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SYMMETRIC BILINEAR FORMS AND VERTICES IN

CHARACTERISTIC 2

JOHN C. MURRAY

In memory of J. A. Green

Abstract. Let G be a finite group and let k be an algebraically closed field
of characteristic 2. Suppose that M is an indecomposable kG-module which
affords a non-degenerate G-invariant symmetric bilinear form. We assign to
M a collection of 2-subgroups of G called its symmetric vertices, each of which
contains a Green vertex of M with index at most 2. If M is irreducible then
its symmetric vertices are uniquely determined, up to G-conjugacy.

If B is the real 2-block of G containing M , we show that each symmetric
vertex of M is contained in an extended defect group of B. Moreover, we
characterise the extended defect groups in terms of symmetric vertices.

In order to prove these results, we develop the theory of involutary G-
algebras. This allows us to translate questions about symmetric kG-modules
into questions about projective modules of quadratic type.

1. Introduction and statement of main results

LetG be a finite group and let k be an algebraically closed field of characteristic 2.
By a G-form on a kG-module M we mean a non-degenerate G-invariant symmetric
or symplectic bilinear form B : M × M → k. We then refer to (M,B) as a
symmetric or symplectic kG-module and say that M has symmetric or symplectic
type. We say that M has quadratic type if it affords a symplectic G-form that is
the polarization of a G-invariant quadratic form. Note that each symplectic form
is symmetric, as char(k) = 2, and each indecomposable kG-module of symmetric
(or symplectic) type belongs to a real 2-block of G as it is self-dual.

W. Willems noted that the Krull-Schmidt theorem fails for symmetric kG-modules
[30, 3.13]. This paper is our attempt to understand induction and restriction of
symmetric modules in the absence of this fundamental tool. Our main idea is to use
the Puig correspondence theorem [28, 19.1] for involutary G-algebras [18] to reduce
the study of symmetric modules to symmetric projective modules. The latter can
be analysed using the methods of [8].

Recall that M is H-projective, for H ≤ G, if M is a component of an induced
module IndGH L, for some kH-module L. If M is indecomposable, a vertex of M is
a subgroup V of G which is minimal subject to M being V -projective. A V -source
of M is then a kV -module Z such that M is a component of IndGV Z. J. A. Green
[10] proved that V is unique up to G-conjugacy, and Z up to NG(V )-conjugacy.
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2 JOHN C. MURRAY

We extend the notion of H-projectivity to symmetric modules, saying that
(M,B) or B is H-projective if (M,B) is a component of an induced symmetric

module IndGH(L,BL), for some symmetric kH-module (L,BL). Here IndGH(L,BL)

is IndGH L endowed with the standard induced G-form BGL . We say that M is
symmetrically H-projective if it affords a H-projective symmetric form. If M is
indecomposable we define a symmetric vertex of M to be a subgroup T of G that
is minimal subject to M being symmetrically T -projective.

The standard proof of the uniqueness of Green-vertices uses Mackey’s formula for
the restriction of induced modules and the Krull-Schmidt theorem. An alternative
uses Mackey’s formula for products of relative traces in endomorphism rings. Both
approaches fail for symmetric vertices, the latter because the product of two self-
adjoint endomorphisms is not self-adjoint. Indeed, it is not hard to find a module
which has two conjugacy classes of symmetric vertices:

Example 1.1. The dihedral group D12 has two subgroups H1 and H2 that are
isomorphic to S3. Let Ti be a Sylow 2-subgroup of Hi and let Mi be the unique
non-trivial irreducible kHi-module, for i = 1, 2. Then IndD12

H1
M1 = IndD12

H2
M2 is

a projective indecomposable kD12-module P . It is easy to see that T1 and T2 are
symmetric vertices of P , but T1 is not conjugate to T2 in D12.

On the other hand, symmetric vertices are closely related to Green vertices:

Theorem 1.2. Let M be an indecomposable kG-module which has symmetric type
and let T be a symmetric vertex of M . Then T contains a Green vertex V of M
and [T : V ] ≤ 2. More precisely, exactly one of the following is true:

(i) M has a G-form which is non-degenerate on a component of ResGV M that
is a source of M . Then T = V and M is in the principal 2-block of G.

(ii) The sources of M are self-dual but each G-form on M is degenerate on any

component of ResGV M that is a source of M . Then [T : V ] = 2.
(iii) The sources of M are not self-dual. Then [T : V ] = 2.

In particular the symmetric vertices of an indecomposable kG-module are 2-
subgroups of G. As regards proofs, we show that [T : V ] ≤ 2 in Lemma 4.6, and
treat (i) in Proposition 5.13 and Corollary 5.14, (ii) in Proposition 5.15 and (iii) in
Proposition 5.16. We give examples of all three cases in Section 5.8.

A given indecomposable module can have infinitely many non-isometric forms.
Moreover a generic form on a module need not be projective relative to any sym-
metric vertex of the module. However the forms induced from a symmetric vertex
have the following property:

Theorem 1.3. Let M be an indecomposable kG-module which has symmetric type,
let T be a symmetric vertex of M and let B be a T -projective G-form on M . Then
B is H-projective, for H ≤ G, if and only if T ≤G H.

In particular if M has a unique form, up to isometry, then it has a unique
symmetric vertex, up to G-conjugacy. We prove this theorem in Lemma 5.17. In
Example 1.1, each T1-projective form on P is not T2-projective, and vice-versa.

The trivial kG-module is of symmetric type and its symmetric vertices are just
the Sylow 2-subgroups of G. P. Fong [4] noted that each non-trivial self-dual irre-
ducible kG-module has a unique symmetric G-form, up to scalars, and this form is
symplectic. So Theorem 1.3 implies:
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Theorem 1.4. The symmetric vertices of a self-dual irreducible kG-module are
uniquely determined up to G-conjugacy.

