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Abstract. We present the results of applying lossless and lossy data compres-
sion to a three-dimensional object reconstruction and recognition technique
based on phase-shift digital holography. We find that the best lossless
(Lempel-Ziv, Lempel-Ziv-Welch, Huffman, Burrows-Wheeler) compression
rates can be expected when the digital hologram is stored in an intermediate
coding of separate data streams for real and imaginary components. The
lossy techniques are based on subsampling, quantization, and discrete Fourier
transformation. For various degrees of speckle reduction, we quantify the
number of Fourier coefficients that can be removed from the hologram domain,
and the lowest level of quantization achievable, without incurring significant
loss in correlation performance or significant error in the reconstructed object

domain. (©)2002 Optical Society of America

OCIS codes: 100.6890, 090.1760, 100.2000, 100.0100, 100.5010, 110.4280.

1. Introduction

Digital holography has been used for three-dimensional (3D) measurement and inspection.
Recently, the concept of two-dimensional (2D) pattern recognition!™ has been extended to
3D objects,* " with digital holograms, created through phase-shift interferometry (PSI),'!3
being able to provide the means for one such set of 3D object recognition techniques.?* Each

digital hologram encodes multiple views of the object from a small range of angles. A par-

ticular view of the object can be constructed by extracting the appropriate window of pixels



from the hologram and applying a numerical propagation technique.®!? These real-valued

% or in a filter bank. In advance of knowing

views could be combined as a composite filter!
which of the 4 M pixels are required for particular views, each hologram requires 65 Mbytes
of storage in its native double precision format (5s of transmission time over a 100 Mbit /s
network connection). This is too slow for realtime object reconstruction or recognition, and
impractical for any type of holographic video streaming. We would like to compress'® these
holograms for more efficient storage and transmission. Since one of our primary applications
for digital holography is 3D pattern recognition®!? we choose normalized cross-correlation as
one of our metrics for reconstruction integrity. In anticipation of wider uses for digital holog-
raphy, the error in the reconstructed object is also measured. We are not directly interested
in compression noise or artifacts (such as blocking effects) that appear in the decompressed
hologram, only how compression losses affect object reconstruction.

When either of the two steps in holography, recording or reconstruction, are performed
digitally the process has been referred to as computer holography. Synthesis of holograms
by computer,'>1¢ digital reconstruction of optically recorded objects,'”'® and both steps
performed together as part of a simulation study'® have been demonstrated. In this paper,
our holograms are created through PSI. We also call these digital holograms, and introduce
a third step, that of digital compression and decompression. This work combines aspects of
3D object recognition, correlation performance under lossy compression conditions, speckle
noise compression, and compression of digital holograms. Hologram compression differs to im-
age compression principally because our holograms store 3D information in complex-valued
pixels, and secondly because of the inherent speckle content.

Algorithms for 3D data compression do exist, such as the wavelet technique of Bilgin



et al.!? or the vector quantization technique of Qian et al.?’ However, these techniques
are not suitable. Our hologram is actually a 2D (complex-valued) image and differs to a
multispectral image, for example, in that there is little correlation between the real and
imaginary components of each pixel.

Some work has been done before on object recognition under lossy compression condi-
tions. Ewing and Woodruff?! have examined the human ability to recognize objects that have
undergone lossy JPEG (Joint Photographic Experts Group) and fractal-based compression,
and found JPEG superior. Similar subjective tests have been conducted by Morioka et al.??
in a medical application where JPEG outperformed wavelet-based compression. Farn and
Goodman?® have examined degradation in correlation performance due to phase quantiza-
tion and Mahalanobis and Daniell>* have shown how to combine wavelet compression and
correlation filtering processes.

