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Abstract

Principal component analysis (PCA) is a widely used
technique in optical emission spectroscopy (OES) sensor
data analysis for the low dimension representation of high
dimensional datasets. While PCA produces a linear combi-
nation of all the variables in each loading, sparse principal
component analysis (SPCA) focuses on using a subset of
variables in each loading. Therefore, SPCA can be used as
a key variable selection technique. This paper shows that,
using SPCA to analyze 2046 variable OES data sets, the
number of selected variables can be traded off against vari-
ance explained to identifying a subset of key wavelengths,
with an acceptable level of variance explained. SPCA-
related issues such as selection of the tuning parameter and
the grouping effect are discussed. ‘

1. Introduction

Principal component analysis (PCA) is widely known as
a dimension reduction technique. Using PCA, a high di-
mensional data set can be decomposed into the sum of a
small number of principal components (PCs). Given an
n x m data matrix X, n being the number of observations
and m being the number of variables, there is [3]

X = TP" (T € R™?,P € R™*P), (1

where PP = IL,. T and P are referred to as score and load-
ing matrices, respectively. Since the loading of each PC is
generally a linear combination of all the original variables,
PCA cannot be used directly for variable selection.
Research on obtaining sparse components has been con-
ducted for over two decades. The earliest method, proposed
in 1958, is referred to as varimax [7]. Using varimax rota-
tion, a number of the coefficients of the loading vectors can
be adjusted to have greater values than the remaining coef-
ficients. Such adjustment can help in the selection of key
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variables, but it is hard to quantify the distinction between
small and large coefficients.

Jeffers [5] proposed a straight-forward method for
achieving PCA sparsity. For each loading, any coefficients
that are less than 70% of the greatest one are set to zero,
regardless of their sign. This method can lead to a selection
deficiency in two cases, one where the variables have small
coefficients and the other where the variables have high mu-
tual correlations [1].

In [10], the ‘simple principal components’ is proposed.
This focuses on restricting the coefficients of the loadings
to have integer values, such as -1,0 and 1, to help simplify
variable selection.

The first true algorithmic method for achieving sparse
loadings was proposed in 2003 by Jolliffe er al. [6] and
is known as SCoTLASS (Simplified Component Technique
for Least Absolute Shrinkage and Selection). This employs
a penalty term referred to as the Least Absolute Shrinkage
and Selection Operator (LASSO) [9] to force loadings to be
sparse. Nevertheless, it is not practical due to the relatively
high computational cost [12].

A recently proposed algorithm, known as semidefinite
programming, is described in [2]. Using this method, the
normal loadings are constrained by a cardinality condition,
that is, a limit on the number of the nonzero elements in
each loading. By relaxing this constraint, the problem is
converted into a convex optimization problem and hence,
can use semidefinite programming as a solution. The gen-
erated PCs are shown to be able to explain larger variance
than competing algorithms, but the computational cost is
high.

In 2004 Zou et al. [12] proposed an alternative approach
to solving the SPCA problem, which they referred to as
elastic net for SPCA (EN-SPCA). EN-SPCA can be im-
plemented in two forms. One is similar to an approach
used to solving the LASSO problem, details of which will
be provided in the next section, and the other is the so
called soft thresholding algorithm, designed for handling
large data sets (thousands of variables). Both EN-SPCA



implementations are computational alternatives to semidef-
inite programming, but the later implementation has the key
advantage that it can scale to much larger problems that the
semidefinite programming algorithm.

This paper explores the application of SPCA to key vari-
able selection in optical emission spectroscopy (OES). OES
is an optical emission detection technique, used for detect-
ing the optical intensity of the chemicals in a plasma as a
function of wavelength and time. Because the wavelengths
are the ‘fingerprints’ of the corresponding chemical species,
OES data can be used to trace the chemical reactions in
a plasma chamber. Consequently, OES is increasingly be-
ing used by semiconductor manufacturing to assist with the
monitoring and control of plasma etch processes. However,
in practice direct use of OES spectra is limited due to the
difficulties with handling and interpreting the large number
of variables that are associated with such spectra.

The reminder of the paper is organized as follows. Sec-
tion 2 gives a theoretical description of SPCA. Section 3 de-
scribes the methods used to estimate SPCA model accuracy.
Section 4 shows experimental results on the application of
SPCA to Optical Emission Spectroscopy (OES) data from a
semiconductor manufacturing plasma etch process. Finally,
the conclusions are presented in Section 5.

