
Advanced Review

Tropospheric temperature trends:
history of an ongoing controversy
Peter W. Thorne,1,2∗ John R. Lanzante,3 Thomas C. Peterson,4

Dian J. Seidel5 and Keith P. Shine6

Changes in atmospheric temperature have a particular importance in climate
research because climate models consistently predict a distinctive vertical profile
of trends. With increasing greenhouse gas concentrations, the surface and
troposphere are consistently projected to warm, with an enhancement of that
warming in the tropical upper troposphere. Hence, attempts to detect this distinct
‘fingerprint’ have been a focus for observational studies. The topic acquired
heightened importance following the 1990 publication of an analysis of satellite
data which challenged the reality of the projected tropospheric warming. This
review documents the evolution over the last four decades of understanding
of tropospheric temperature trends and their likely causes. Particular focus
is given to the difficulty of producing homogenized datasets, with which to
derive trends, from both radiosonde and satellite observing systems, because of
the many systematic changes over time. The value of multiple independent
analyses is demonstrated. Paralleling developments in observational datasets,
increased computer power and improved understanding of climate forcing
mechanisms have led to refined estimates of temperature trends from a wide
range of climate models and a better understanding of internal variability. It is
concluded that there is no reasonable evidence of a fundamental disagreement
between tropospheric temperature trends from models and observations when
uncertainties in both are treated comprehensively.  2010 Crown copyright WIREs Clim
Change 2011 2 66–88 DOI: 10.1002/wcc.80

INTRODUCTION

Since the earliest attempts to mathematically model
the climate system’s response to human-induced

increases in greenhouse gases,1 a consistent picture
of resulting atmospheric temperature trends has
emerged. The surface and troposphere (the lowest
8–12 km) warm with a local maximum trend in the
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upper levels in the tropics, while the stratosphere
above cools (Figure 1).

In a 1990 paper, Spencer and Christy3 claimed
that since the start of routine satellite temperature
observations in 1979 there had been no tropospheric
warming, despite apparently rapid surface warming.
The paper raised questions about both the veracity of
the surface temperature record and our understanding
of the climate system’s response to greenhouse gas
increases, and it has been heavily cited in both
scientific and political arenas. Taken at face value,
these questions would have fundamental and far-
reaching implications for understanding of the climate
system and efforts to mitigate projected climate
change. The ensuing controversy has motivated
several hundred research papers, two in-depth
expert panel assessments,2,4 and numerous political
hearings (see examples in supporting information),
and has been discussed within all of the major
Intergovernmental Panel on Climate Change (IPCC)
scientific assessments.
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FIGURE 1 | Simulated 1979–1999 temperature trends from four modern-day climate models with representations of human-induced and natural
forcings (see section on ‘Modeling Temperatures in the Atmosphere’). All exhibit a warming troposphere with a maximum in the tropical upper
troposphere and a cooling stratosphere, but with differences in trend patterns and magnitudes. Adapted from Climate Change Science Program
Synthesis and Assessment Product 1.1.2

We present a history of the evolving under-
standing of atmospheric temperature trends, their
uncertainties, and probable causes. The review focuses
on peer-reviewed literature that assesses changes at the
largest spatial scales (tropical, hemispheric, or global)
to inform understanding of global climate changes.
It is distinct from previous analyses in: (1) addressing
the evolution of scientific issues rather than techni-
cal details; and (2) providing a historical perspective
on the treatment of these issues by the scientific
community.

As background, we present the scientific foun-
dations for analyses of temperature trends and use
of climate models to reconcile observations with
competing hypotheses regarding likely causes. Our
chronological review is organized by time periods cor-
responding to the IPCC assessments because of their
important influence in interpreting and advancing the

science. An annotated list of acronyms follows the
main text. Supporting information is available online
including a limited selection of political and main-
stream science media developments which may be of
interest to an interdisciplinary WIREs audience.

OBSERVING AND MONITORING
TEMPERATURES IN THE
ATMOSPHERE

All observing systems germane to this issue operate
primarily to support weather forecasting, not climate
monitoring and research. Most notably, frequent
changes in instrumentation and practices have had
a deleterious impact on the use of observations for
the study of long-term climate changes by imparting
substantial time-varying biases. Accounting for these
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FIGURE 2 | Radiosonde station reporting performance, based on percentage of complete twice-daily coverage in July 2009 by the European
Centre for Medium-Range Weather Forecasts. The poorer performance away from Northern Hemisphere mid-latitudes is typical of both contemporary
and historical patterns. Figure courtesy of Antonio Garcia-Mendez and ECMWF.

nonclimatic changes has led to problems in estimating
trends.

Here we briefly introduce the three main data
types (surface, radiosonde, and satellite measure-
ments). The reader is referred to the supporting
information for a more detailed discussion of their
characteristics (S1.1–S1.3) and their strengths and
weaknesses (S1.4) for use in characterizing long-term
climate variations. A variety of steps are involved
in creating a climate dataset from raw observations
(S1.5), the most important of which is temporal
homogenization to remove time-varying biases.

Over land, surface air temperature data come
both from stations run by national meteorological
services to support routine weather forecasts and from
voluntary stations whose observations are received
in delayed mode. Over ocean regions, Sea Surface
Temperatures (SSTs) are usually used instead of air
temperatures and have been collected by a diverse set
of approaches with the dominant three being ships,
buoys, and satellites.

Radiosondes are expendable instrument pack-
ages—typically including temperature, relative humid-
ity, and pressure sensors—that are carried aloft by
balloon, whose position is tracked for estimating

horizontal wind. Radiosondes provide the longest
available archive of free-atmospheric variables.5,6 The
network (Figure 2) has evolved substantially over time
and is concentrated over extratropical land masses
of the Northern Hemisphere. Changes in radiosonde
instruments (see example in Figure 3) and practices
have led to time-varying biases which compromise
trend analyses.

