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ABSTRACT

Outlined in this paper is a novel approach to speech
dereverberation when an estimate of the source-receiver transfer
function is known. It is a two-stage algorithm based on the
minimum phase/allpass decomposition of a mixed phase room
impulse response (RIR). The reverberant speech is first filtered
with the inverse minimum phase component of the RIR. Then a
Non-Negative Matrix Factorization (NMF) based denoising
approach is used to remove artifacts associated with the allpass
component of the RIR from the inverse filtered speech. This
approach was tested on speech convolved with synthetically
generated room impulse responses. The results of these tests were
analyzed using objective measures and listening tests both of
which indicate that this approach leads to significant enhancement
of the reverberant speech.

Index Terms- Dereverbation, Non-Negative Matrix
Factorization, Room impulse response, Inverse filtering.

1. INTRODUCTION

In voice telecommunications, if reverberant speech is transmitted
to a distant listener and reproduced it will in general be less
intelligible compared with anechoic speech. The speech will often
be spectrally colored and sound distant [1]. Dereverberation
techniques therefore are useful tools for improving the quality of
the speech particularly for hands free telephony.

Reverberent speech x(n) is modeled as a convolution of the room
impulse response /4(n) of length N and a source speech signal s(n),

x(n) = Es(m)h(n —m). (€9)]

m=0

The goal of dereverberation is to retrieve the direct path
component of the signal. One approach to dereverberation is to
obtain a measurement of the impulse response from the source to
the receiver and then use the inverse of this measurement to filter
the received speech. This approach has a number of problems.
Firstly room impulse responses are in general mixed phase
responses [2] meaning a straight inversion will result in poles
outside the unit circle, leading to either an acausal or unstable
inverse filter. Furthermore zeros inside but near the unit circle of
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the original room response will, when inverted, result in poles that
decay very slowly. To accommodate these high Q zeros, inverse
filters with a large number of taps would be required. Much work
has been devoted to these problems. One early approach [2] was to
use homomorphic processing to decompose the RIR into a
minimum phase component /,,, and an allpass component /,,.

h(m)=h (n)*h (n). ©)

mp ap

Then the guaranteed stable minimum phase component is inverted
and is used to filter the speech. For mixed phase responses this
magnitude-only equalization is inadequate [2][3] because the
remaining allpass component of the mixed phase RIR causes phase
distortion in the output speech. This phase distortion has been
shown to manifest as audible artifacts in the processed speech
[2][3]. In [3] the subjective effects of such processing were studied
and a technique for phase equalization was also presented.
Mourolpoulas et al [4] proposed another approach to RIR
inversion using a linear least square approach with a delay
included to compensate for zeros outside the unit circle which was
shown to produce better results than minimum phase filtering
alone albeit with some artifacts remaining [5]. The linear least
squares approximation technique also allows the length of the
inverse filter to be controlled so a trade off between filter taps and
quality can be introduced.

A challenging aspect of the overall dereverberation problem is
when the RIR cannot be measured empirically and can only be
estimated from the reverberant speech. In this case before an
inverse system can be constructed, the impulse response of the
room or the channel must be estimated. This is known as the blind
channel estimation problem. A more thorough review of speech
dereverberation in general is given in [1].

The focus of this work is on the mixed phase RIR inversion
problem; as such we therefore assume knowledge of the RIR. This
is also referred to as the acoustic channel inversion problem. It has
been observed that when reverberant speech is filtered with the
inverse minimum phase component of the inverse filter, distinct
audible distortions are remaining. We used a Non-Negative matrix
factorization denoising technique presented in [6] to remove these
artifacts completely from the speech spectrogram without RIR
phase equalization. We show that this approach results in
improved speech quality.
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This paper is organized as follows: the next section examines
the NMF technique with subsections on monaural sound source
separation using NMF and a special focus on how it applies to
mixed phase RIR inversion. Then the overall methodology is
explained in section 3. A description of the experiments performed
and results is given in section 4 followed by discussion and
conclusions in sections 5 and 6.