We now discuss applications to real 2-blocks. In fact this paper was motivated
by our attempt to find an analogue of the extended defect group of a real 2-block
for self-dual indecomposable kG-modules.

Recall that kG is a k(G ×G)-module. Let B be an indecomposable component
of this module. Then B is a block of kG, or a 2-block of G. R. Brauer defined a
defect group of B to be a Sylow 2-subgroup D of the centralizer of a certain element
of G. J. A. Green showed that the diagonal subgroup ∆D ≤ G ×G is a vertex of
B, as k(G×G)-module.

Now g → g−1, for g ∈ G, extends to an involutary k-algebra anti-automorphism
o of kG called the contragredient map. Assume that B is invariant under o. Then
B is a real 2-block of G. R. Gow defined an extended defect group of B to be a
Sylow 2-subgroup E of the extended centralizer of a certain real element of G [6].
If B is the principal block E = D is a Sylow 2-subgroup of G. Otherwise D ≤ E
and [E : D] = 2.

In [21] we used E to determine a vertex of B, regarded as a module for the wreath
product G ≀C2 of G with a cyclic group of order 2. Now let B1 be the G×G-form
on kG with respect to which the elements of G form an orthonormal basis.

Theorem 1.5. Let B be a real 2-block of G, with extended defect group E. Then

(i) Each symmetric vertex of an indecomposable B-module is G-conjugate to a
subgroup of E.

(ii) Some self-dual irreducible B-module has symmetric vertex E.
(iii) The restriction of B1 to B is non-degenerate and ∆E-projective.

So ∆E is a symmetric vertex of B, regarded as a G×G-module.

We prove (i) in Lemma 5.19, (ii) in Corollary 5.20 and (iii) in Lemma 5.21. Note
that (i) and (ii) give a new proof of Gow’s result [6, 2.2] that the extended defect
groups of a real 2-block of G are uniquely determined up to G-conjugacy. However
we do not know if all symmetric vertices of B are G×G-conjugate to ∆E.

Regarding the rest of the paper, we give examples of the failure of the Krull-
Schmidt Theorem for symmetric kG-modules in 2.1. The rest of Section 2 contains
basic results on bilinear forms and involutary k-algebras. Lemma 2.3 is a lifting
result for self-adjoint idempotents which is a mild generalization of [18, 1.4]. We
shall use it extensively in the rest of the paper.

We consider adjoints, endomorphisms and bilinear forms in Section 3. Lemma
3.4 gives a bijection between G-endomorphisms and perfect G-pairings on pairs
of submodules. Lemma 3.5 shows that self adjoint idempotents correspond to or-
thogonal direct summands. In Lemma 3.8 we give a new proof of [9, Proposition]
on decompositions of symmetric modules. Finally Lemma 3.9 shows that in the
presence of a G-involution each projective representation lifts to a representation.

In Section 4 we undertake a detailed exploration of form induction. This notion
has appeared in many places, for example [9], [25] and [26]. D. Higman [13] provided
a criterion for H-projectivity using the relative trace map. We define the notion
of H-projectivity for symmetric forms in 4.1 and prove a symmetric version of
Higman’s Criterion in Lemma 4.3.

The deepest results of this paper are contained in Section 5. In 5.1 we consider
symmetric bilinear forms on projective kG-modules. These can be studied in some
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detail because of previous work such as [8] and [22]. For example each projective
indecomposable module which has symplectic type is of quadratic type. We give a
new criterion for this to occur in Proposition 5.8, simplified here as:

Theorem 1.6. Let M be a non-trivial self-dual irreducible kG-module and let B
be a symplectic G-form on M . Then P (M) has quadratic type if and only if there
is an involution t ∈ G such that B(tm,m) 6= 0, for some m ∈M .

We interpret this result as follows. Suppose that P (M) is not of quadratic type
and let t ∈ G be an involution. Then the image of t in E(M) is an alternate linear
transformation, in the terminology of [7]. Equivalently M = M1+̇M2, where M1

and M2 are isomorphic k〈t〉-modules that are totally isotropic with respect to B.
We have already indicated that the proof of Theorem 1.2 is scattered among

Sections 4.3, 5.3, 5.4, and 5.5, and proofs of Theorems 1.3 and 1.4 are given in
Section 5.6. We would like to highlight the following version of Proposition 5.12:

Theorem 1.7. Let V be a 2-subgroup of G and let Z be an indecomposable kV -
module with vertex V which is of symmetric type. Then among the indecomposable
components of IndGV Z which have vertex V , there is a distinguished kG-module M
characterised by any one of:

(a) M has multiplicity one as a component of IndGV Z.

(b) M has odd multiplicity as a component of IndGV Z.

(c) Z is a B-component of ResGV M , for some G-form B on M .

(d) Each V -projective form on IndGV Z is non-degenerate on M .

If Z is the trivial kV -module, then M is just the Scott-module with vertex V .
So this theorem extends the notion of a Scott-module from permutation modules
to a much larger class of modules in characteristic 2. Like a Scott module, M will
belong to the principal 2-block of G, but unlike a Scott module, M need not have
a trivial submodule nor a trivial quotient module.

Unless stated otherwise, k is an algebraically closed field of characteristic 2. We
relax the hypotheses on k in some sections, as will be indicated. Everywhere G is
a finite group of even order. All vector spaces and algebras are finite dimensional
and all kG-modules are left kG-modules. If M is a k-vector space then E(M) is its
endomorphism ring, and if M is a kG-module then P (M) is its projective cover.

2. Generalities

Throughout this section k is a field and M is a k-vector space.