Compression of noise, including speckle noise, has been investigated previously. Vago
et al.?® have studied the compression of data from a speckle interferometry application and
found that a low pass filter in the Fourier domain served to selectively reduce unwanted
speckle noise. Shahnaz et al.?® have applied baseline JPEG (the standard JPEG implemen-
tation) compression to images with speckle noise and found that its compression performance
suffers greatly in the presence of speckle. These techniques have been applied to real-valued
images with simulated speckle noise. Murtagh et al.2” have investigated compression of real
data from astronomical images. By modeling and removing noise they have been able to
increase compression rates by a factor of 6 over baseline JPEG. Wyrowski and Bryngdahl?®
have investigated removing speckle from digital holograms. We have found that median fil-
tering provides a good tradeoff between image detail and robustness to speckle noise.
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Holographic data compression is a new field of research. Nomura et al.?? have investigated
quantization of real-valued (rather than complex-valued) holograms. Compression rates of 4.0
(see Eq. 3 for definition of compression rate) for real-valued holograms of binary 2D inputs,
and with minimal reconstruction error, were achieved. They have found that baseline JPEG
performs poorly for such holograms. However, previous studies with 2D images have shown
that careful manipulation of the quantized cosine coefficients can improve image quality
over baseline JPEG.?® We adopt this strategy and also apply quantization directly to the

31,32 has been applied successfully to

complex-valued holographic pixels. Phase quantization
Fourier and holographic data in the past.

In Sect. 2, we describe phase-shift digital holography and present our experimental
setup. In Sect. 3, we apply standard lossless data compression techniques to the digital
holograms. The simplest form of lossy compression, that of resampling or hologram resizing,
is examined in Sect. 4, and quantization is examined in Sect. 5. In Sect. 6, we use a discrete

Fourier transform (DFT) technique to selectively remove Fourier coefficients from 8 x 8 pixel

nonoverlapping blocks of the hologram.

2. Phase-shift digital holography

We record digital holograms with an optical system based on a Mach-Zehnder interferometer
(see Fig. 1). A linearly polarized Argon ion (514.5nm) laser beam is divided into object
and reference beams, both of which are expanded and spatially filtered. The first beam
illuminates a reference object placed at a distance d = 350 mm from a 10-bit 2028 x 2044
pixel Kodak Megaplus CCD camera. We refer to the complex amplitude distribution in the

plane of the object as Uy(z,y). The reference beam passes through half-wave plate RP; and



quarter-wave plate RP,. The linearly polarized beam can be phase-modulated by rotating
the two retardation plates. Through permutation of the fast and slow axes of the plates we
can achieve phase shifts of 0, 7/2, 7, and 37 /2. The reference beam combines with the light
diffracted from the object and forms an interference pattern in the plane of the camera. At
each of the four phase shifts we record an interferogram. We use these four real-valued images
to compute the camera-plane complex field Hy(x,y) by PSL.'> We call this computed field
a digital hologram. Our holograms have dimensions 2028 x 2044 pixels and are originally
in floating point representation with 8 bytes of amplitude information and 8 bytes of phase
information for each pixel.

A digital hologram Hy(z,y) contains sufficient amplitude and phase information to re-
construct the complex field U(z,y, z) in a plane in the object beam at any distance z from

the camera.”!? This can be calculated using the Fresnel-Kirchhoff formula

U(z,y,2) = Ho(z,y) * h(z,y,2) , (1)

where

: 2 2 2
h(z,y,z) = —i exp (1%2) exp (iw%) (2)

is the point spread function for free space, A is the wavelength of the illumination, and %
denotes a convolution operation. At z = d, and ignoring errors in digital propagation due to
discrete space (pixelation) and rounding, the digital reconstruction U(z,y, 2) approximates
Uo(z,y). Furthermore, as with conventional holography,*® a windowed subset of the hologram
can be used to reconstruct a particular view of the object.

The problem we address can be stated as follows. A digital hologram H; of some object
Up is to be compressed and transmitted from sender to receiver (see the illustration in
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Fig. 2). At the receiver, the hologram is decompressed as Hj and an object U] reconstructed
by numerical propagation. We wish to determine the most effective way of compressing H
such that U] is reconstructed with minimal RMS difference and with high correlation with

Uyp. Full holograms will be compressed, without windowing.

3. Lossless data compression

Lossless data compression techniques are used in situations where the data must be faithfully
decompressed, such as in text compression. If we use lossless techniques we are assured that
Uy will be identical to Uy, apart from rounding and pixelation errors. The set of 3D objects
used in the compression experiments is shown in Fig. 3. The digital holograms were treated
as binary data streams. Four of the most common industry-standard compression techniques
were chosen: Huffman coding,® Lempel-Ziv coding® (LZ77), Lempel-Ziv-Welch coding?®
(LZW), and Burrows-Wheeler coding®” (BW).