2. NON-NEGATIVE MATRIX FACTORISATION

Non-Negative Matrix Factorization (NMF) is a linear data analysis
technique for non-negative data [7]. The non-negativity constraint
of this factorization results in a parts based/additive decomposition
of the data where the individual decomposed parts sum together to
form the original data. These parts usually capture some structure
of the data and provide a more intuitive decomposition [8]. It
works by approximating a data set V' e R 20.M xN as a
multiplication ~ of two  matrices W e R 20.MxR and

H e Rz0,RxN
V~=W-H. 3)

The rank of the approximation can be reduced or increased by
varying R; the number of columns in W and rows in H. This
usually decreases or increases the reconstruction error depending
on the data set. The process of estimating W and H is an
optimization problem. Lee and Seung [7] introduced two
approaches for estimating W and H each based on a separate cost
function. The Euclidean distance between V' and WH was one of
these cost functions and the second, which was used throughout
this work, is a generalized version of the Kullback-Leibler
divergence,

V
D(Vuw,m:uvolog(W Hj-mwum, @

where © is the Hadamard product. The goal of the optimization is
to minimize this cost function with respect to W and H whilst
imposing the non-negativity constraint. From equation (4) the
following multiplicative update rules were derived in [7] to
calculate H and W,

% |14 r
v | L
H=Hoi, W=W©L Q)

w1 1-HT

These update rules are iterated until a prescribed number of
iterations has been reached. The updates are alternated between H
and W, as the objective functions for each are convex separately
but not together. Because of the multiplicative updates no update
step tuning is needed. The number of iterations specified is
data/user dependent and usually picked to occur when cost
function D reaches a user-defined threshold.

The matrices H and W will individually express different
aspects of the factorization. The columns of W will contain the
basis for the data and the rows of H will contain the activation
pattern for each basis or the contribution of each basis to the data
over time. When multiplied the data is reconstructed with a small
error (depending on R and the data).
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2.1. Convolutive NMF (cNMF) and monaural sound
source separation

In [6] Smaragdis presented a ctNMF based monaural sound
source separation (SSS) technique. The technique requires prior
knowledge of the speakers and the order of the mixture. Here we
ignore the convolutive extension and concentrate on a one-
dimensional manifestation of the algorithm.

The algorithm has two stages, namely training and separation.
The training stage involves training separate low rank W basis
matrices for each individual speaker. This is done by acquiring a
sequence of spoken speech from each speaker, calculating a
spectrogram for each sequence and performing a NMF
decomposition on each spectrogram separately. The resultant W
matrices (one for each speaker) are then concatenated into a large
W matrix called W,,;,. The second stage is the separation stage
where a mixture of speech, containing known speakers, is
separated into individual sources. This is achieved by performing a
NMEF decomposition on the speech mixture using W,.,;, from the
training stage. Throughout this factorization W,;, is fixed with
only the A matrix updated. This process leads to the basis matrix
corresponding to each individual speaker to mainly characterize
the mixture spectral energy corresponding to the contribution,
which that speaker made to the mixture. After a prescribed number
of iterations have been reached W,,, is separated back to the
individual W matrices of the speakers and then multiplied by the
corresponding portion of the A matrix from the separation stage.
The resultant 7 matrices are combined with the original phases of
the mixture and resynthesised leading to renditions of the original
sources.

In [6] the optimal values for these parameters in terms of sound
source separation were presented; R (the rank parameter) being
particularly important. Apart from algorithm parameters however
the best performance was achieved when the mixtures contained
one male and one female speaker. This was believed to be due to
the level of spectral dissimilarity between the male and female
speaker. Between a male and female spectrogram the level of
dissimilarity is greater than say between the spectra of two males
or two females due to the different pitch tracks and formants etc.
As a result of this the trained 7 matrices for the male and female
speech were more easily able to distinguish and better represent
their respective contributions in the mixture. This issue of spectral
dissimilarity was shown to be an important factor affecting the
performance of this algorithm. The algorithm was also tested on
noisy speech mixtures and performed well especially for noise that
was spectrally dissimilar to speech [6].

2.2. Mixed phase room impulse response inversion and
NMF

As detailed in section 1, inversion of a mixed phase room impulse
response is a difficult task. The inversion problem can however be
broken down based on a minimum phase/allpass decomposition of
the room impulse response [2]. The minimum phase component
can be inverted and used to inverse filter reverberant speech.

The approach results in speech with perceptually annoying
artifacts for mixed phase RIRs. These artifacts are a result of the
remaining allpass portion of the RIR or more specifically the phase
components of the RIR that deviate from a linear group delay [2].
In the literature these artifacts have been described as ‘chimes’ [3]
or ‘metallic sounding’ [2]. An explanation for the cause of the
artifacts is given in [2] where it is stated that peaks in the allpass
group delay function cause the artifacts. In [3] the author describes



the knowledge about the cause of these artifacts as ‘still incomplete
and conjectural’.

