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Abstract: Velocity-based local model (LM) networks overcome many of the 
disadvantages of the conventional LM network approach. In the former, a set of 
velocity-based linear local models are interpolated using appropriate weighting 
functions whereas the latter employs affine local models. In contrast to the conventional 
network, the global dynamics of the velocity-based nonlinear model comprise a simple 
linear combination of the local model dynamics. This paper examines in detail the 
blending of local .nodels which is a key issue in the velocity-based approach. Various 
methods of blending the sub-models are studied and it is highlighted that only one of 
these is suitable. Copyright © 200lIFAC 
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1. INTRODUCTION 

The goal of local model (LM) networks is to 
accurately represent a nonlinear dynamical plant over 
the entire operating space using a small number of 
local models. Since the greater part of the operating 
space generally consists of regions where no single 
model dominates, and several local models require 
blending, it is no surprise to discover that blending 
has a important role in multiple-model systems. For 
subsequent analysis and design it is desirable that the 
global dynamics of the nonlinear blended network 
are directly related to the underlying sub-model 
dynamics. Recent research (Shorten et aI., 1999, 
Murray-Smith et aI., 1999, Leith and Leithead, 1999) 
has highlighted the lack of this property within the 
conventional multiple model framework, 
demonstrating that, at best, the dynamics of the LM 
network are only weakly related to the underlying 
local models. Furthermore, existing mUltiple model 
systems typically employ affine models (McLoone 
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and Irwin, 1998) which, being nonlinear, do not 
provide continuity with established linear theory and 
can also detract from the transparency of the overall 
network. 

A novel class of velocity-based, blended multiple 
model system has been proposed by Leith and 
Leithead (1999) whereby the global dynamics are 
directly related to the local models employed. The 
underlying sub-models are velocity-based, 
continuous-time and linear, thus providing continuity 
with existing linear techniques, which is useful for 
analysis and controller design. Most of their work to 
date has concentrated on theoretical developments 
using simple illustrative examples. 

This paper examines the key aspect of blending local 
models within the velocity-based multiple-model 
framework. A highly nonlinear dynamical system in 
the form of a simulated Continuous Stirred Tank 
Reactor (CSTR) process is used to analyse the 



various methods of blending the velocity-based sub
models. Results reveal that there is only one correct 
blending technique for velocity-based networks. 

The initial concept of LM networks (Johansen and 
Foss, 1992, 1993, Brown et aI., 1997) envisaged 
weighting the outputs of each local model to obtain 
the global network output. In the case of a 
heterogeneous LM network (Murray-Smith, 1994) 
where local models can vary from complex neural 
networks to simple constants within one network, 
weighting the local model outputs is the most 
obvious, and possibly only, choice for interpolation. 
However, this paper highlight> that blending in this 
manner is fundamentally incorrect for the weighting 
of local models within a velocity-based multiple
model system. Instead, the global model dynamics 
should be obtained by blending the local model 
dynamics. 

For completeness the next section outlines the salient 
features of the velocity-based local modelling 
approach. In section 3 the different ways in which the 
velocity-based local models can be blended are 
described. Section 4 briefly describes the CSTR 
process, used for analytical purposes in this paper. 
Section 5 analyses the results of the various blending 
methods. The paper ends with some suggestions for 
future work in section 6. 

2. VELOCITY-BASED LOCAL MODELLING 

For ease of reference the notation of Leith and 
Leithead (1999) is generally followed in this section. 
Consider the general nonlinear state space system: 

x= f(x ,u) (I) 

The first-order expansion of this system about an 
operating point (xo,uo) is given by: 

Differentiating this affine expansion with respect to 
time gives the velocity-based linear system: 

x= x+ U :;~lf .:.~lf . 
ox x.... ou x • .•. 

(3) 

A similar form can be obtained by differentiating (1) 
with respect to time using the chain rule: 

.. of· of· x=-x+-u ox OU 
(4) 

With the appropriate initial conditions, (1) and (4) 
give identical solutions and therefore there is no 
approximation at this stagE'. More importantly, 
however, is the fact that the velocity-based 
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linearisation (3) is just the frozen form of the 
velocity-based system (4), at the operating point 
(xo ,uo)' This establishes a direct relationship 

between the dynamics of the velocity-based form of 
the nonlinear system and the velocity-based 
linearisation. Furthermore, members of the family of 
velocity-based linearisations are all linear, providing 
continuity with established linear theory and methods. 