Huffman coding,?* an entropy-based technique, is one of the oldest and most widely used
compression methods. It replaces each symbol in the input by a codeword, assigning shorter
codewords to more frequent symbols. The LZ77 algorithm?3® takes advantage of repeated
substrings in the input data. In contrast to Huffman coding, a variable length string of
input symbols is replaced by a fixed-size codeword (a reference to the previous occurrence
of that string). LZW?® is a refinement of LZ77. It maintains a dictionary (or lookup table)
of variable sized codewords and is less biased towards local redundancy. The more recent
BW algorithm?3” transforms its input through a sorting operation into a format that can be
compressed very effectively using standard techniques (in our case, Huffman coding).

The result of using these lossless algorithms is shown in Table 1. Treating the holograms



(each a sequence of pairs of amplitude and phase values) as binary data streams achieves

compression rates in the range [1.0,3.65], where compression rate r is calculated from

uncompressed size

r= : (3)

compressed size

and where a rate of 1.0 was used when no compression was achieved, or when the processed
hologram was actually larger in size. By the term compression rate we indicate the number of
bits of uncompressed data that are effectively communicated with a single bit of compressed
data. As shown in Table 1, on average, each bit of compressed data encodes 1.33 bits of
uncompressed holographic data with LZ77, 1.04 bits with LZW and Huffman, and 1.95
bits with BW. Given their size, it is worrying how poorly the holograms compress using
these techniques. Their performance is possibly due to the noisy influence of speckle in the
hologram [see Fig. 3(f)].

For some compression algorithms, the way data is represented can have a great impact on
how well it will be compressed. We investigate three additional representations (or intermedi-
ate codings) for the digital holographic data. First, the pixel values are divided into separate
amplitude and phase data streams to exploit the possible redundancy between neighboring
amplitude values. This produced slight but consistent improvements in compression rate for
each hologram. For the other representations, the holographic data was transformed from
(amplitude,phase) domain to the equivalent, neglecting rounding errors, (real,imaginary) do-
main. Treating the hologram as a single binary data stream of pairs of real and imaginary
values, or as separate streams for real and imaginary values, results in a further improve-
ment. Results for the latter case are shown in Table 2, where it is evident that both the real

and imaginary streams are equally difficult to compress. If a higher rate is required then a



lossy form of compression will have to be applied. Lossy systems are investigated next.

4. Compression by resampling

The criteria for grading the performance of lossy compressors will not be the same as in
conventional image compression. The errors introduced into the digital hologram as a result
of lossy compression are not of direct concern; it is errors in the reconstructed object, loss of
viewing angle, and so on, that are of most interest. The simplest and most common form of
lossy compression is that of resampling. We find that digital holograms are unduly sensitive
to resampling.

In Fig. 4(a), hologram no. 1 is resized using three different interpolation strategies prior
to reconstruction of Uj. The reconstructed object U} is then correlated with U,. The figure
shows normalized cross-correlation peak height on a log,, scale plotted against hologram side
length (relative to the original side length). The plot shows peak heights for both linear and
nonlinear correlation (where k& = 0.3 is the k-th law nonlinearity®®). Resizing the hologram
to 0.97 of its previous side length causes the normalized cross-correlation peak height to fall
dramatically to the order of 1072 of its former height.

Resizing the hologram will cause the object to be formed at a different distance from the
hologram plane. To compensate for this, z in Eq. (2) becomes z = d + dy, where d, as before,
is the original object distance from the camera and dy is an offset. Figure 4(b) shows the
result of a search for an appropriate dy value. In this plot, a resizing to 0.97 of the original
image side length requires a dy offset of +5.0 mm for maximum correlation. Even then, the
correlation is poor (0.06 when normalized). This sensitivity is due in some part to speckle.

The unique speckle pattern constructed in the object plane by the hologram causes a large



correlation normalization factor. With the slightest modification to the digital hologram a
completely different speckle pattern is reconstructed, and the value for normalized cross-
correlation drops considerably. In order to reduce the effect of speckle we discard the phase
information in the reconstructed object wavefront and apply a median filtering operation.
Our justification for keeping only the object plane amplitude information is based on this
information’s dependency on both the amplitude and phase of the hologram plane: if the
amplitude information in the object plane has been reconstructed correctly, this indicates
that sufficient amounts of both amplitude and phase information were preserved in the holo-
gram plane during compression. The appropriate level of median filtering will be dependent
on the application. As the level of median filtering increases the gross structure of the object
is enhanced and detail is removed.