2.1. Failure of the Krull-Schmidt theorem. This short subsection demon-
strates one of the difficulties we face when dealing with symmetric bilinear forms in
characteristic 2: certainly each symmetric kG-module decomposes as an orthogonal
sum of indecomposables. However the symmetric modules occurring in such a sum
are not uniquely determined up to isometry. In order to get to the point quickly,
we defer defining all terms until later in the paper.

If char(k) 6= 2, R. Gow observed that each self-dual indecomposable kG-module
has either symmetric or symplectic type. In [30, 3.5] W. Willems showed that such
a module has a unique symmetric or symplectic form, up to isometry. Moreover he
proved an analogue of the Krull-Schmidt theorem in [30, 3.11]: the decomposition
of a symmetric or symplectic kG-module into orthogonal indecomposables is unique
up to isometry.
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For the rest of 2.1 we suppose that char(k) = 2. Then ifM is an indecomposable
kG-module it is easy to verify that its paired module (M∗ ⊕M,P ) (defined in 3.2
below) is orthogonally indecomposable. We use this to construct an example that
shows that the Krull-Schmidt theorem fails for symmetric kG-modules:

Example 2.1. Let M be an indecomposable kG-module and let B be a G-form on
M . Then the diagonal submodule of (M,B) ⊥ (M,B) ⊥ (M,B) is isomorphic to
(M,B) and its orthogonal complement is isomorphic to (M∗ ⊕M,P ). So

(M,B) ⊥ (M,B) ⊥ (M,B) ∼= (M,B) ⊥ (M∗ ⊕M,P ),

yet even the number of indecomposable components is different on both sides.

We do not give proofs of these assertions, except to note that the two decom-
positions exist when G is trivial and M ∼= k. The general case then follows easily
from Lemma 2.3 applied in the context of Lemma 3.8.

Now let B1 be the standard G-form on the regular module kG. For x ∈ kG,
set Bx(y, z) := B1(yx, z), for all y, z ∈ kG. Then Bx is symplectic if and only if
B1(x, 1) = 0, and non-degenerate if and only if B1(x, x) 6= 0k. See Section 5.1 for
details. We use these facts in our second example:

Example 2.2. [30, 3.13] Let V4 = {1, r, s, t} be the Klein 4-group, and let M be
the regular kV4-module. Consider the symplectic kV4-module (M,Br) ⊥ (M,Bs).
Then for each α, β ∈ k with α 6= β we have

(M,Br) ⊥ (M,Bs) = (M,Bαr+βs) ⊥ (M,Bβr+αs).

But for units x, y ∈ kV4, (M,Bx) ∼= (M,By) if and only if y = λx for some λ ∈ k×.
So (M,Br) ⊥ (M,Bs) has an infinite number of orthogonal decompositions, no two
of which have a common indecomposable component, even up to isometry.

2.2. Involutary algebras and idempotent lifting. Let A be a k-algebra such
that A/J(A) is split semi-simple. An involution on A is a k-linear automorphism
a→ aτ of A such that τ2 = idA and (ab)τ = bτaτ for all a, b ∈ A. Note in particular
that τ fixes each scalar multiple of 1A. Following Landrock and Manz [18] we call
(A, τ) an involutary k-algebra.

Recall that A is a G-algebra if there is a homomorphism G → Aut(A), written
a→ ga for g ∈ G and a ∈ A. If in addition τ is an involution on A which commutes
with the G-action, we call (A, τ) an involutary G-algebra. If H ≤ G, we use AH to
denote the subalgebra of H-fixed points in A.

We prove a mild generalization of an idempotent lifting result [18, Lemma 1.4].
This will be used frequently, often without explicit reference, later in the paper.
If I is a 2-sided ideal of A, set A = A/I and a = a + I in A. This notation is
ambiguous, but should be clear from the context.

Lemma 2.3. Let (A, τ) be an involutary k-algebra, let I be a τ-invariant 2-sided
ideal of A and let a ∈ A\I.

(i) If a is a primitive τ-invariant idempotent in A, then a is a primitive τ-
invariant idempotent in A/I.

(ii) If a is a τ-invariant idempotent in A then there is a τ-invariant idempotent
e ∈ aAaτ with e = a and e = p(aaτ ) for some polynomial p with p(0) = 0.

(iii) If a is a τ-invariant primitive idempotent in A, then there is a τ-invariant
primitive idempotent f in A such that f = a.
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Proof. Note that (A, τ) is an involutary k-algebra, via u τ := uτ , for all u ∈ A.
Assume the hypothesis (i). Then [15, (2.3)] implies that a is a primitive idem-

potent in A/I, and it is clear that aτ = a.
For (ii), we may assume that 1 and a are linearly independent in A. Set b = aaτ .

Then bτ = b and b = a aτ = a. We apply idempotent lifting [15, (3.2)] to the
k-algebra k[b] modulo its ideal k[b] ∩ I. So there is an idempotent e ∈ k[b] such
that e = b. Then e is τ -invariant as b is τ -invariant and k[b] is commutative. Write
e = p(b), where p ∈ k[x]. Then e = p(0)1 + (p(1)−p(0))a. So p(0) = 0.

Finally, assume (iii). Then by [15, (3.10)] there is a primitive idempotent c ∈ A
such that c = a. Applying (ii) to c, there is a τ -invariant idempotent f ∈ cAcτ

with f = c = a. Then f is primitive in A as cucτ → cucτc defines a k-algebra
isomorphism of cAcτ with the local algebra cAc. �

We establish notation for points and multiplicity modules. Let A× be the group
of multiplicative units in A. A point of A is an A×-conjugacy class ǫ of primitive
idempotents of A. There is a unique maximal 2-sided ideal Mǫ of A which does not
contain any idempotent in ǫ. The multiplicity module of ǫ is the unique irreducible
A-module Pǫ annihilated by Mǫ and the multiplicity algebra of ǫ is the simple
quotient algebra A/Mǫ. Notice that A/Mǫ is isomorphic to the endomorphism ring
E(Pǫ) of Pǫ. We identify the projection πǫ : A→ A/Mǫ with a map A→ E(Pǫ).