2 Theoretical Framework and Numerical So-
lution

EN-SPCA employs a penalised regression estimator to
solve the SPCA problem. This exploits the fact that PCA
can be formulated as a least squares regression problem,
thereby facilitating the inclusion of the LASSO penalty,
which is known from regression theory to yield sparse so-
lutions. The theory of LASSO and EN-SPCA are quite in-
volved, hence only a brief overview will be provided here.
For a more complete development of the algorithms see
[9].[12] and [11].

2.1 PCA as a LS problem

Given a data matrix X (as defined in Eq. (1)) and defining
its transpose as the matrix Z = X", the LS estimation of the
PCA loading matrix P € R"*? can be expressed as

(K P) = argmin z; — APz, %},
g mi {;I *} ®

st.ATA =1,

Where z; are the columns of Z. The constraint on matrix
A ensures that the orthogonality of P is guaranteed. While
theoretically the LS estimate is the best unbiased estimate of
P [9], in practice better mean square error performance can
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by obtained by biasing the regression coefficients towards
zero. This is typically achieved by adding either an L; or
an Ly norm penalty to the LS cost function. The Ly imple-
mentation, referred to as Ridge regression or regularisation,
is frequently employed to address data ill-conditioning and
singularity issues and benefits from a straightforward alge-
braic solution. In contrast, the L; implementation has tra-
ditionally been avoided due to the associated computational
issues, but in recent years it has been receiving increasing
attention as a variable selection method, due to its tendency
to yield sparse solutions. In this context it is referred to as
LASSO [9].

2.2 Ridge Estimation

The Ridge estimate of A and P (denoted by KR and 13R)
is expressed as

~R ~R e
(A P) :argrR}l{l{Z; ||z: — AP"z,{[3
- (3)

P
+12 ) llp;I3}, st ATA=1,
=1

where || - ||2 represents the L, norm, - is the Ridge tuning
parameter (y2 > 0) and p; is the jth column vector of PR.
The main benefit of employing the Ridge estimator is that
it can handle data matrices in which the number of observa-
tions is less than the number of variables. Unlike regression
this comes at no cost since the Ridge estimate of P is sim-
ply a scaled version of the LS estimate and scaling does not
affect the PCA decomposition.

2.3 LASSO Estimation

Mathematically, the LASSO estimate of A and P, de-

~L AL
noted by A and P can be expressed as

L oL . e
(A"P") = argmin{}y _ |z — AP"z[}
P
> ' @
+m Y|}, st ATA =1,
j=1
or equivalently as
ALl ot : - T, |12
(A P)= arglglp{ZHZi — AP'z[3},
=1
P )
s.t. Z lp;ll1 <ciand A'A =1,
Jj=1
where [[p;][; = Y_.", |bij|, m is the LASSO tuning pa-

rameter and c; is a corresponding upper bound. For each 1,



there exists a c; that gives an equivalent constraint on the re-
gression coefficients. The second formulation (Eq. (5)) has
the attraction that it is in the form of a quadratic program-
ming problem with linear inequality constraints making its
solution mathematically tractable.

Although the Ridge and LASSO penalty both cause the
regression coefficients to shrink towards zero a powerful
feature of the LASSO is that it is more likely to drive coef-
ficients to exactly zero, hence generating sparse solutions.
This arises because of the distinctive shape of the LASSO
penalty as illustrated in Fig.1 for the 2-D case. This shows
the elliptical contours of a LS quadratic cost function with
the feasible region corresponding to the L; (LASSO) con-
straint indicated in grey. The L; norm produces a diamond
shaped region with corners aligned with the axes. In con-
trast, as illustrated in Fig.1(b), the Lo norm generates a cir-
cular boundary. Increasing the constraint penalty causes
the feasible regions to shrink towards the origin. As this
happens there is a tendency for the optimum elliptical con-
tour to intersect the diamond region at the corners and since
these are aligned with the axes this leads to sparse solutions.
This is not the case with the circular boundary of the Ridge
penalty.

2.4 Naive Elastic Net and Elastic Net

The drawback of LASSO is that if the number of ob-
servations (n) is less than the number of the variables (m),
LASSO will at most choose n variables. In contrast, Ridge
can extend the selection to m variables. However, Ridge
cannot provide sparse solutions. The naive elastic net
method was developed to address these problems. Math-
ematically, the naive elastic net estimate is defined as:

AP = arg r}\lip{z |z — AP"z[?
=1
(6)

k k
+72 ) IRl + Y mslipslli}, st ATA=1,

j=1 j=1

where 1, j=1...k are scalars used to individually penalize
the loadings.