To avoid the need to search for an appropriate dy offset every time, holograms are re-
turned to full size after the loss due to compression is introduced. (We assume that this
resizing operation does not introduce additional error.) The reconstructed object amplitudes
were evaluated in terms of normalized cross-correlation peak height (with £ = 1) and nor-

malized RMS difference D, calculated from

1 N,—1 Ny—1 )
D = — ! 4
PUO N N Z Z |U0 m, n Uo(m:n)| ) ( )

Y m=0 n=0

where (m,n) are discrete spatial coordinates in the object plane, and N, and N, are the
number of samples in the x and y directions, respectively. Py, is the power, per pixel, in the

uncompressed object amplitudes and is defined as

Ny—1 Ny—1
PUO NN ZZ|UO’I’HTL . (5)

Y m=0 n=0

Figure 5 contains plots of normalized RMS difference and normalized cross-correlation
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peak height for hologram no. 1, for three different interpolation strategies (nearest neighbor,
bilinear, and bicubic), and with or without 11 x 11 pixel median filtering. Comparing with
Fig. 4(a), these plots show that when only the amplitude of the reconstructed object is taken
into account, the hologram is more tolerant to resampling. Resampling, if it is acceptable
for a particular application, can therefore improve the compression rate. Furthermore, since
resampling simply reduces the number of pixels and (possibly) changes their values rather
than compresses the underlying data format, the lossless techniques of Sect. 3 can be applied
as a final step.

The large artifacts for nearest neighbor interpolation in each plot of Fig. 5 occur at ex-
actly a side-length resizing of 0.5 (when 4 pixels are compressed to 1). Figure 5(a) shows that
even in the presence of measures introduced to reduce the effects of speckle, such as aban-
doning the phase and median filtering, the RMS errors grow quickly with resizing. Nearest
neighbor interpolation is found to introduce fewest errors in reconstruction. For correlation,
a hybrid bicubic-nearest neighbor strategy would seem to achieve best performance for all
levels of median filtering. Taking a quantitative example from Fig. 5, if a normalized cross-
correlation of at least 0.98 is required (and 11 x 11 pixel median filtering is acceptable), then
bicubic interpolation can resize to a side length of 0.75. This reduces the number of pixels
by a factor of 1.78, which combined with BW gives an average compression rate of 8.29.
This compression does, however, come at the cost of an unsatisfactory 0.38 normalized RMS
error. The technique of resampling achieves its best performance at a side-length resizing of
0.5, 11 x 11 pixel filtering, and nearest neighbor interpolation, where a compression rate of
18.6 can be averaged.

These results show that arbitrary resampling (as used, for example, by video streaming
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applications to maintain frame rates) is not an effective technique for digital holograms. This
result is not surprising because in digital holography systems the holographic microfringes
are usually of roughly the same size as the camera pixels. A downsampling thus easily results

in an undersampling.

5. Quantization

The technique of pixel value quantization is analogous to nearest neighbor resampling in the
spatial domain. By reducing the number of possible values (or levels) available to each pixel
we reduce the number of bits required to describe it. Such a technique was anticipated to
provide a compression factor of at least 6.4 (8 bytes/10 bits) with minimal losses since images
with only 10 bits of intensity resolution were used in the PSI stage. Figure 6(a) shows a plot
of normalized RMS difference against number of bits per data value for hologram no. 1, and
for each of five median filtering neighborhoods from 1 x 1 (no filtering) to 11 x 11 pixels.
The digital holograms were stored in real-imaginary format; each holographic pixel requires
two such data values. Quantization levels were chosen to be symmetrical about zero; as
a result n bits encode 2" — 1 levels. For example, two bits encode levels {—1,0,1}, 3 bits
encode levels {—3, -2, —1,0, 1,2, 3}, and so on. Figure 6(b) shows a plot of normalized cross-
correlation peak height (£ = 1) and Fig. 7 shows the reconstructed object amplitudes for
selected numbers of quantization levels.