A velocity-based, blended, multiple-model system is 
formed by weighting several velocity-based 
Iinearised models: 

where 

i =( ~A, (x" u, )pJiji) f 
+( ~B, (Xi,U,)PJiji))u 

(5) 

A x U =- B x u . = an (- ) dfl (-) ~lf d 
I I ' I ax X,.II,' I I ' I au X, .Il, 

(Xi' ui ) is the linearisation or freezing point of the j'h 

local model: 

x = Ai(xi, ui )X+B, (xi, u, P (6) 

The normalised weighting function is given by 
p,(iji) , where iji is the scheduling variable. The 

dynamics of the blended system, about the operating 
point (xo,uJ, are now considered. The velocity-

based linearisation form of (5), at (xo, uJ, is simply 

obtained by freezing the validity function p,(iji) at 

the operating point. Hence, the following linear 
system is obtained: 

i = ( ~ Ai (Xi' u,)PJijio) f 
+( ~ Bi (Xi' u,)pJijio) } 

(7) 

It can be seen that, with the appropriate initial 
conditions, the solution to (7) is initially tangential to 
the solution of the velocity-based multiple model 
system (5) . The dynamics of the multiple-model 
system local to an arbitrary operating point are 
therefore the same as the dynamics of the 
corresponding frozen-form linear system at the same 
operating point. Rewriting (7) as: 

i = L.. pJvro AAi (Xi ' ui )i + Bi (Xi ' Ui )ri) (8) 

then clearly highlights this direct relationship 
between the frozen-form, (7), of the velocity-based 
blended system and the underlying local models, (6), 
at (xo ' uo ) ' Thus at any arbitrary operating point, the 

global dynamics of the multiple model system are 
described by a straightforward weighted sum of the 
local model dynamics. No such direct relationship 
exists between the dynamics of the conventional 
multiple model representation and the dynamics of 
the first-order expansion system. 



Further theoretical analysis reveals that the solution 
to the frozen form of the velocity-based blended 
network can be described by the weighted linear 
combination of the solutions to the local models, 
giving the properties desirable of a local sub-model 
framework. Detailed analysis of both the 
conventional and velocity-based nonlinear 
representations can be found in (Leith and Leithead, 
1999, McLoone, 2000). 

3. IMPLEMENTATION OF VELOCITY-BASED 
LMSYSTEM 

In the velocity-based LM network the global 
dynamics are obtained by blending the local model 
dynamics. This is not the same as weighting the 
outputs of each local model to give the global 
network output, as was originally envisaged for local 
modelling. Indeed for a hetemgeneous LM network 
(Murray-Smith, 1994), where local models can vary 
from being complex neural networks to simple 
constants within one network, weighting the local 
model outputs is the most obvious, and possibly only, 
choice for blending. However, if the velocity-based 
local models are blended in this way the results are 
rather different from the velocity-based structure 
proposed by Leith and Leithead (1999). In this regard 
the possible implementations of the velocity-based 
network are now considered. 

3.1 Local model realisation 

Consider the following velocity-based, local state
space model: 

x=Ax+Bu 

y=cX 
(9) 

where A, Band C are constant matrices and/or 
vectors. This local model can be implemented as 
illustrated in Fig. 1. 

When a velocity-based network contains only one 
local model the global output is obtained by 
integrating the output of that model. Since no 
blending of models takes place the corresponding 
conventional affine local model network produces 
the exact same output under the appropriate initial 
conditions. Implementation of blended multiple 
model networks however is not as straightforward. 

Fig. 1. Velocity-based local model implementation 
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3.2 Multiple model realisation 

For simplicity consider now a velocity-based 
multiple model network constructed from the 
blending of two local models. Three different 
implementations of the nonlinear network are 
possible since the local models can be blended in 
three different ways, as illustrated in Fig. 2, 3 and 4 
respectively. The results in section 5 will reveal that 
only the third one is actually correct. In each figure, 
p represents the weighting function. 