Now ǫτ is also a point of A and Mǫ ∩Mǫτ is a τ -invariant ideal of A. Suppose
that ǫτ 6= ǫ. Then A/Mǫ ∩Mǫτ

∼= A/Mǫ ×A/Mǫτ is a semi-simple k-algebra with
involution τ interchanging the two simple components. We identify the projection
πǫ,ǫτ = πǫ × πǫτ with a map A→ E(Pǫ)× E(Pǫτ ).

2.3. Symmetric and symplectic forms. A bilinear form on M is a map B :
M ×M → k which is linear in each variable. So m→ B(m,−) and m→ B(−,m)
are k-linear maps from M to its linear dual M∗ = Homk(M,k) and B is non-
degenerate if and only if both maps are k-isomorphisms. Then B is symmetric if
B(m1,m2) = B(m2,m1) and symplectic if B(m1,m1) = 0 for all m1,m2 ∈ M . A
subspace M1 of M is totally isotropic if B(m1,m2) = 0 for all m1,m2 ∈ M1. The
space of bilinear forms on M can be naturally identified with M∗ ⊗M∗.

Suppose that B is non-degenerate. Then its adjoint is the k-algebra anti-
automorphism f → fσ, for f ∈ E(M) defined by

B(m1, fm2) = B(fσm1,m2), for all m1,m2 ∈M .

So B is symmetric if and only if σ is an involution on E(M), in which case (E(M), σ)
is an involutary k-algebra and we call (M,B) a symmetric or symplectic k-space.

An isometry is a k-linear map between symmetric or symplectic spaces which
preserves the forms. An isometry is injective, but not necessarily surjective. Two
symmetric or symplectic spaces are isomorphic if there is a surjective isometry
between them. Two symmetric forms are isometric if the corresponding symmetric
spaces are isomorphic. For example, B is isometric to λ2B, for all λ ∈ k×.

If B is symplectic, then it is alternating, meaning B(m,m′) = −B(m′,m). In-
deed alternating is the same as symplectic when char(k) 6= 2. But when char(k) = 2
alternating is the same as symmetric. So each symplectic form is symmetric, but
there are symmetric forms with are not symplectic. For this reason we will not use
the term alternating bilinear form.
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Consider when k is algebraically closed and of characteristic 2. There is no
standard name for a symmetric bilinear form which is not symplectic. If B is such
a form, and B is non-degenerate, then M has an orthonormal basis with respect
to B. So we call B a diagonalizable form. If instead B is symplectic, M has a
symplectic basis with respect to B, and dim(M) is even. This discussion implies
that, up to isometry, each k-vector space has one diagonalizable form, and an
additional symplectic form, if its dimension is even.

Let GL(M,B) = {g ∈ GL(M) | B(gm1, gm2) = B(m1,m2), ∀m1,m2 ∈ M} be
the isometry group of a symmetric k-space (M,B). Symplectic forms are more
significant than diagonalizable forms. Using the methods of [12] it is not too hard
to show that if k is a perfect field of characteristic 2 and n = dim(M) then

(1) GL(M,B)∼=







Sp(n, k), if B is symplectic, n even,
Sp(n− 1, k), if B is diagonalizable, n odd,

kn−1 : Sp(n−2, k), if B is diagonalizable, n even.

Now suppose that M is a kG-module. Then B is G-invariant if B(gm1, gm2) =
B(m1,m2), for all g ∈ G. If in addition B is non-degenerate and symmetric or
symplectic, we say that B is a G-form on M . We also say that M has symmetric
or symplectic type. So (M,B) corresponds to a representation G→ GL(M,B).

Consider the case where B is a symplectic G-form onM . Then there is a dim(M)
space of quadratic forms on M which polarize to B. If one or more of these forms
is G-invariant, we say that M has quadratic type.

Recall that E(M) is a G-algebra, via gf(m) := gfg−1(m), form ∈M, f ∈ E(M)
and g ∈ G. If B is a G-form, σ inverts the image of each g ∈ G in E(M). So

(gf)σ = (gfg−1)σ = gfσg−1 = g(fσ), for all f ∈ E(M).

This implies that (E(M), σ) is an involutary G-algebra.
As the Krull-Schmidt theorem fails to hold, we need to be able to distinguish

between isomorphic submodules of M . A direct summand of M is a submodule
M1 of M such that M = M1 +M2 and M1 ∩M2 = 0, for some submodule M2 of
M . We express this by writing M = M1+̇M2. We say that a kG-module L is a
component of M , and write L |M , if L is isomorphic to a direct summand of M .

Now consider when B is a G-form on M . If M1 is a submodule of M , then its
orthogonal complement is the submoduleM⊥

1 := {m ∈M | B(M1,m) = 0}. SoB is
non-degenerate onM1 if and only ifM1∩M⊥

1 = 0. When this occursM =M1+̇M
⊥
1 .

Then we call M1 a B-direct summand of M and write M =M1 ⊥M⊥
1 .

We say that a symmetric kG-module (L,BL) is a component of (M,B), and
write (L,BL) | (M,B) if there is a kG-isometry (L,BL) → (M,B). Note that then
L is a component of M , as the image of an isometry is a direct summand of M .

The next result, which is well-known, implies that each indecomposable kG-
module which affords a diagonalizable form belongs to the principal 2-block of G.

Lemma 2.4. Let char(k) = 2 and suppose that M affords a G-form which is not
symplectic. Then M has a trivial submodule and a trivial quotient module.