Unlike radiosondes, satellites do not make
direct measurements of atmospheric tempera-
ture. Microwave Sounding Units (MSUs) measure
upwelling microwave radiation emanating from the
earth system, which varies in direct proportion to
temperature.8 Interpreting MSU-derived temperatures
is complicated because they represent a weighted
average over a deep layer rather than temperature
at a particular altitude. The MSU instrument chan-
nels produce data for different atmospheric layers,
including the middle troposphere (MT or Channel 2,
approximately surface to 18 km) and the lower strato-
sphere (LS or Channel 4, approximately 15–35 km).
An undesirable property of MT is that it includes a
small but climatically significant contribution from
the stratosphere, which has been addressed by two
approaches: a differencing of measurements for the
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FIGURE 3 | Top 2 panels: monthly temperature anomalies
(smoothed with a 13-point running average) during 1958–2009 from
radiosonde observations at Camborne, Cornwall, UK, at 200 hPa
(near-tropopause) and 700 hPa (lower-troposphere), including both raw
(black) and adjusted (green) HadAT data.7 The smoothed difference
series between the two shows the adjustments (offset by 2.25 K).
Bottom panel: the four radiosonde types used over this period (typical
of UK-managed stations) are (left to right, with typical periods of
operation): Phillips Mark IIb (1950s–1970s); Phillips MK3 (mid 1970s to
early 1990s); Vaisala RS-80 (early 1990s to 2005–2006); and Vaisala
RS-92 (since 2005–2006). Dates of radiosonde changes (red dotted
lines) are one sort of ‘metadata event’,5 others include:
cross—radiation correction procedure change; star—data cut-off
change; diamond—change of pressure sensor; triangle—change of
wind equipment; square—change of relative humidity sensor. Photos
courtesy of Kevin Linklater, UK Met Office and background digitally
enhanced for clarity by Sara Veasey NOAA NCDC.

MT channel at different view angles9 to obtain data
representing the lower troposphere (LT), and statis-
tical recombination (labeled *G) of MT and LS to
remove the LS influence10 (Figure 4). MSU was car-
ried on a series of satellites starting in late 1978; it
was superseded by Advanced MSU (AMSU) in 1998,
although MSU continued to operate until 2005, offer-
ing a substantial overlap (Figure 5).

We briefly mention reanalyses, special hybrid
data products created by combining as much
observational data (including nontemperature data)
as are available using data assimilation schemes.11–13
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FIGURE 4 | Left: Vertical weighting functions for satellite products.
Right: Schematic of atmospheric vertical structure and its latitudinal
variation. The line at 30 hPa indicates the typical maximum height of
historical global radiosondes data coverage. Because LT and *G involve
combining data from other layers, they have negative weightings in
parts of the atmospheric column. Adapted from Climate Change Science
Program Synthesis and Assessment Product 1.1.2

Several erroneous findings using free-atmosphere
trends from first and second generation reanalysis
products have occurred (e.g., Refs 14–17). The
recent Climate Change Science Program report on
free-atmosphere temperatures2 concluded that ‘trends
arising from reanalyses [. . .] are not always reliable’,18

and we consider such studies sparingly. We note,
however, that the latest and future products may well
be suitable (or indeed invaluable) for characterizing
some free-atmosphere temperature changes.18–22

MODELING TEMPERATURES IN THE
ATMOSPHERE

Numerical models vary in complexity depending
on the number of separate, interacting subsystems
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FIGURE 5 | Satellite Local Equatorial Crossing Times (LECTs) (pm
for ascending/northward and am for descending/southward satellite
orbits) for MSU instruments (TIROS-N to NOAA-14) and subsequent
AMSU instruments (all other satellite platforms). Changes in LECTs
typically accompany changes in orbital height and viewing
geometry.Courtesy of Carl Mears, Remote Sensing Systems.
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and the manner by which processes are simulated.
The hierarchy of climate models ranges from
representation of the climate system by a single
value (e.g. global-mean surface temperature) to three-
dimensional models with representations of the
atmosphere, oceans, land surface, and chemical and
biological processes. Models represent simplifications
of a complex reality, dictated by knowledge
limitations and practical constraints on computing.

General Circulation Models (GCMs) are three-
dimensional representations of the climate system.
Early GCMs were relatively simple, but included
the basic physical (but not biological or chemical)
processes that underpin present-day understanding.
GCMs gradually increased in sophistication (Figure 6)
and resolution. The latest models include interactive
chemistry, ecosystems, and carbon cycles, and enable
representation of various climate system feedback
mechanisms, although small time and space scale
processes are still not explicitly modeled.

Models are a key bridge between theory and
observations. They afford the opportunity to conduct
‘what if’ experiments not possible in the real-world cli-
mate system which evolves along a single trajectory.
They provide estimates of how the climate system
should behave (according to theoretical understand-
ing) in response to changes external to the system,
known as ‘forcings’.

Radiative forcing drives much of long-term cli-
mate change and is a measure of the imbalance in the
planetary energy budget, for example, due to increases
in greenhouse gases (including carbon dioxide, ozone,
and many others), changes in atmospheric aerosols,
or solar variations. Changes in forcings can induce
changes in the vertical as well as horizontal structure
of temperature. Model simulations of past or future
climates use best estimates of the historical or plau-
sible future changes in forcings. The incorporation of
forcings into climate models (Figure 6) has evolved
significantly over time.23–25

Many groups have undertaken climate modeling
using GCMs, and many conduct ‘ensemble exper-
iments’ with a given model in which the forcings
are identical, but the initial atmospheric state differs
slightly for each ensemble member. Due to the ‘but-
terfly effect’ each ensemble member will have a unique
trajectory.33 This divergence can be used to charac-
terize the uncertainty of the model solutions resulting
from ‘internal variability’ (such as occurrence and
timing of El Niño), which is the natural variability
of the system in the absence of changes in forcings.
Although all climate models are derived from the
same basic physical laws, the exact formulations and
implementations vary among models. A multimodel

ensemble of results therefore presents a set of plausible
outcomes that help bracket our uncertainty.34