For pattern recognition, as few as 4 or 5 bits (compression rates of 16.0 or 12.8, respec-
tively) need to be retained in each of the real and imaginary components. If errors in visual
appearance are of primary concern, that threshold should be raised to 6 or 7 bits (compres-

sion rates of 10.7 or 9.1, respectively) for low (< 0.02) reconstruction losses. For example,
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with 4 bits, and with moderate amounts of median filtering, a normalized cross-correlation
value of greater than 0.98 and a normalized RMS error of less than 0.1 can be achieved,

corresponding to a compression rate of 16.

6. DFT-based compression

Quantization appears to be a promising technique for the compression of digital holograms.
The JPEG algorithm also performs most of its compression during a quantization stage. It
uses the DCT to allow it to perform quantization in the spatial frequency domain. The JPEG
standard is defined for real-valued images only, but we adapt it to holograms, taking instead
the DFT of each nonoverlapping block of 8 x 8 pixels. Rounding errors aside, this will not
reduce the amount of information in the image but will tend to concentrate the majority
of the hologram information into a few DFT coefficients in each block. By quantizing (or
setting to zero, in our case) particular coefficients in each block we reduce the length of its
bit description and thus allow an entropy coder (such as Huffman or a run-length technique)
to further compress the coefficients. In our technique, we set a fixed number of the smallest
DFT coefficients in each block to zero. This involves sorting the values in each 8 x 8 DFT
and setting the (64 —n) lowest-valued coefficients to zero, where n is a positive integer in the
range [1,64] denoting the number of DFT coefficients to be retained in each block. Sorting
of the DFT coefficients was performed by amplitude first, and then (if necessary) by phase
angle. Upon decompression (a blockwise inverse DFT) the hologram was used to construct
object U] for comparison with Uy. Linear correlation (k = 1) was also employed. Once again,
the phase of the object wavefront was discarded and the amplitude median filtered prior to

comparison to lessen the effects of speckle.
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Figure 8 shows normalized RMS difference and normalized cross-correlation peak height
for hologram no. 1, for various values of n and for different median filtering neighborhoods.
With 11 x 11 filtering, as many as 92% of the DFT coefficients can be removed with minimal
loss in correlation performance (less than 1%). This corresponds to a compression rate of
12.8. In this case, the normalized RMS error would be 0.22. For RMS errors of less than
0.1 no more than 78% of the coefficients can be removed giving a compression rate of 4.6.
The remaining nonzero-valued DFT coefficients are each stored with 8 bytes, and so the
quantization technique of Sect. 5 or the lossless techniques of Sect. 3 could be used to

further increase these compression rates.

7. Conclusion

We have investigated various techniques for the compression of digital holograms created by
PSI. With industry-standard lossless data compression techniques an average lossless com-
pression rate of 4.66 can be expected. This rate was achieved by an intermediate coding of
separated real and imaginary components before application of the BW algorithm. Lossy re-
sampling techniques, combined with phase-removal and median filtering to lessen the effects
of speckle, were examined in terms of reconstruction error and normalized correlation peak
height. Hologram resampling resulted in a high degradation in reconstructed image quality,
but for resizing to a side-length of 0.5, and in the presence of a high degree of median filter-
ing, a compression rate of 18.6 could be achieved. If the metric is correlation peak height, a
hybrid bicubic-nearest neighbor interpolation strategy would seem preferable, while nearest
neighbor interpolation alone provides lowest (albeit still high) reconstruction errors. Quanti-

zation proved to be a very effective technique. Each real and imaginary component could be
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reduced from its original 8 bytes to 4 bits while maintaining a high correlation peak and an
acceptable reconstruction error, resulting in a compression rate of 16. The technique based
on the removal of DFT coefficients achieves approximate compression rates of up to 12.8 for
good cross-correlation, and up to 4.6 for reasonable reconstruction integrity. It is anticipated
that this can be improved further by applying lossless compression or quantization to the
remaining DFT coefficients. Based on a compression rate of 10.7 (6 bit quantization), and
without exploiting inter-frame redundancy, complex-valued holographic video frames of di-
mensions 640 x 640 pixels could be streamed over a 100 Mbit/s connection at a rate of 20 Hz
or frames with 1024 x 1024 pixels at 8 Hz.

Compression will permit more efficient storage of digital holograms. In order to be useful
for a realtime object recognition system, our compression strategies will have to be shown
to admit efficient algorithms that make it advantageous to spend time compressing and
decompressing rather than transmitting the original data. Efficient solutions must also be
developed for each of the other stages, namely the recording of four interferograms (during

which the object must be stable), phase-shift interferometry, reconstruction, and recognition.
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Figure captions

Fig. 1. Experimental setup for PSI: M, mirror; BS, beam splitter; SF, spatial filter;

L, lens; RP, retardation plate.