Proof. We may assume that k is quadratically closed. Let B be a G-invariant
symmetric bilinear form on M which is not symplectic. Set q(m) =

√

B(m,m), for
m ∈ M . Then q :M → k is a non-zero kG-homomorphism. So M has a trivial
quotient module. Suppose that B is non-degenerate. Let η be the sum of the
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vectors in any orthonormal basis for M . Then q(m) = B(η,m), for all m ∈M . As
a consequence η spans a trivial submodule of M . �

We will turn the somewhat anomalous nature of diagonalizable G-forms to our
advantage in Section 5.

If char(k) = 0, each self-dual irreducible kG-module has symmetric or symplectic
type. The type is detected by the Frobenius-Schur indicator of the associated
ordinary irreducible character of G. This was generalised to char(k) 6= 2 by R. Gow.
He noted that in that case each self-dual indecomposable kG-module has either
symmetric or symplectic type. The problem of determining the type of a self-dual
irreducible kG-module M was solved independently by W. Willems [30, 3.11] and
J. G. Thompson [29]. The type is given by the Frobenius-Schur indicator of a
real ordinary irreducible character of G which occurs with odd multiplicity in the
principal indecomposable character of G corresponding to M .

When char(k) 6= 2, a symmetric form B can be conflated with the quadratic form
Q(m) := B(m,m), as B(m1,m2) =

1
2 (Q(m1 +m2) −Q(m1) − Q(m2)) is half the

polarization of Q. However when char(k) = 2, the polarization of a quadratic form
is symplectic, and there is a 1-parameter family of quadratic forms which polarize
to a given symplectic form. In particular a G-invariant symplectic form need not be
the polarization of aG-invariant quadratic form. It is an open problem to determine
whether a self-dual irreducible kG-module has quadratic type in characteristic 2.
The methods in this paper do not appear to have a bearing on this problem.

We note that when char(k) = 2, there are self-dual indecomposable kG-modules
which are neither of symmetric or symplectic type. The unique non-trivial projec-
tive indecomposable k(C3 ⋊ C4)-module is an example, as follows from [22, 1.3].

3. Adjoints

Throughout this section k is an algebraically closed field, M is a k-vector space,
B is a non-degenerate symmetric or symplectic bilinear form on M and σ is the
adjoint of B on E(M).

3.1. Bilinear forms. For each f ∈ E(M), define the bilinear form Bf on M as

(2) Bf (m1,m2) := B(fm1,m2), for all m1,m2 ∈M .

Then f → Bf established a non-canonical k-isomorphism E(M) ∼=M∗ ⊗kM∗ and

Bf is symmetric ⇐⇒ f = fσ,
Bf is symplectic ⇐⇒ f = f1 − fσ1 , for some f1 ∈ E(M),
Bf is non-degenerate ⇐⇒ f ∈ GL(M).

The adjoint of a non-degenerate symmetric or symplectic bilinear form is an
involution on E(M). Conversely, each involution on E(M) corresponds to a 1-
parameter family of such forms on M , as we now show:

Lemma 3.1. (i) Let τ be an involution on E(M). Then up to a non-zero scalar,
M has a unique non-degenerate symmetric or symplectic form whose adjoint is τ .
(ii) Let M =M1 ⊕M2 and let τ be an involution on E(M1)× E(M2) which inter-
changes E(M1) with E(M2). Then τ has a unique extension to an involution on
E(M). The corresponding forms on M are symplectic and totally isotropic on M1

and M2.
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Proof. The hypothesis (ii) implies that dim(M1) = dim(M2) = 1
2 dim(M). So in

case (ii) we can and do choose B so that B(mi,m
′
i) = 0, for all mi,m

′
i ∈ Mi, for

i = 1, 2. In particular B is symplectic.
Assume the hypothesis (i). Then τσ is a k-algebra automorphism of E(M). So

by the Skolem-Noether theorem there is g ∈ GL(M) such that f τσ = gfg−1, for
all f ∈ E(M). So f τ = g−σfσgσ. Then Bg is a non-degenerate symmetric form
whose adjoint is τ . Moreover g, and thus Bg, is determined up to a scalar.

Assume the hypothesis (ii). Let e1, e2 be idempotents in E(M) such that 1M =
e1+ e2, eiM =Mi and ker(ei) =M3−i. Then E(M1)×E(M2) embeds in E(M) as
e1E(M)e1 + e2E(M)e2. Now τσ maps each E(Mi) onto itself and hence restricts
to an automorphism on the semi-simple k-algebra E(M1) × E(M2). Again by the
Skolem-Noether theorem there exists g1 ∈ GL(M1), and g2 ∈ GL(M2) such that
(f1 + f2)

τσ = (g1f1g
−1
1 + g2f2g

−1
2 ), for all f1 ∈ E(M1) and f2 ∈ E(M2). Moreover

each of g1 and g2 is determined up to a scalar. Applying σ to both sides, we get
(f1 + f2)

τ = g−σ2 fσ2 g
σ
2 + g−σ1 fσ1 g

σ
1 . Then

f1 + f2 = ((f1 + f2)
τ )τ = g−σ2 g1f1g

−1
1 gσ2 + g−σ1 g2f2g

−1
2 gσ1 .

This holds for all f1 ∈ E(M1). So there is λ ∈ k× such that gσ2 = λg1. Thus
gσ1 = λ−1g2. Now replace g2 by λ−1g2. Then g

σ
2 = g1 and

(f1 + f2)
τ = g−1

1 fσ2 g1 + g−1
2 fσ1 g2, for all f1 ∈ E(M1), f2 ∈ E(M2).