EVOLVING UNDERSTANDING

Pioneering Model Projections and
Observational Analyses from the late 1960s
to Early 1990s
As early as 1970,35 the surface temperature responses
to an 18% increase of atmospheric CO2 concentra-
tions by 2000 and to doubling of CO2 were projected
to be a warming of about 0.5 and 2 K, respectively,
albeit with considerable uncertainty. Two seminal
studies by Manabe and Wetherald,1,27 provided the
basic framework for expectations of the vertical struc-
ture of human-induced temperature change which still
underpins current understanding. Their 1967 paper1

was the first to point out that a stratospheric cooling
would accompany the tropospheric warming when
CO2 was increased, and the 1975 paper27 first sim-
ulated the enhanced warming in the tropical upper
troposphere, relative to the surface, in response to
a CO2 increase. They attributed this to the model
representation of moist convective adjustment, clearly
demonstrated by later studies using radiative–convec-
tive models.36,37 Subsequent GCM experiments38,39

revealed some variation among models regarding
the amplification of the tropical upper-tropospheric
warming, attributed mostly to the nature of the vari-
ous convection schemes.40

During this period, observational analyses of
temperature trends were limited in number and in
their characterization of uncertainty. Long before
satellite data were first used for climate trend anal-
ysis, researchers were analyzing in situ temperature
observations.41–43 The 63-station radiosonde network
used by Angell41,42,44 revealed a 1958–1987 increase
of about 0.3 K in the tropospheric 850–300 hPa layer
globally, much of it occurring in the late 1970s and
early 1980s, consistent with global surface temper-
ature changes. The upper troposphere–lower strato-
sphere 300–100 hPa layer showed cooling. Parker45

attempted to remove the nonclimatic influences from
the data using a first-difference technique.46 Angell47

noted that El Niño variability complicated the assess-
ment of volcanic impacts on the troposphere.

Spencer and Christy3 of the University of
Alabama in Huntsville (UAH) presented the first
estimates from satellite data in Science. They made
two major claims: that ‘accurate long-term global
temperature measurements can be obtained by satel-
lites’; and that no obvious trend could be found in
the 1979–1988 dataset, strongly implying that little
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FIGURE 6 | Over several decades, increasing climate model complexity and increasingly realistic simulation of forcings (depicted at left) have led
to little change in the expected pattern of atmospheric temperature change (right). Model representations are based on Treut et al.26 and courtesy
Fiona Carroll. Zonal-mean temperature responses from progressive versions of the GFDL (top three, trends in K/century) and Hadley Centre (bottom
three, trends in K/decade) models are directly from the literature,27–32 digitally enhanced for clarity only by Deb Misch NOAA/NCDC.
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if any global warming was occurring. Methodologi-
cal details were expanded upon in a more technical
article.48 A technical comment to Science49 raised sev-
eral issues with the analysis and cautioned against
making robust conclusions based upon a record of
only a decade’s duration. The original author team
concurred that further investigation was merited, but
disputed the posited importance of the issues raised.50

The first assessment report of the IPCC51 gave a
rather different interpretation to that in the initial
Science article. Comparing the MSU, surface and
radiosonde temperature data during 1979–1988, it
found high correlations and low root mean squared
differences among them, and concluded that there is
‘excellent agreement’ given the short time period. The
tropospheric and surface data agreement was termed
‘surprisingly good, despite recent suggestions that it is
poor’. The implication was that the tropospheric data
agreed with the surface warming, the reality of which
was not questioned by the report.

Early attempts to ascertain the causes of
observed trends had mixed results. In 1982, Epstein52

analyzed Angell’s radiosonde record through 1980
and failed to detect the expected temperature trends,
but predicted that, with a longer data record, within
10 years they would be detectable, and that by jointly
considering stratospheric and tropospheric changes
‘a change that can be attributed to carbon diox-
ide increase should be detectable by 1986’. Parker53

examined temperature trends in radiosonde data over
a 25 year period, but, failing to find the expected pat-
tern of changes, concluded that another 20–35 years
of observations would be required for its detec-
tion. Karoly detected statistically significant trends in
Northern54 and Southern55 Hemisphere radiosonde
stations in an index incorporating trends at six levels
between 850 and 30 hPa. He noted both the consis-
tency with the model projected greenhouse warming
signal, and that other climate variations would also
cause temperature changes of opposite sign in the
troposphere and stratosphere. By 1990, the IPCC
report chapter on detection of the greenhouse effect in
the observations56 found ‘broad agreement between
the observations and equilibrium model simulations’,
with the main differences being related to the height at
which tropospheric warming changes to stratospheric
cooling.

Early 1990s
Recognition of Data Limitations
During the early 1990s, Oort and Liu57 presented an
updated radiosonde-based temperature dataset cover-
ing 1958–1989 with several differences in approach

to that of Angell,44 the main one being use of the
full global radiosonde network rather than a small
selection of stations. Trends were generally similar in
pattern, but with significantly different magnitudes.
Parker and Cox58 and Gaffen59 identified (but did not
attempt to remove) specific sources of time-varying
biases (often called ‘temporal inhomogeneity’) in
radiosonde temperature data. They noted the incom-
pleteness of radiosonde station history ‘metadata’.
This latter situation had been only partially rectified
by the global metadata compilation of Gaffen60 and
remains to this day.5

Temporal inhomogeneity problems with MSU
data were also starting to be recognized. Christy
et al.61 attempted to remove a spurious warming sig-
nal associated with a sampling time drift in the NOAA
11 satellite (Figure 5) and a problem with the dynamic
range on NOAA 12. Other studies9,62–65 used com-
parisons with radiosonde data to support the homo-
geneity of the satellite data during 1979–1990, and a
subsequent review paper by Christy66 suggested that
all previously identified problems had been rectified.