The first implementation in Fig. 2 is based on 
weighting the output of each local model, giving the 
global output: 

y= Ipji, =CIPiX, (10) 
1=1 ;=1 

It is worth noting that this network implementation 
employs local state derivative feedback. Global 
feedback is also possible by blending the local state 
derivatives, using the same weighting functions, and 
returning the global state derivative to each local 
model. 
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Fig. 3. Velocity-based multiple model implementation 
- blending x 



The second implementation consists of combining 

the local model state derivatives, X, . The network 

output is then obtained by integrating the global state 
derivative: 

:y=ciS PiXi 
/=/ 

(11) 

Once again, global or local state derivative feedback 
can be used. Fig. 3 shows the network 
implementation with global feedback. 

The third and [mal implementation in Fig. 4 involves 

weighting second derivatives X, of the local model 

state to give the global output: 

:y=ciff PiXi (12) 
i =/ 

In this case there is no difference between global and 
local state derivative feedback. 
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Fig. 4. Velocity-based multipk model implementation 

- blending x 
The modelling capabilities of these alternative 
nonlinear representations are now examined using 
the CSTR process, which is briefly described in the 
next section. 

4. THE CSTR PROCESS 

The CSTR process is a single-input, single-output 
system where the input is the flowrate of a coolant 
and the output is the concentration of a product 
compound. The reaction that takes place to produce 
the compound is exothermic which raises the 
temperature and reduces the reaction rate. The 
introduction of a coolant allows manipulation of the 
temperature and, hence, control of the product 
concentration. The reaction takes place in a container 
of fixed volume and the product flowrate, input 
concentration, temperature and output flowrate are all 
assumed constant at their nominal values. 

Table I Parameters for the simulated CSTR process 

qj product flowrate lOO IImin 
Cj input product conc. I molll 
1j input temperature 350K 
V container volume lOO I 

ElR activation energy 10-K 
Tcj temp. of coolant 350K 
Ko plant constant 7.2 x 1010 Imin 
KI plant constant 1.44 x 1013 KlIminlmol 
K} plant constant 0.0111 
K plant constant 700llmin 

The CSTR plant can be represented by the following 
equations: 

where qit) is the input coolant flowrate, the internal 
plant state, T(t), is the temperature of the solution and 
C(t) is the output product concentration. The other 
parameters are their values are given in table 1. 

Y The CSTR plant equations contain nonlinear product 
and exponential terms. Furthermore, the process 
dynamics vary considerably across the input space 
providing a suitably challenging and useful nonlinear 
system on which to examine the modelling 
capabilities of the various non linear velocity-based 
representations outlined in the previous section. 
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5. MODELLING RESULTS AND ANALYSIS 

It is the aim of this paper to highlight the need for 
correct blending of the sub-models within the 
velocity-based LM framework. Thus, networks with 
two local models were employed to model the 
non linear dynamical relationship between the input 
coolant flowrate, qc, and the output product 
concentration, C, within the operating space bounded 
by the input qc = [85 Ill} IImin. 

A non linear plant representation was formed by 
weighting together several suitably located velocity
based linear local models. These local models were 
obtained by freezing the nonlinear velocity-form of 
equation (13) at the appropriate linearisation points, 
where the linearisation point for the j'h local model is 

given by (C;, T; , q:o). 

The equilibrium linearisation points for the models 
were (0.0620 molll, 448. 7522 K, 90 IImin) and 
(0.1298 mol/l, 432.9487 K, no IImin). The two 
models were blended together using normalised 



Gaussian weighting functions . For simplicity only the 
output C was used as a scheduling variable. The 
centres of the un-normalised Gaussians were 
manually chosen to be 0.0620 molll and 0.1298 molll, 
with widths of 0.02 and 0.03 respectively. While 
these weighting functions are not necessarily optimal, 
they are more than adequate for the purposes of this 
study. 

Implementation of the velocity-based networks 
requires the derivative of the input qc to be available. 
This is difficult to achieve in practice, especiaIly if 
step changes are involved. Here, a combination of a 
sinusoid and a constant was used to provide a 
suitable approximation to a step input. Reducing the 
sinusoid frequency results in a more accurate step 
change representation. With tI lis technique the input 
derivative was accurately implemented and aIlowed 
the plant dynamics to be suitably excited for 
modelling purposes. 