In [11], Zou and Hastie argue that naive elastic net es-
timation introduces a double bias, but that the reduction in
estimation variance is no greater than with LASSO or Ridge
estimation alone. To correct for this double shrinkage, the
authors propose re-scaling the naive elastic net estimate by
a factor (1 + 72), giving the final elastic net SPCA estimate
a: ~EN ~EN ~N ~N
Because the constraint function 7o||p;|13 + v1,1Ip;ll is
strictly convex, elastic net estimation retains a special prop-
erty of least squares regression known as the grouping effect
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[12]. This means that highly correlated variables will be as-
signed similar regression coefficients. While this property
can be beneficial in many applications, as will be demon-
strated later, it is not ideal for variable selection.

P
12

LS cost function|contour - LS cost function contour

( /

(a) LASSO

(b) Ridge

Figure 1. Solution for different estimators
2.5 Numerical Solution

Simple matrix transformations can be used to estimate
the least squares or Ridge regression estimates of P, but ef-
ficient computation of the LASSO estimate is much more
challenging, and was only effectively addressed with the de-
velopment of the least angle regression (LARS) algorithm
in 2002 [8] (S refers to its close relation to LASSO and
stagewise regression).

In LARS, all the coefficients are first set to zero and
then revised successively until the least squares solution is
reached. LARS-EN is a modified implementation of LARS
designed to fit the elastic net framework [8]. In particular, it
includes a special algorithm, called soft-thresholding, that
is scalable to high dimensional data sets [12].

3 Estimating Model Accuracy
3.1 Variance Explained

SPCA employs a similar approach to PCA, known as ad-
justed variance [12], to measure the estimation accuracy.

~S
Like PCA, the sparse scores (T ) are used to calculate the
variance as:

~EN

T =xp", ®)

~EN ~EN . .
where P denotes P normalized to have unit length

columns. However, unlike PCA, ﬁEN is not orthogonal,
hence the variances explained by individual PCs are not in-
dependent of each other and hence not additive. To cor-
rect for this the sparse scores matrix must first be orthog-
onalised leading to the following variance estimation algo-
rithm [4, 8].



~ S
e Orthogonalize t J'S (the jth column vector of T ) by ap-
plying the recursion

~S* ~S A8 ~S ~S _1.a8 ~S
=t =T [(To1) (T (TG
for j = 1,...,p (p is the number of sparse principal

o~
components), where T, = ftsm. ce

. .S
o Collect the orthogonalized vectors into a matrix T
ie.

~S*

T

~S*

(.

e Compute the variance explained (V) by the p sparse
components as

*

V, = trace{(”l\‘S )T'f‘s*}. (10)

~S* _ ~S*
The jth diagonal entry of (T )TTS corresponds to the vari-
ance explained by the jth sparse PC.

3.2 SPMSE

When using sparse PCs to reconstruct a data set, many
columns of the reconstructed data are in fact zero, because
of the zero elements in the sparse loadings. Therefore, a
fairer assessment of the accuracy of reconstruction is to only
compare the reconstruction against the original data over
the regions where the reconstruction exists. Here, a sparse
mean square error measure is proposed, denoted SPMSE,
where S stands for the sparse, P for percentage and MSE
for mean square error. This is given by

, X, = X2
SPMSE = ————— x 100%, (1)
I3
where || - ||; is the Frobenius norm, X, consists of the

nonzero columns of the reconstructed data matrix X and
X is the corresponding subset of the original data matrix
X. Based on SPMSE, SV, variance explained by the sparse
components, is proposed as

SV, =100% — SPMSE. (12)
In contrast to V, (Eq. 10), SV, only calculates the variance
for the non-zero reconstructed-channels, so SV, can more
effectively reflect the reconstruction accuracy. Note, that
since the sparse components are not orthogonal, the recon-
struction of X is defined as

~S ~EN 1. ~EN ~EN

X=T@® ) ® )"

(13)
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Figure 3. Sample OES data set

4 Results
4.1 Data Description

The OES data under consideration is from a plasma etch
chamber used in the manufacture of semiconductor chips
(Fig. 2). It is collected for the exhaust plasma leaving the
chamber and consists of 2046 channels (each channel corre-
sponds to one wavelength) recorded at a sampling interval
of 0.76s. Fig. 3 shows a typical data set collected for a
77s etch step on a single wafer. The data, which has been
mean-centred, is clearly highly redundant. A PCA analysis
reveals that a single PC can capture 95.8% of the variance
in the data.