Note that g1+g2 ∈ GL(M). Then Bg1+g2 is a symplectic form onM whose adjoint
extends τ to E(M). Moreover no other involution on E(M) extends τ . �

3.2. Endomorphisms. Assume now thatM is a kG-module and B is G-invariant.
We useEG(M) to denote the ring of kG-endomorphisms ofM . So EG(M) is a unital
subalgebra of E(M). The G-invariant bilinear forms on M are Bf for f ∈ EG(M),
where Bf is symmetric if and only if f = fσ. The following is very useful:

Lemma 3.2. Suppose that M is a non-degenerate indecomposable component of
(L1, B1) ⊥ · · · ⊥ (Ln, Bn), where each (Li, Bi) is a symmetric kG-module. Then
M is a non-degenerate component of some (Li, Bi).

Proof. By hypothesis there is an isometry α : (M,Bf ) → (L1, B1) ⊥ · · · ⊥ (Ln, Bn)
for some σ-invariant unit f ∈ EG(M). Now there are kG-maps αi :M → Li with

α(m) = α1(m) + · · ·+ αn(m), for all m ∈M .

Each (m1,m2) → Bi(αim1, αim2) is a G-invariant symmetric bilinear form on M .
So there are σ-invariant γi ∈ EG(M) such that

Bi(αim1, αim2) = Bγi(m1,m2).

Now γ1 + · · · + γn = f , as α is an isometry. But EG(M) is a local ring, as M is
indecomposable. So γj is a unit, for some j. Then Bγj is non-degenerate onM and
αj : (M,Bγj ) → (Lj , Bj) is a kG-isometry. �

Our next result should be well-known:

Lemma 3.3. Suppose that θ ∈ E(M). Then (θM)⊥ = ker(θσ). So B is non-
degenerate on θM if and only if θσ restricts to an isomorphism θM → θσM .
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Proof. The first statement holds because m ∈ (θM)⊥ ⇐⇒ B(θσm,m′) = 0, for
all m′ ∈ M . Then θM ∩ (θM)⊥ = 0 if and only if θσ is injective on θM . But
dim(θM) = dim(θσM). So θσ : θM → θσM is injective if and only if it is surjective.

�

Next recall that a pairing between two k-vector spaces L andM is a bilinear map
L×M → k. The pairing is perfect if ℓ→ B(ℓ,−) for ℓ ∈ L, induces a k-isomorphism
L→ M∗. The canonical example is the perfect pairing P : M∗ ×M → k given by
P (f,m) = f(m), for f ∈ M∗ and m ∈ M . Then P extends to a non-degenerate
symplectic bilinear form onM∗⊕M , also denoted by P , which is zero on restriction
to each of M∗ and M . We call (M∗ ⊕M,P ) the paired module on M .

Recall that M∗ is a kG-module via (gf)(m) := f(g−1m), for g ∈ G, f ∈ M∗

and m ∈ M . A perfect G-pairing between two kG-modules L and M is a perfect
pairing P for which P (gℓ, gm) = P (ℓ,m), for all ℓ ∈ L,m ∈ M and g ∈ G.
Equivalently ℓ → B(ℓ,−) for ℓ ∈ L, is a kG-module isomorphism L ∼= M∗. For
example P :M∗ ×M → k is a perfect G-pairing.

We now associate to each G-endomorphism of M a perfect G-pairing on a pair
of submodules of M . This construction is essential to our characterisation of pro-
jectivity of forms in Lemma 4.3.

Lemma 3.4. Given θ ∈ EG(M) define B̂θ : θM × θσM → k via

B̂θ(θm1, θ
σm2) = B(θm1,m2), for all m1,m2 ∈M .

Then B̂θ is a perfect G-pairing, and thus θσM ∼= (θM)∗ as kG-modules.
Conversely if P is a perfect G-pairing between submodules L1 and L2 of M then

there is a unique ψ ∈ EG(M) such that L1 = ψM,L2 = ψσM and P = B̂ψ.

Proof. We note that B̂θ is well-defined as B(θm1,m2) = B(m1, θ
σm2). Lemma 3.3

implies that B̂θ is a perfect G-pairing between θM and θσM .
Let P : L1 × L2 → k be a perfect G-pairing. Then for each m ∈ M there is

ψm ∈ L1 such that B(m, ℓ2) = P (ψm, ℓ2) for all ℓ2 ∈ L2. Check that ψ ∈ EG(M)
and ψM = L1. Likewise there is ψ′ ∈ EG(M) such that B(ℓ1,m) = P (ℓ1, ψ

′m) for
all ℓ1 ∈ L1. Now for all m1,m2 ∈M

B(m1, ψ
′m2) = P (ψm1, ψ

′m2) = B(ψm1,m2).

It follows that ψ′ = ψσ and P = B̂ψ . �

Note that θσ = θ if and only if θM = θσM and B̂θ is symmetric.

3.3. Idempotents. We continue with our assumption thatM is a kG-module and
B is G-invariant. Now if M = M1+̇ . . . +̇Mt as kG-modules, then the projections
onto the Mi are pairwise orthogonal idempotents in EG(M) which sum to 1M . In
the presence of the G-form B, we need to consider self-adjoint idempotents:

Lemma 3.5 (Orthogonal Projection). Let L be a kG-submodule of M . Then B
is non-degenerate on L if and only if L = eM , for some σ-invariant idempotent
e ∈ E(M). If e exists it is unique, G-invariant and ker(e) = L⊥.

Proof. Suppose that e exists. Then eσM = eσeM = eM . So B is non-degenerate
on L, by Lemma 3.3. Moreover ker(e) = (eσM)⊥ = L⊥. This ensures that e is
unique, and this forces e ∈ EG(M).
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Conversely, suppose that L∩L⊥ = 0. Let e be projection onto L with kernel L⊥.
Then ker(eσ) = (eM)⊥ = L⊥ and eσM = ker(e)⊥ = L. So eσ is projection onto L
with kernel L⊥. We deduce that eσ = e. �

Each G-invariant form on a direct summand of M extends to M , as we show:

Lemma 3.6. Let e ∈ EG(M) be idempotent. Then each G-invariant form on eM
is the restriction of a G-invariant form Bθ on M , for some θ ∈ eσEG(M)e.