Fig. 2. Hlustration of the problem statement: (a) digital hologram Hy must be com-
pressed and transmitted such that (b) decompressed and reconstructed Uj com-
pares closely with the approximation of the original complex amplitude distribution
U(z,y,d). PSI, image capture and interferometry stage; DP, digital propagation

(reconstruction) stage; @), normalized cross-correlation operation.

Fig. 3. The set of holograms used in these experiments: (a) through (e) are the
amplitudes of the reconstructed wavefronts for holograms no. 1 through no. 5, re-
spectively. Image (f) shows the amplitudes of an example 512 x 512 subset of digital

hologram no. 1.
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Fig. 4. Resampling of the digital hologram: (a) a plot of hologram side length (rela-
tive to the original side length) against linear and nonlinear correlation performance
for three interpolation strategies; (b) searching the z-axis for an appropriate dy offset

for a hologram resize of 0.97 and bilinear interpolation.

Fig. 5. Resizing hologram no. 1 with three different interpolation strategies and then
using only the amplitude information in the reconstructed object plane. Plots for (a)
normalized RMS difference, and (b) normalized cross-correlation peak height, show

the effect of resizing both without filtering and with 11 x 11 pixel median filtering.

Fig. 6. Quantization with hologram no. 1: (a) normalized RMS difference, and (b)
normalized cross-correlation peak height, plotted against number of bits in each of

the real and imaginary values.

Fig. 7. Reconstructed amplitudes for hologram no. 1 for various numbers of quan-
tization levels and with 11 x 11 pixel median filtering: (a) 4 bits (15 quantization
levels); (b) 3 bits (7 quantization levels); (¢) 5 quantization levels; (d) 2 bits (3

quantization levels).

Fig. 8. Removing Fourier coefficients from hologram no. 1: (a) normalized RMS
difference, and (b) normalized cross-correlation peak height, as functions of DFT

coefficients retained, for various median filter neighborhoods.
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Hol. | Size | LZ77 | LZW | Huff. | BW | LZ77 | LZW | Huff. | BW

no. | (kB) | (kB) | (kB) | (kB) | (kB) | c.r. C.I. cr. | cur.

1 | 64769 | 52038 | 64769 | 62236 | 37020 | 1.24 | 1.00 | 1.04 | 1.75

2 64769 | 62353 | 64769 | 62298 | 63309 | 1.04 | 1.00 | 1.04 | 1.02

3 | 64642 | 32718 | 54766 | 61784 | 17698 | 1.98 | 1.18 | 1.05 | 3.65

4 | 64769 | 54923 | 64769 | 62262 | 40596 | 1.18 | 1.00 | 1.04 | 1.60

5 | 64769 | 53608 | 64769 | 62267 | 37923 | 1.21 | 1.00 | 1.04 | 1.71

Averages: 1.33  1.04 1.04 1.95

Table 1. Compression with LZ77, LZW, Huffman, and BW, when the hologram is
treated as a single binary data stream with alternating amplitude and phase angle

components; c¢.r.: compression rate.
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Hol.| Size LZ77 LZW Huff. BW LZ77|LZW | Huftf.| BW
no. | (kB) (kB) (kB) (kB) (kB) cr. | cr. | cr. | cur.
1 164769| 935649127 | 893148791 13899413079 638946263 | 3.50 | 3.65 | 2.40 | 5.12
2 164769|29890+29752|32385+32385(30987+31009|24413+24163| 1.09 | 1.00 | 1.04 | 1.33
3 164642 725448180 | TT47+8318 |27154+27282| 451245199 | 4.19 | 4.02 | 1.19 | 6.66
4 (64769 9465+9125 | 904748805 |13815+13027| 6512+6283 | 3.48 | 3.63 | 2.41 | 5.06
5 64769 922749061 | 8839+8718 |13439+13082| 633646265 | 3.54 | 3.69 | 2.44 | 5.14
Averages: 3.16 3.20 1.90 4.66

Table 2. Compression with LZ77, LZW, Huffman, and BW, when the hologram is

treated as two separate real and imaginary data streams; c.r.: compression rate.
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