Four velocity-based networks were developed. In the 
first one the LM outputs were blended. The second 
and third networks both blended the LM state 
derivatives, but one employed local state feedback 
while the other used global state feedback. The final 
network weighted the LM second-order state 
derivatives. 

Simulation results: A series of approximate step 
changes in qc, shown in Fig. 5, were applied to each 
of the above nonlinear systems. The resulting 
product concentration in each case is displayed in Fig. 
6. 

These graphs show relatively poor modeIling results 
for all the velocity-based LM networks, especially in 
terms of the steady-state errors. These occur because 
of a modeIling error inherent in the velocity-based 
approach. Detail regarding this error can be found in 
(McLoone, 2000, McLoone and Irwin, 200 I). This 
error cannot be removed by the network and will 
therefore accumulate over time to produce the poor 
steady-state results shown in Fig. 6. However, in 
control applications integral action can easily be used 
to eliminate the effect of this modelling error. The 
dynamic performance of the network is therefore 
more important. 
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Fig. 5. Step changes in coolant flowrate, qc 
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The results show that only the network using 
weighted second-order state derivatives, (12), reflects 
the dynamics of the CSTR model. All the other 
models produce inaccurate dynamics. For example, 
consider the operating space about the product 
concentration 0.095 molll. Here, the dynamics of the 
plant are slightly underdamped. The output of the 
network in Fig. 6(d) reflects this reasonably 
accurately whereas all the other networks produce 
significantly more underdamped responses. Note that 
the network using weighted LM state derivatives, 
(11), produces a different output when local feedback 
is used instead of global feedback. However neither 
reflect the correct dynamics of the CSTR model. 

The difference between the various network 
representations become more apparent when 
equations (10)-(12) are rewritten in terms of the 
global second-order state derivative. Thus, equation 
(10) can be rearranged as follows: 

(14) 

~;= 2,Pi~i + 22,p;x, + 2,P;Xi 

Similarly equation (11) is rewritten as: 

; = 2,Pi ~i + 2,Pi ~' (15) 

and equation (12) becomes: 

;= 2,Pi ~i (16) 

When the weighting function, Pi' is a constant value, 
P, = 0 and all three implementations give the same 

outputs assuming appropriate initial conditions are 
used as well as global feedback employed. However 
when local models are blended in LM networks the 
weighting functions can vary with time and thus 
P. "# O. In this case the above implementations will 

produce significantly different results. 

The modeIling and control of a non linear plant 
requires accurate representation of the plant 
dynamics. Local models linearised at particular 
operating points will accurately model the dynamics 
of the plant around those points. Intuitively, the 
dynamics between operating points should simply be 
a weighting of the local model dynamics. In order to 
achieve this, velocity-based local models were 

required. The second-order state derivative, ~, 
reflects the dynamics of the velocity-based local 
model. Hence the global dynamics of the velocity
based LM network should be a blended combination 

of ~ . The LM network representation given by (12) 
clearly achieves this desired blending. All the other 
representations contain unnecessary additional terms 
that relate to the rate of change of the weighting 



functions. If the rate of change is slow then these 
terms can be neglected. When the rate of change is 
not slow these extra terms can contribute 
significantly to the network output thus detracting 
from the desired response. 

6. CONCLUDING DISCUSSION 

The choice of local models and the way in which the 
models are blended are very important in the local 
modelling process. In order to achieve accurate plant 
dynamics using the local modt'lling approach the LM 
network should consist of velocity-based local 
models whose local dynamics are blended together to 
give the overall global model dynamics. 

The actual weighting functions also have an 
important part to play in the local modelling process. 
Here, the commonly-chosen normalised Gaussian 
basis functions were employed. However, alternative 
weighting functions are possible. Do Gaussians 
provide the best choice for blending? Future work 
involves investigating this question in more detail. 
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Fig. 6 Output product concentration, C - in all cases, the solid line represents the actual CSTR plant output, while 
the dashed line represents the output of the respective network representations 
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