Proof. Using Lemma 3.4, eσE(M)e = Hom(eM, eσM) ∼= (eM)∗ ⊗ (eM)∗. Also Bφ
and Beσφe have the same restrictions to eM , for all φ ∈ EG(M).

Let B̂ be a G-invariant bilinear form on eM . Then B̂(e , e ) defines a G-

invariant bilinear form on M . So there exists θ ∈ eσEG(M)e with B̂(em1, em2) =
Bθ(m1,m2), for all m1,m2 ∈M . �

Our next result is required in Proposition 5.16. The proof uses ideas from [8]:

Lemma 3.7. Let A be a semi-simple subalgebra of E(M) and let f ∈ A ∩ Aσ be
an idempotent such that fM is a submodule of M and B is non-degenerate on fM .
Let e be orthogonal projection onto fM . Then e ∈ EG(M) ∩ A.
Proof. Lemma 3.3 implies that fσfM = fσM . So by the Artin-Wedderburn The-
orem and the Jacobson Density Lemma fσ = fσfa for some a ∈ A. Set e = fafσ.
Then e ∈ A, by hypothesis on f and

eσe = (faσfσ)(fafσ) = faσ(fσfa)fσ = faσ(fσ)2 = eσ.

So e = (eσe)σ = (eσe) = eσ. Then e2 = eσe = e. Moreover e ∈ A.
Now eM = fM , as e = fe and f = ff = f(aσfσf) = (faσfσ)f = ef . As e is

orthogonal projection onto fM , Lemma 3.5 implies that e ∈ EG(M). �

Finally we prove [9, Proposition] using methods which will be developed later:

Lemma 3.8. Suppose that M =M1+̇ . . . +̇Mt where each Mi is an indecomposable
kG-module. Then for each i

(i) B is non-degenerate on Mi or
(ii) B is non-degenerate on Mi+̇Mj for some j 6= i with Mj

∼=M∗
i .

Proof. Write 1M = e1 + . . . et where e1, . . . , et are pairwise orthogonal primitive
idempotents in EG(M) with ejM = Mj. Let ǫ be the point of EG(M) containing
ei. We use for images in E(Pǫ).

Suppose first that Mi
∼= M∗

i . Then ǫσ = ǫ, using Lemma 3.4. So (E(Pǫ), σ) is
an involutary k-algebra. Lemma 3.1 implies that Pǫ affords a symmetric form Bǫ
with adjoint σ. For all j with ej ∈ ǫ, choose sj ∈ ejPǫ with sj 6= 0. Then the sj
form a basis of Pǫ.

Say Bǫ(si, si) 6= 0. Then Bǫ is non-degenerate on ksi. Let xi ∈ eiE(Pǫ) be
orthogonal projection onto ksi, as given by Lemma 3.5. By Lemma 2.3, there is a
σ-invariant idempotent fi ∈ eiEG(M)eσi such that fi = xi. Then fiM ⊆ Mi and
Mi is indecomposable. So fiM = Mi. It then follows from Lemma 3.5 that B is
non-degenerate on Mi.

Now say Bǫ(si, si) = 0. As Bǫ is non-degenerate, we may choose j 6= i such
that Bǫ(si, sj) 6= 0. So Bǫ is non-degenerate on ksi + ksj . Let xij ∈ ei + ejE(Pǫ)
be orthogonal projection onto ksi + ksj, as given by Lemma 3.5. By Lemma 2.3,

there is a σ-invariant idempotent fij ∈ (ei + ej)EG(M) such that fij = xij . Then
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fijM =Mi +Mj, as fijM ⊆ Mi + Mj but fij is not primitive. So B is non-
degenerate on Mi +Mj, by Lemma 3.5.

Finally, suppose that Mi 6∼= M∗
i . Then ǫσ 6= ǫ and (E(Pǫ) × E(Pǫσ ), σ) is an

involutary k-algebra satisfying the hypothesis of Lemma 3.1(ii). Let Bǫ,ǫσ be the
corresponding symplectic form on Pǫ ⊕ Pǫσ . We proceed as above; there exists j
such that ej ∈ ǫσ and Bǫ,ǫσ is non-degenerate on πǫ,ǫσ(ei + ej)(Pǫ ⊕ Pǫσ ). Then
there is a σ-invariant idempotent fij ∈ (ei+ej)EG(M) such that fijM =Mi+Mj.
So B is non-degenerate on Mi +Mj, and Mj

∼=M∗
i . �

3.4. Projective Representations. For the rest of Section 3, k has characteristic
2 and M is a k-vector space. The map f → gfg−1, for g ∈ GL(M), is a k-algebra
automorphism of E(M). Using this, we can identify PGL(M) = GL(M)/k×1M
with Aut(E(M)). As σ is a k-algebra anti-automorphism of E(M), it acts on
PGL(M). We set PGL(M,σ) as the centralizer of σ in PGL(M).

Lemma 3.9. Each projective representation θ : G→ PGL(M,σ) has a unique lift
to a group representation G→ GL(M,B).

Proof. Let ρ : GL(M) → PGL(M) be the projection, with kernel k×1M . If g ∈
GL(M,B), then ρ(g) ∈ PGL(M,σ). Suppose that λ1M ∈ GL(M,B), with λ ∈ k×.
Then (λ1M )σ = λ−11M . But (λ1M )σ = λ1M , as σ is k-linear. So λ = λ−1. As
char(k) = 2, it follows that λ = 1k. This shows that ρ restricts to an injective
map ρ̂ : GL(M,B) → PGL(M,σ). We claim that ρ̂ is surjective. To see this, let
a ∈ PGL(M,σ). Then a = ρ(g), for some g ∈ GL(M). Now

g−σfgσ = (afσ)σ = af = gfg−1, for all f ∈ E(M).