Identification of Climate Change Signals in
Global Climate Models
During this period, model-data comparisons were
still mainly restricted to assessments of changes in
global-mean temperatures. Climate signals unrelated
to anthropogenic change complicated trend estima-
tion, particularly over the short satellite record, and
attempts were made to remove the effects of El
Nino/Southern Oscillation (ENSO) and volcanoes
from observational records,67,68 which reduced the
discrepancy with model simulations. The observed
difference between surface and tropospheric trends
was found to be larger than either the climate-
model-simulated natural variability or the expected
transient forcing response.69 The first studies to iden-
tify a climate change signal based on ‘fingerprint’
pattern matching techniques and using zonal-mean
temperatures from radiosondes from 1958 onwards
appeared,70,71 and one71 found that including strato-
spheric ozone depletion and sulphate aerosols changes
in addition to CO2 improved the match.

IPCC in 1995
The observations chapter of the IPCC Second Assess-
ment Report72 discussed in detail radiosonde data
issues that might hamper reliable trend estimation.
In contrast, MSU data were seen to ‘have exhibited
high precision’ with the various biases in the data
described as ‘minimal’, ‘insignificant’, or having ‘been
removed’. The global tropospheric trends from 1979
to May 1995 were reported as showing slight cooling:
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−0.06◦C/decade for MSU and −0.07◦C/decade for
radiosondes. But after removing volcanic and ENSO
effects, the time series showed a positive trend.

The detection and attribution chapter73 com-
pared the observed pattern of stratospheric cooling
and tropospheric warming (after removing ENSO and
volcanic signals) with model simulations and con-
cluded that ‘there is no serious inconsistency between
the most recent model predictions and MSU-based
trend estimates’. However, it noted that the MSU
period of record was relatively short. For detection and
attribution, a sufficiently long record is required for
any underlying signal to become distinct from ‘noise’
introduced by natural climate variability. To this end,
work70,71 with the longer radiosonde record was crit-
ical in forming the conclusion that ‘The balance of
evidence suggests a discernable human influence on
global climate’.

Late 1990s
Identification of Specific Radiosonde and MSU
Data Problems
The late 1990s witnessed a growing recognition of
radiosonde and MSU data homogeneity problems
and concerted efforts by several groups to correct
them. The Hadley Centre Radiosonde Temperature
(HadRT)58,74 dataset was the first global radiosonde
product to incorporate homogeneity adjustments,
applied at upper levels only and solely from 1979,
based upon MSU LS data.63 The Comprehensive
Aerological Reference Dataset (CARDS) project com-
piled all available raw radiosonde records75; a subset
provided optimized spatial and temporal coverage.76

An auxiliary Monthly Aerological Data Set offered
monthly average values,77 and a gridded version
was created at the All-Russian Research Institute
of Hydrometeorological Information (RIHMI).78 The
original 63-station ‘Angell network’42 was still in
use,79,80 but nine tropical stations were eliminated
because of data concerns.80

Luers and Eskridge81 attempted a novel
radiosonde data homogeneity adjustment approach
using thermodynamic properties of each type of
radiosonde. Although promising in theory, indepen-
dent validation was not possible.82 Gaffen et al.83

explored several different approaches for identifying
and adjusting artificial discontinuities, highlighting
the difficulty of the endeavor and the sensitivity of the
resulting trends.

Although UAH remained the only readily
available MSU dataset, four versions (A,9,62 B,61 C,84

and D85) were created during the 1990s. Diagnostic
studies by other investigators86–89 provided a basis for

version D. Wentz and Schabel’s87 finding of an orbital
decay effect and its implications of an artificial cooling
impact upon the UAH TLT record gained significant
prominence in Nature and Science.90–93

For the first time, a group produced temperature
series and trend estimates from MSU data indepen-
dently of UAH,88,89,94 and they showed substantially
more tropospheric warming than UAH. However, this
dataset was not updated so had limited utility.

Surface temperatures, radiosonde temperatures,
and climate model output were used to make infer-
ences regarding the UAH record. Two artificial discon-
tinuities were claimed in the tropical MSU series95–98

and disputed by UAH using radiosonde data.99

Identification of the Causes of Observed
Tropospheric Changes
Studies comparing modeled and observed temperature
changes during the late 1990s were more sophisticated
and examined the effects of different climate forcings.
Comparing zonal-mean temperature changes using
HadRT74 data from 1960 onwards with GCM output,
two studies30,100 found identifiable ‘fingerprints’ of
greenhouse gases and ozone depletion. Another101

evaluated the realism of GCM internal variability vis-
à-vis HadRT and found deficiencies in the stratosphere
but reasonable agreement in the troposphere, as well
as tentative evidence for volcanic and solar influences.
Analysis of an atmosphere-only GCM found that the
influence of observed SSTs alone could not explain
the observed HadRT signal but including greenhouse
gases and other forcings yielded consistency.102

Several studies concluded that the larger rate
of surface warming than in the troposphere over
the satellite era was real and discussed possible
physical mechanisms.4,103–105 Others highlighted the
underlying uncertainties due to various factors such
as horizontal, vertical and temporal sampling, spa-
tial averaging, statistical sampling issues, choice of
dataset, etc.104,106–109 Explicit examination of the dif-
ference between surface and tropospheric trends in
the tropics uncovered low frequency variations, along
with a difference in the sign of the trend during and
prior to the satellite era.109,110

IPCC in 2001
The IPCC Third Assessment Report built upon the
U.S. National Research Council (NRC) report4 which
had concluded that the surface really was warming
relative to the troposphere. IPCC concurred, acknowl-
edged that all measuring systems ‘contain significant
time-varying biases’,105 and described advantages and
disadvantages of each. The detection and attribu-
tion chapter111 acknowledged the difficulties involved
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in analyzing this problem and reconciling inconsis-
tencies between the observed and modeled vertical
patterns of temperature change. It concluded that
‘nevertheless, all the studies indicate that anthro-
pogenic factors account for a significant part of
recent observed changes, whereas internal and nat-
urally forced variations alone, at least as simulated
by current models, cannot explain the observed
changes’. The studies referred to had almost invari-
ably considered the longer radiosonde era and not the
satellite era.

Early 2000s
The early 2000s saw a rapid multiplication of
approaches to homogenizing long-term temperature
observations and resulting global datasets. Detection
studies were refined, and observational uncertainties
were identified as the primary explanation for discrep-
ancies between models and observations.