Upon observation of the magnitude spectra of such distorted
speech it can be seen that the artifacts are quite distinctive, and
appear as smears intermittent throughout the spectrogram (as
shown in Figure 1). They also typically occur at similar
frequencies; possible the locations of all pass zeros.

The artifacts vary for different RIRs because of the different
locations of the allpass zeros. Through repeated visual observation
of different spectrograms, the spectral dissimilarity between the
artifacts and speech became quite apparent. This motivated us to
apply the approach of Smaragdis [6] as a post filtering approach to
remove these allpass artifacts from the minimum phase inverse
filtered speech.

3. TRAINING NMF BASIS FOR ALLPASS ARTIFACT
REMOVAL

To use the algorithm described in section 2.1 to remove the allpass
artifacts from the inverse minimum phase filtered speech, an initial
training stage is required. For this, separate data containing clean
speech and artifact data is needed. This separate data will be used
as training data from which the /' matrices or the bases will learn
the distinctive spectral characteristics of the each sound. These two
W matrices will then be concatenated to form W,,;, as described in
section 2.1.

The training data was acquired in two stages. In the first stage the
minimum phase component of the source receiver room impulse
response is calculated. This is done using a homomorphic
processing technique outlined in [2]. The minimum phase
component is then inverted. Then an arbitrary sequence of speech
is selected and filtered with the RIR. The reverberant speech is
then filtered using the inverse minimum phase component of the
RIR leaving the speech and the artifacts. Next the spectrogram of
the original speech is subtracted from the processed speech to
reveal a spectrum of allpass artifacts. Separate /¥ matrices are then
trained for the original speech sequence and the spectrum of
allpass components, which are concatenated to form Wr,;,. In the
denoising or separation stage Wy, will be used to extract the
artifacts from the speech. It will be shown in the next sections that
the training of W, with an arbitrary sequence of speech does not
constrain this approach to work on this speech alone.

4. EXPERIMENTS

To demonstrate the efficacy of the above-described algorithm a
number of experiments were performed and the results evaluated.
Two synthetic RIRs were created using the mirror image method of
creating room impulse responses [9]. The first RIR (RIR 1) was
created in a box room with dimensions 20m (length) x 20 m
(width) x 20m (height). A microphone was positioned at the center
of the room with a speaker placed 2m in front of the microphone.
The second RIR (RIR 2) was simulated in a room of dimensions
8m x 7m x 5m. The microphone for this impulse response was
positioned at 4m x 3.5m x 1.2m from the origin of the room and
the speaker was placed at 6.6m x 3.5m x 1.2m. The absorption
coefficients of the boundaries of each room were varied across
frequency to emulate a real room. The approximate RTg, of RIR 1
was 1.4 secs and RIR 2 0.3 secs. The RIRs were sampled at 16 kHz
and after computation were truncated to 2000 samples (125 ms).
The truncation of the RIRs was performed to keep the length of the
inverse minimum phase filters computationally reasonable.
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Figure 1: Time frequency Magnitude spectrum of a Reverberant
speech signal after processing by a minimum phase inverse filter with
allpass artifacts indicated.

Moreover to compensate for any high-Q zeros in the truncated
RIR, each minimum phase inverse filter was given 20000 taps. The
minimum phase component of the RIR was calculated using the
approach outlined in [2]. To ensure that the RIRs were mixed
phase they were examined using the Nyquist criterion technique
also described in [2].

The speech data used for these experiments were taken from the
TIMIT speech corpus database [10]. Eight different utterances of
speech from 8 different speakers were convolved with each
impulse response and were then used for testing. A sequence of
speech all from one speaker was chosen arbitrarily as the training
speech. The training of W,,, was performed as described in
section 2.1 and 3 with the number of clean speech basis and the
number of noise basis set to 100 (i.e. R was set to 100). The
number of iterations was also set to 100 for training and testing.

