of inhomogeneities: Random variable with 0
mean and normal distribution. The standard deviation is
larger in the first 50 years (0.8 ∘C) than in the second half
of the series (0.5 ∘C). The magnitude distribution is the
same for sudden shifts and trends, but all magnitudes are
elevated with 30% for platforms. Accumulated biases
are not allowed to exceed the limit biases, which are −1
and+3 ∘C in the first 50 years while−1.25 and+1.25 ∘C
in the second half of the series. Biases due to platforms
may exceed with 30% the limit bias. Limit bias values
are not symmetrical around zero in the first 50 years for
producing significant network mean trend biases. When
the inclusion of a randomly generated inhomogeneity
would cause the exceedance of a limit bias, then that
inhomogeneity is dropped and a new inhomogeneity of
the same shape and with the same timing is generated.
No other constraint is applied in the temporal sequence
of the inserted inhomogeneities.

5 Length of trends: Variable of uniform distribution
between 5 and 100 years.

6 Length of platforms: Varies between 1 and 120 months,
the frequency quadratically decreases with increasing
length. Thus, most platform-shaped biases are very short
lived and in the special case of 1 month duration, out-
lier value is formed. Note that most of the short-term
changes cannot be detected for the low signal-to-noise
ratio.

7 Seasonal cycle of biases: 25% of the inhomogeneities
are without seasonal variation of bias. In the other
75%, the form of the variation is semi-sinusoid with
modes in July and December (so that the spring half
period lasts 7 months, while the autumn half period
lasts 5 months). The magnitude is a random variable of
uniform distribution. The peak-to-peak amplitude (i.e.
the difference between July bias and December bias)
varies between −1 and +4 ∘C in the first 50 years and
between −1.5 and +1.5 ∘C in the second 50 years. There
are limit biases also for the seasonal differences of
accumulated biases. The limits are −1 and +4 ∘C in the
first 50 years, while −2 and +2 ∘C in the second half of
the time series.
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