Attempts to Homogenize Observational Data
and Emergence of Multiple Analyses
A workshop bringing together groups developing
methods to identify and remove inhomogeneities in
radiosonde data112 set a cautionary tone, having
revealed that different methods applied to real-life test
cases found only limited agreement. Although most
failed to progress beyond the development phase, two
new radiosonde temperature datasets emerged. The
LKS effort113,114 was the first to make adjustments
independent of satellite data, over a globally-
distributed network, for both tropospheric and strato-
spheric levels. Post-construction comparisons with
MSU temperatures suggested improved trend charac-
terization. They concluded that unadjusted radioson-
des suffer world-wide from a spurious cooling bias
throughout the atmospheric column. However, since
the subjective, labor-intensive approach did not lend
itself readily to updates, a new dataset was created
by extending the LKS product which terminated in
1997. The first-difference method of dataset con-
struction, previously successfully employed for sur-
face data,46 was adapted115 to create a new NOAA
dataset: Radiosonde Atmospheric Temperature Prod-
ucts for Assessing Climate (RATPAC).116 The second
effort was the Hadley Centre Atmospheric Temper-
atures (HadAT) product.7 Unlike RATPAC, which
was limited to 85 stations, HadAT utilized 676.
HadAT adjustments were based on comparison of
target station data with similar time series from
suitable neighbor stations. This contrasts with LKS
which was almost entirely dependent upon informa-
tion local to a station. At a more fundamental level,

creation of the quality-controlled Integrated Global
Radiosonde Archive (IGRA)5 in place of CARDS
was a major advance. Although without homogeneity
adjustments, IGRA is now the highest-quality archive
of long-term global radiosonde and pilot balloon
soundings.

Analysis of differences between day and night-
time soundings by several investigators117–119 revealed
systematic and geographically pervasive biases,
including a suspicious relative daytime cooling glob-
ally, most notably in the tropics, with residual bias
even after adjustment.120–122 Angell123 found bet-
ter trend agreement between the remaining network
after eliminating nine tropical stations with suspect
homogeneity from his original network of 63.

Major developments with MSU temperature
data included release of version 5.0 of the UAH
product124 with revised adjustments and incorpora-
tion of AMSU measurements. Most significant was the
creation of MSU datasets by two new teams, Remote
Sensing Systems (RSS) and a group from the University
of Maryland (UMd). The RSS team initially created
only MT and LS products,125 later adding LT.126 They
uncovered an error in the UAH LT drift adjustment
methodology, a correction for which resulted in UAH
v5.1.127 Although this correction led to little overall
change in global trends, it had a distinct latitudi-
nal signature and revealed greater tropical warming
and reduced mid to high latitude warming. The UMd
team produced MT data128 which was subsequently
revised.129,130

Although similar in many respects, the UAH
and RSS approaches have two main differences,131

and in both cases RSS uses more data, while UAH
applies constraints based on improving error charac-
teristics. The MT trend difference between the two
is mainly attributable to a difference in parameters
derived for NOAA-9 which, due to premature failures
had a particularly short overlap with adjacent satellites
in the series.2 UMd used a fundamentally different,
more physically-based approach, with a substantially
different merging procedure from that of UAH and
RSS.132 Such uncertainties in homogenization compli-
cate assessment of climate trends.133 A confounding
issue is the methodological differences in construct-
ing MSU data products for different layers and the
interpretation of the LT layer, with its large surface
contribution.134

Although the stratospheric contribution to MT
observations had long been recognized, work by Fu
and co-workers10,135–138 set out to explicitly remove
it by combining MT and LS to produce a measure
(*G), that is distinct from LT but has a similar
vertical weighting function (Figure 4). Initial critical
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analysis of this method139 highlighted several issues.
Application to model simulations140,141 suggested
better agreement between observations and model and
theoretical expectations regarding the surface versus
troposphere differential warming, and revealed some
inconsistencies in the UAH tropospheric products,
although UAH criticized the approach.142

A comprehensive comparison of then-available
upper-air datasets143 found better agreement for
interannual climate signals than trends. The effects
of regional variations in signals and of differing
spatial sampling strategies were explored by sev-
eral groups,104,144–146 as were the effects of dataset
choice147 and shifts in regional climate regimes148 on
temperature trends.

Refinement of Climate Change Detection
Studies in the Troposphere
Several studies compared HadRT data from 1958
onwards to GCM output.31,149–153 They all found
strong evidence for a greenhouse gas fingerprint; some
also found evidence for volcanic151–153 or solar150

influences. Responding to criticism that the asym-
metry in trends between the troposphere and strato-
sphere dominated formal detection and attribution
studies,154 Thorne et al.151,152 examined the tropo-
sphere in isolation and still detected a greenhouse
gas signal. Trends in the newer HadAT observational
analyses were found to be outside model estimates
of natural variability, and anthropogenic effects were
required to explain the observations.32

A comparison of UAH and HadRT with new
GCM results from the NASA Goddard Institute for
Space Studies yielded discrepancies in trend behavior,
particularly in the tropics, but best overall agree-
ment when the model was forced with natural and
anthropogenic forcings.155 In contrast to earlier work,
Michaels and Knappenberger156 argued that the tim-
ing of ENSO and volcanic events added a warming
trend to the satellite record which, when accounted
for, exacerbated apparent discrepancies with model
expectations. Santer et al. pointed out the dangers of
such analyses given that the timing of ENSO and
volcanoes are correlated in the observed record.157

In a pair of papers, Douglass et al.158,159 invoked a
first generation reanalysis as well as a dated sub-
set of the available direct observations and argued
for fundamental inconsistencies between model-based
expectations and observed behavior over the satellite
era. Lindzen and Giannitsis160 hypothesized that the
apparent discrepancy between observed and modeled
behavior over the satellite era could be related to a
delay in surface response to an atmospheric tempera-
ture jump in the mid-1970s.