The test speech from the proposed algorithm was analyzed after
processing to ascertain the performance of the algorithm. The
numerous measures of dereverberation that exist were deemed
unsuitable for the approach taken here. To objectively access the
output speech a set of standard measures used for sound source
separation were employed [11]. These standardized measures
include signal to interference noise ratio SIR,

2
N
target

SIR =10log, | —— |, (6)
le...
Signal to distortion noise ratio SDR,
Js...I
SDR =10log | —————— |, 7
e + e+ el
and signal to artifact noise ratio SAR,
TR |
SAR =10log, | —= : (®)

2
artif

Where Sipec is the output speech, e, is the processing artifacts
NOISe, €0 processing noise and €;,.,r the interfering noise (i.e. the
allpass artifacts). These measures were introduced in [11] to
provide a standardized approach to evaluate sound source
separation algorithms. To utilize these measures here we consider



(a) | RIR1 Input SIR  Input SDR  Input SAR Output SIR Output SDR  Output SAR | (b) Tag prefer >prefer

15.06 11.90 14.90 26.67 9.71 9.87 FCJFO 7 3
25.28 21.45 23.79 47.83 14.61 14.62 MDPKO 5 5
20.28 17.17 20.12 36.64 15.54 15.57 FETBO 6 4
24.54 20.28 22.34 39.80 12.56 12.57 MJWTO 6 4
20.34 17.86 21.52 31.99 10.81 10.84 FSAHO 8 2
17.15 1291 15.04 37.87 10.46 10.47 MWADO 7 3
23.45 19.80 2227 65.72 10.27 10.27 FVFBO 7 3
20.17 17.93 21.92 31.55 7.56 7.59 MRWSO0 4 6

mean 20.71 17.20 20.12 39.13 12.07 12.10 6.25 3.75

RIR 2 12.99 14.59 10.62 20.02 11.47 12.17 FCJFO 6 4
14.00 12.56 10.12 26.57 8.96 9.04 MDPKO 5 5
10.85 9.55 6.94 20.87 7.20 7.43 FETBO 7 3
10.86 10.93 7.71 19.85 8.36 8.72 MJWTO 5 5
14.48 11.41 9.56 2298 9.00 9.19 FSAHO 7 3
10.49 13.50 8.60 16.75 8.04 8.76 MWADO 7 3
10.48 13.17 8.48 17.51 9.91 10.82 FVFBO 6 4
7.59 10.15 541 16.34 4.83 5.25 MRWS0 4 6

mean 11.47 11.98 8.43 20.11 8.47 8.92 5.875 4.125

Table 1: (a) Table of objective results for RIR 1 and RIR 2. (b) Subjective results for listening tests with TIMIT speech tags and for RIR1 and
RIR2.

the artifacts and the clean speech as two separate sound sources
and calculate the objective measures based on this.

To subjectively access the performance of the algorithm an
informal listening test was organized. Ten subjects were recruited
and asked to compare two utterances of the same speech, one was
the speech with artifacts (minimum phase inverse filtered) and the
other was the speech processed using the new approach. They were
then asked to give their opinion based on five ratings: much prefer
A, prefer A, neutral, prefer B, much prefer B. The order of the two
utterances was randomized to mitigate bias and each sentence pair
was compared for RIR 1 and 2. The number of preferences given
by the panel for each rating is listed in table 1 (b). Audio examples
of the above work are available at www.eeng.nuim.ie/~ncahill/.

5. DISCUSSION

The allpass artifacts remaining in the speech after filtering by
the minimum phase inverse filter were removed or significantly
suppressed by this new algorithm. The results of the listening tests
in table 1 (b) show that the subjects overwhelming preferred the
post processed sound. Specifically no subjects choose neutral or
the opposing utterance and a large amount of subjects rated the
processed speech as ‘much preferred’ or > prefer’ in table 1(b).
The objective measures in table 1(a) also demonstrate the
improvement of this approach. Large gains in SIR suggest the post
filtering stage greatly removed the artifacts whilst a lower SAR and
SDR indicate that the algorithm also removed some clean speech.
The experimental results also demonstrate that training based on
one speaker does not restrict the algorithm to this speaker or to the
utterances used. However the above approach is impulse response
dependent and each W,,;, is only usable for the RIR used for
training. Moreover these results indirectly show that the phase
distortion introduced by the allpass component of mixed phase
RIRs can be greatly suppressed by post-filtering the magnitude
spectrum of such distorted speech.

6. CONCLUSIONS
In this paper a new approach to acoustic channel inversion of
mixed phase room impulse responses was introduced. The process
starts with a conventional minimum phase/allpass decomposition
followed by inverse minimum phase processing. The new approach
then uses a NMF based post filtering stage to remove the allpass

artifacts. The results of experiments designed to test the algorithm
were presented which show the improvement in speech quality.
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