4.2 Selecting the EN-SPCA Tuning Pa-
rameters

As noted previously when the number of variables is
large (in this case 2046) the soft-thresholding EN-SPCA al-
gorithm developed in [12] can be used to efficiently com-
pute components. In this formulation the L, penalty tuning



55+

~ a
& 3

Variance

IS
S

35

20 30 0 50
Number of Nonzero Elements

60

Figure 4. The relationship between Ny and
Ve

parameter (y2) is set to infinity leaving only the L; penalty
parameters (71, - one for each computed PC, j=I ...p) to
be determined experimentally. These parameters essentially
determine the sparseness of the corresponding PCs.

For example, Table 4.2, shows how the number of
nonzero elements (Nyg) varies as a function of ~;;, for
the first sparse component of the OES data. The table also
shows how the variance explained by the component (ex-
pressed as a percentage of the total data variance). As might
be expected V. decreases as more and more components are
forced to zero. In contrast, the SV, value remains large for
all values of y;; demonstrating that the sparse PC achieves
good accuracy for those channels where a reconstruction
exists.

Fig. 4 demonstrates the corresponding relationship be-
tween Ny g and V. and provides a useful guide for making
a judgment call on the trade-off between sparsity and vari-
ance explained. As can be seen, in this instance there is
a ’knee’ in the graph at Nyg = 25, beyond which there
is a marked decrease in the rate of variance increase with
included variables. This corresponds to choosing ;1 as
29000.

The variance explained by the sparse PC for v;; =
29000 is 47% which compares to 95.8% for the unre-
stricted principal component. The corresponding SV,
value, which measures the reconstruction accuracy on the
non-zero reconstructed-channels only, is more than 91%, by
the 25 channels used in its computation.

4.3 The Grouping Effect

Figure 5 shows the distribution of the first sparse load-
ing computed with ;; = 290000. For comparison pur-
poses the distribution of the first PCA component loading
is included in Figure 6. The PCA loading elements are all
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M1 NnE Ve SV
(%) (%)
0 2046 95.8057 95.8057
5000 1564 95.6068 96.129
10000 1373 95.0602 95.9379
50000 611 84.1086 89.6853
100000 189 65.0638 85.9841
150000 68 58.2831 90.3285
170000 54 56.3396 90.88
190000 48 54.5187 89.956
210000 43 52.7259 89.0393
230000 38 50.9482 88.6207
250000 30 49.4871 91.1976
270000 28 48.2702 90.5483
290000 25 47.0887 91.127
310000 25 45.8107 88.6538
330000 24 44.3460 86.9806
350000 24 42.5365 83.4315
370000 21 40.7546 84.3206
390000 19 389135 84.0687
410000 17 37.2303 84.522
430000 17 35.4131 80.3966
450000 14 33.3417 83.5658
470000 13 31.9432 83.0192
490000 11 30.4860 86.5150

Table 1. Nyg, V. and SV, corresponding to
different +,, values for the first sparse PC
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Figure 5. The loading of the first sparse
principal component obtained for the sam-
ple OES spectra in Fig. 3 using SPCA with

11 = 29000




non-zero with several clusters of large values centered on
the active OES channels. These clusters arise because of
the spectral bleed between adjacent channels. In contrast,
the SPCA loading has only 25 non-zero entries and these
are in four distinct clusters of points. Analysis of these four
sets of points show that they are all highly correlated as can
be seen in Fig. 7 (correlation coefficient > 0.99). This is a
direct consequence of the grouping effect that is a feature of
EN-SPCA, that is, EN-SPCA has a tendency to give equal
weighting to strongly correlated variables and, as such, se-
lects all the correlated variables as a group, rather than se-
lecting a single representative example. This is useful when
trying to identify groups of related variables, but is not ideal
for a variable selection algorithm.

200 400 600 800 1000 1200 1400 1600 1800 2000
Channels

Figure 6. The loading of the first principal
component obtained for the sample OES data
in Fig. 3 using PCA
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Figure 7. Intensity changes of the nonzero
loadings (over time) for the first sparse PC of
the OES data
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5 Conclusions

This paper introduces SPCA as a variable selection tool
for the identification of key variables in large data sets.
SPMSE has been proposed as a measure that better reflects
the estimation accuracy of SPCA, given the sparse structure
of the model. Using analysis of OES data from a plasma
etch chamber the main features of SPCA have been illus-
trated, particularly in relation to how it provides a trade-
off between variance explained and a sparse representa-
tion. The existence of a grouping effect in the selection
of variables has also been highlighted as a weakness of the
method.
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