Comparing the RSS and UAH MT records with
GCMs, Santer et al.161 found the tropospheric finger-
print of greenhouse gases evident only in RSS, high-
lighting for the first time the importance of accounting
for observational uncertainty. A satellite era analy-
sis for the tropics25,162 found that all observations
and climate models exhibited amplification of surface
changes aloft on monthly to annual timescales, con-
sistent with basic theory. However, on multidecadal
timescales climate models conformed to this behav-
ior, whereas all observational estimates except RSS
damped rather than amplified the surface warming
aloft. While this discrepancy was attributed to model
deficiencies, to observational errors, or a combination
of both, observational errors were concluded to be the
most parsimonious explanation (Figure 7).

IPCC 2007
The Fourth Assessment Report of the IPCC made
considerable use of the U.S. Climate Change Science
Program report on understanding temperature trends
in the lower atmosphere.2 This report, with authorship
from many of the principal participants in the debate,
had taken several years to create and spawned many
significant papers. It concluded that there was no
evidence for a discrepancy between surface and
tropospheric temperature trends globally but that
ambiguity remained in the tropics. The presence of
substantial observational uncertainty in the tropics
was posited as the most likely explanation. Similar
to its 2001 discussion, IPCC stated in 2007 that
‘there is agreement that the uncertainties about long-
term change are substantial’163 and that ‘it is difficult
to make quantitatively defensible judgements as to
which, if any, of the multiple, independently-derived
estimates is closer to the true climate evolution’.
Many sources of biases in the various datasets were
discussed. It noted that radiosonde data since 1958
indicate tropospheric warming slightly exceeding
surface warming. The chapter on Understanding and
Attributing Climate Change164 focused largely on the
tropical troposphere,25,162 and highlighted the value
of a multimodel analysis to aid understanding.

Late 2000s
The last few years have witnessed even greater atten-
tion to radiosonde and MSU data homogeneity and
the emergence of new approaches and data products.
Modeling efforts have become more sophisticated. The
basic conclusion that there is no discrepancy between
model and observed trends is supported by the most
recent work.
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FIGURE 7 | Tropical temperature behavior in observations and
models (including those in Figure 1). Top panel characterizes
month-to-month surface and LT temperature variability; both
observations and models show surface variability is amplified aloft
(slope of the line fit to the model points >1—the black line). Lower
panel repeats the analysis for temperature trends over the period
1979–1999; observations no longer agree with models, and all but RSS
exhibit damping with height. Possible explanations are (1) a real
mechanism that modulates long-term behavior that all models miss, or
(2) residual nonclimatic influences in some or all the observations that
substantially impact their long-term trend estimates. The Climate
Change Science Program report concluded that the latter was the more
likely explanation.25 Adapted from Climate Change Science Program
Synthesis and Assessment Product 1.1.2

Multiplicity of Homogenized Radiosonde
and MSU datasets
This period saw better exploration of uncertainties
in current radiosonde datasets along with the cre-
ation of three new independent datasets that increased
the apparent uncertainty in radiosonde temperature
trend estimates. Automation of analysis procedures165

and creation of error models for evaluating their
performance166 led to the conclusion that HadAT
quite likely exhibits too little tropospheric warming
over the satellite era, particularly in the tropics. A
University of Vienna team used a novel homogeniza-
tion approach167,168 involving ERA-40 reanalysis,12

on the premise that difference time series of radiosonde
minus reanalysis background are sensitive indicators
of changes in radiosonde biases. The detected break-
points were adjusted with either the reanalysis field
(RAOBCORE family of products167,168) or apparently
homogeneous neighbor segments (RICH168). Finally,
another group led by Sherwood employed kriging, a
method used commonly in the geostatistical commu-
nity, to synergistically estimate real climate signals,
missing data, and artificial breakpoints through an
iterative procedure (IUK169). Although they attained
a measure of success for a global network of stations,
they expressed concern over likely remaining spurious
cooling biases in the deep tropics.

The Sherwood group also used radiosonde-
measured winds through the thermal-wind relation-
ship170–172 to infer substantial tropical upper-
tropospheric warming. The strengths of this approach
are that there have been fewer changes to
radiosondes’ wind measurement techniques than to
temperature measurements,173 and artefacts in wind
measurements are generally more easily identified and
adjusted.

Over the satellite era those datasets considered
in the 2007 IPCC report (RATPAC and HadAT)
exhibit less tropospheric warming than any of the
newer datasets at most levels (Figure 8). The apparent
discrepancy with model behavior disappears if the
newest datasets are used. The ensemble estimate from
the automated HadAT experiments166 (not shown)
also includes the expected model behavior. An analysis
using a Bayesian selection criteria174 reinforced
previous work175 that alternatives to a straight line fit
may better describe the time series evolution.

For MSU, RSS undertook substantial data repro-
cessing to create version 3.2,176,177 resulting in minor
differences to their trend estimates and a quantifica-
tion of the generally acceptable degree of agreement
with available radiosonde tropospheric datasets.177

A NOAA group178,179 (STAR) introduced a new
method to produce MT, and later LS, estimates based
on simultaneous nadir overpass data near the poles.
Because they should indicate the same temperature
for a given scene, the simultaneous measurements
by different satellites can be used to quantify the
biases between them, although further adjustments
are required.179 Trends derived from STAR show
more warming within the troposphere than similar
products produced by others (Figure 8).

A series of studies compared MSU and
radiosonde data, locally or regionally. Christy and
Norris181 concluded UAH LT, MT, and LS products
were more reasonable than RSS products based on
closer agreement with radiosondes operated by the
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FIGURE 8 | Left: tropical tropospheric temperature trend estimates for 1979–2005 (K/decade) from adjusted radiosonde datasets and from
models (derived by scaling the range of model amplification in Figure 7 by the HadCRUT3 surface trend180) and from moist-adiabatic lapse rate theory
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United States, and Christy et al.182 drew similar con-
clusions for LT using tropical radiosonde stations.
Christy and Norris183 confirmed these findings for
Australian data. The RSS adjustment procedure for
the transition from NOAA-11 to NOAA-12 was iden-
tified as the primary problem. Randall and Herman184

using radiosonde data and Bengtsson and Hodges20

using reanalyses came to similar findings indepen-
dently. But these various studies also revealed other
issues with the various MSU records considered. Satel-
lite records were shown to be most uncertain when
one or more satellites are drifting rapidly.181,183 A fur-
ther issue with such comparisons is that they generally
utilised raw radiosonde data or adjusted RATPAC or
HadAT data, all of which subsequent research (see
above) suggests retain a long-term cooling bias.

A Focus upon Understanding the Tropical
Troposphere
Detailed comparisons of radiosondes since 1958
and GCMs185,186 indicated that the use of
homogeneity-adjusted radiosonde data systematically
improves agreement between models and observa-
tions, although even adjusted observations tended to

show less warming or more cooling than GCMs.
Forster et al.187 hypothesized that model deficien-
cies—insufficient ozone reduction in the tropical lower
stratosphere and excessive effects of convection in the
upper troposphere—may explain the apparent exces-
sive long-term warming of the upper tropical tropo-
sphere in GCMs. Thorne et al.188 examined structural
uncertainty in both GCMs189 and observed data over
both the satellite and radiosonde eras, as well as choice
of analysis period start and end dates, and concluded
that uncertainties are large enough to preclude a fun-
damental difference between model and real-world
tropical tropospheric amplification of warming. A
claim by Douglass et al.190 that trends in tropical
temperatures derived from models were substantially
inconsistent with those from observations was refuted
by Santer et al.191 using newer observational datasets
and correcting several methodological flaws. By com-
paring temperature and precipitable water behavior in
observations, reanalyses, and climate models, Mears
et al.192 concluded that MSU but not reanalysis trend
estimates are reasonable. Recently, Klotzbach et al.193

argued for the presence of an artificial warming in the
land surface record in the tropics using only a subset

Volume 2, January/February 2011  2010 Crown copyr ight 77



Advanced Review wires.wiley.com/climatechange

of the available tropospheric records. As is the norm
in scientific research and should be abundantly clear
from the preceding sections, all these new analyses
are likely to be reassessed and/or challenged by others
over the coming years.

SYNTHESIS AND CRITICAL
ASSESSMENT

The controversy that began in 1990 regarding dif-
fering rates of warming at the surface and in the
troposphere spurred much focused research. In retro-
spect, it seems clear that the primary reason for the
controversy was inadequate knowledge of the inher-
ent uncertainties in estimates of temperature trends.
These uncertainties are of two types: (1) structural
uncertainties of the observed upper-air data; and
(2) uncertainties due to the internal variability of the
atmosphere, both observed and modeled.

At the start of the controversy there was only
one upper-air temperature dataset each from satellites
and radiosondes, and there was virtually no knowl-
edge (or at least no acknowledgment in the literature)
of the structural uncertainties that arise from attempt-
ing to create a climate data record from individual
observations. The most crucial aspect is the process
of homogenization, that is, attempting to remove the
artificial effects of changing instruments and prac-
tices that are known or suspected to contaminate the
record. The fundamental reason that the homogeniza-
tion issue dominates this story is that historically we
have lacked a global climate observing system—so that
the only recourse is to try to use weather observations
to assess climate changes.

The one satellite dataset available3 represented a
pioneering effort and stimulated much vital research.
However, as the initial team that produced this prod-
uct, and other teams, further scrutinized the data,
myriad confounding effects were revealed. This led to
a number of dataset revisions and alternative datasets
using different underlying methodologies (Figures 9
and 10).

The state of the radiosonde record was even
more problematic as hardly any attempts at homog-
enization had been made during the first few decades
(1970s–1990s) of analysis of radiosonde data for cli-
mate purposes. Throughout the 1990s researchers
struggled just to uncover (but not remove) the prob-
lems in the data. Homogenization of radiosonde
data is considerably more difficult than satellites
because of greater unknowns regarding changes to the
measurement system. Changes in radiosonde instru-
ments and practices are often undocumented and
overlap rarely exists. Furthermore, each radiosonde

station usually has its own history, requiring a unique
set of adjustments. Focusing on temperature anoma-
lies at specific pressure levels, several homogenized
radiosonde datasets have been produced over the past
5–10 years.

Figure 10 shows the evolution of published
temperature trends from 1979 to a given year between
1989 and 2008 for the surface and MT (which includes
a 10–15% contribution from the cooling stratosphere,
Figure 4), from both radiosonde and MSU data. For
the UAH MSU data, the evolution of this trend
using the September 2009 version is also shown
for reference. For the surface temperatures it shows
(1) very good agreement between the three analyses;
and (2) the trend has remained quite stable over more
than a decade. By contrast, the radiosonde analyses
(1) differed considerably initially and, although they
are in much better agreement now, differences remain;
and (2) the trend changed from negative (cooling) to
positive (warming), sometime in the early 2000s. For
the MSU analyses (1) in the early part of the record
there was much volatility in the trends from the UAH
group and after 1997, when more analyses became
available, there is considerable spread among the
different analyses and little evidence of convergence
over time, but (2) nevertheless the tendency toward
all analyses showing a warming in the latter part
of the record is clear. Additionally, there appears to
be convergence of the surface and mid-troposphere
trends in the latter part of the record. In summary, the
most recent versions of all datasets do not support the
conclusion of a significant difference in trend between
the surface and troposphere when considering (1) the
structural uncertainty (as evidenced by the spread) in
the MT trend estimates, (2) the very likely remaining
cold bias in the radiosonde trend estimates, and (3) the
fact that the MT trend has a small stratospheric
cooling component.

With regard to understanding internal variabil-
ity of the Earth system, technological advances in
computing power have greatly improved the abil-
ity to make model-based estimates. In 1990, only
a few institutions had the resources to build, main-
tain and run GCMs capable of examining long-term
changes, and they generally ran single model real-
isations. By contrast, today about 20 institutions
maintain large-scale climate models, and ensembles of
runs to characterize climate system variability are the
norm.

Hence, there now exists a larger set of obser-
vational and model results, and these exhibit a
degree of agreement, even in the tropics, where
controversy has been greatest (Figures 7 and 8).
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FIGURE 9 | Smoothed global-mean temperature anomalies for 1958–2009 based on radiosonde and MSU datasets for two layers (top MT;
bottom LT). In each panel, the bottom trace is the average of five radiosonde datasets (HadAT, RATPAC, IUK, RAOBCORE, and RICH), and above are
differences for individual datasets. Modified from State of the Climate in 2008194 and courtesy of Carl Mears, Remote Sensing Systems.

Supporting this broad perspective are important spe-
cific findings. Multiple lines of evidence suggest that
many radiosonde datasets suffer from a bias toward
excessive stratospheric cooling and insufficient tropo-
spheric warming59,114,120,165,166,169 and that this bias
is largest in the tropics,119,123 where the separation
between the models and some of the radiosonde
observations was largest. Further, independent
wind measurements,169,171 physically-based argu-
ments involving model-observational comparisons on
short and long time scales,25,162 and explicit removal
of stratospheric cooling effects from satellite tropical
tropospheric trend estimates10 argue in favor of the
consistency between modeled and observed trends.

Overall, there is now no longer reasonable evi-
dence of a fundamental disagreement between models
and observations with regard to the vertical struc-
ture of temperature change from the surface through

the troposphere.2,191 This is mainly due to a much
better understanding of the real level of uncer-
tainty in estimates of past changes and expectations
from climate models. Ironically, elucidation of the
true (large) degree of uncertainty in actual trends
from observations and expected trends from mod-
els has led to greater confidence that they are not
inconsistent.

CONCLUDING REMARKS

There is an old saying that a person with one watch
always knows what time it is, but with two watches
one is never sure. The controversy over surface and
tropospheric temperature trends started in 1990 when
the first satellite upper air ‘watch’ was produced
and it was naı̈vely assumed that it told the correct
time. Over the subsequent years, with the advent
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FIGURE 10 | Evolution of estimates of observed
trends in global-mean MT and surface temperatures
during the satellite era (since 1979), based on
satellite (blue), radiosonde (red) and land/SST
(green) observations. Symbols show trends for 1979
to the year plotted, as reported in the literature,
except for 1979–2008 trends which were calculated
for this study (by Carl Mears or current authors).
Blue line shows trends from the September 2009
version of UAH for each year. Differences between
this line and the UAH published estimates (blue
circles) illustrate the degree of change in the
different versions of this dataset.
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of not just two but multiple watches from different
‘manufacturers’ and using two distinct ‘technologies’,
a more accurate measure of the structural uncertainty
inherent in estimating what the ‘time’ truly is has
emerged.

The state of the observational and model sci-
ence has progressed considerably since 1990. The
uncertainty of both models and observations is cur-
rently wide enough, and the agreement in trends
close enough, to support a finding of no fundamental
discrepancy between the observations and model esti-
mates throughout the tropospheric column. However,
the controversy will undoubtedly continue because
some estimates of tropospheric warming since 1979
are less than estimates of surface warming, or fall out-
side of the range of analogous model estimates (e.g.,
Figure 8).

There are several key lessons for the future:

1. No matter how august the responsible research
group, one version of a dataset cannot give a
measure of the structural uncertainty inherent
in the information.

2. A full measure of both observational uncertainty
and model uncertainty must be taken into
consideration when assessing whether there
is agreement or disagreement between theory
(as represented by models) and reality (as
represented by observations).

3. In addition to better routine observa-
tions, underpinning reference observations are
required to allow analysts to calibrate the data
and unambiguously extract the true climate sig-
nal from the inevitable nonclimatic influences
inherent in the routine observations.195

ANNOTATED LIST OF ACRONYMS
∗G—layer for MSU observations derived by arith-

metically removing the stratospheric influence on
mid-tropospheric (MT) observations.

AMSU—Advanced Microwave Sounding Unit.
CARDS—Comprehensive Aerological Reference

Dataset.
CCSP—U.S. Climate Change Science Program.
CO2—carbon dioxide.
ECMWF—European Centre for Medium-Range

Weather Forecasts.
ENSO—El Niño – Southern Oscillation.
GCM—general circulation model, also. sometimes

global climate model
HadAT—Hadley Centre Atmospheric Temperatures,

an adjusted radiosonde dataset.
HadCRUT3—Surface temperature dataset jointly

prepared by the Hadley Centre and the Climatic
Research Unit.

HadRT—Hadley Centre Radiosonde Temperature, an
adjusted radiosonde dataset.

IGRA—NOAA NCDC Integrated Global Radiosonde
Archive.

IPCC—Intergovernmental Panel on Climate Change.
IUK—Iterative Universal Kriging, a method to create

an adjusted radiosonde dataset.
LECT—Local equatorial crossing time, at which a

satellite passes overhead at the equator.
LKS—Lanzante, Klein, Seidel. An adjusted radiosonde

dataset.
LS—Lower stratosphere. A broad layer sensed by

Channel 4 of the MSU.
LT—Lower troposphere. A broad layer characterized

by artificially combining Channel 2 measure-
ments of the MSU.
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MSU—Microwave Sounding Unit.
MT—Middle troposphere.
NCDC—NOAA’s National Climatic Data Center.
NOAA—U.S. National Oceanic and Atmospheric

Administration.
NRC—U.S. National Research Council.
RAOBCORE—RAdiosonde OBservation COrrec-

tion using REanalyses, an adjusted radiosonde
dataset.

RATPAC—Radiosonde Atmospheric Temperature
Products for Climate, an adjusted radiosonde
dataset.

RICH—Radiosonde Innovation Composite Homoge-
nization, an adjusted radiosonde dataset.

RIHMI—All-Russian Research Institute of Hydrom-
eteorological Information, developer of
radiosonde data products.

RSS—Remote Sensing Systems, developer of a version
of MSU data products.

SCEP—Study of Critical Environmental Problems, a
1970 assessment report.

SST—Sea Surface Temperature.
UAH—University of Alabama in Huntsville, developer

of a version of MSU data products.
UMd—University of Maryland.
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