So gσ = λg−1 for some λ ∈ k×, by the Skolem-Noether theorem. Then
√
λ−1g ∈

GL(M,B) and ρ̂(
√
λ−1g) = a. Our claim follows from this.

For uniqueness, suppose that X and Y are representations G → GL(M,B)
lifting θ. Then there is a function γ : G→ k× such that Y (g) = γ(g)X(g), for all
g ∈ G. Applying σ to both sides we get Y (g−1) = γ(g)X(g−1). But Y (g−1) =
Y (g)−1 = γ(g)−1X(g−1). Comparing, we see that γ(g)−1 = γ(g). So γ(g) = 1k
and X(g) = Y (g), for all g ∈ G. �

We recall some results from [22, Appendix A]. Suppose that e1 and e2 are orthog-
onal idempotents in E(M) such that 1M = e1+ e2 and eσ1 = e2. Set Mi = eiM . So
M =M1⊕M2 and B is zero on each ofM1 andM2 and is symplectic onM . The sta-
bilizer of {M1,M2} in GL(M) is the group GL(M1,M2) = GL(M1)×GL(M2) : 〈s〉.
Here we can and do assume that s is an involution which interchangesM1 and M2.

Let PGL(M1,M2) ∼= PGL(M1) ≀ S2 be the group of automorphisms of the
semi-simple k-algebra E(M1) × E(M2). Now GL(M1,M2) acts by conjugation
on E(M1) × E(M2) and the resulting map φ : GL(M1,M2) → PGL(M1,M2) is
surjective. Moreover ker(φ) = {ae1 + be2 | a, b ∈ k×} ∼= k× × k×.

Set Sp(M1,M2) = GL(M,B) ∩GL(M1,M2). If τ is transposition then

Sp(M1,M2) = {(g, sg−1s) ∈ GL(M1)×GL(M2) | sgs = g−τ} : 〈s〉

Now let PGL(M1,M2, σ) be the centralizer of σ in PGL(M1,M2). Then φ restricts
to a surjective map θ : Sp(M1,M2) → PGL(M1,M2, σ). The kernel of θ is K =
{(a, a−1) | a ∈ k×}. So K ∼= k× and s inverts each element of K.
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Lemma 3.10. Each projective representation ρ : G→ PGL(M1,M2, σ) is realised
by a group representation χ : H → Sp(M1,M2) which arises from a commutative
diagram of finite groups with exact rows

1 −−−−→ O
inc−−−−→ H

ν−−−−→ G −−−−→ 1




y

η





y

χ





y

ρ

1 −−−−→ K
inc−−−−→ Sp(M1,M2)

θ−−−−→ PGL(M1,M2, σ) −−−−→ 1

Here O is a cyclic group of odd order, η is injective, [H :CH(O)]≤2 and all elements
of H\CH(O) invert O.

Proof. The pull-back diagram associated with ρ and θ is

1 −−−−→ K
inc−−−−→ Ĝ

ν−−−−→ G −−−−→ 1




y

=





y

χ





y

ρ

1 −−−−→ K
inc−−−−→ Sp(M1,M2)

θ−−−−→ PGL(M1,M2, σ) −−−−→ 1

Every element of G centralizes or inverts K. In this way K ∼= k× is a (possibly
non-trivial) ZG-module. Set γ(λ) = λ|G|, for all λ ∈ K. As k is algebraically
closed, γ is a surjective endomorphism of K. We have a short exact sequence of
abelian groups

1 −−−−→ O
η−−−−→ K

γ−−−−→ K −−−−→ 1.

Here O is the set of roots of x|G| − 1 in k. So O is a finite group. This induces a
long exact sequence in cohomology, including

. . . −−−−→ H2(G,O)
η∗−−−−→ H2(G,K)

γ∗−−−−→ H2(G,K) −−−−→ . . . .

Now γ∗ is the zero map, as multiplication by |G| annihilates H2(G,K). Let d ∈
H2(G,K) be the factor set associated with

1 −−−−→ K
inc−−−−→ Ĝ

ν−−−−→ G −−−−→ 1.

Then there exists c ∈ H2(G,O) mapping onto d. This gives us the commutative
diagram in the statement of the Lemma. �

We mention that Theorem A.5 in [22] wrongly claims (in the notation used here)
that H is a central extension of G. Now [22, 7.2] relies on Theorem A.5, but does
not require O ≤ Z(H). So 7.2 is still correct.

4. Induction and Bilinear Forms

Throughout this section M is a kG-module, B is a symmetric G-form on M and
σ is the adjoint of B on E(M). In many results we could take B to be symplectic.
We will require char(k) = 2 in part 4.3.



14 JOHN C. MURRAY

4.1. Induction and Mackey’s Formula. For H a subgroup of G the trace map
trGH : EH(M) → EG(M) is the k-linear map trGH(f) :=

∑

gf , for f ∈ EH(M), where
g ranges over a left transversal G/H to H in G. Its image is an ideal of EG(M),
denoted EGH(M). The σ-invariant elements in EH(M) form a subspace, but not an
ideal, of EH(M).

If L is a kH-module, the induced module IndGH L is a direct sum of the k-vector
spaces gL, as g ranges over G/H . Here gL = g ⊗ L is the kgH-module such that
ghg−1(g ⊗ ℓ) = g ⊗ hℓ, for all h ∈ H and ℓ ∈ L. Recall that M is said to be

H-projective if M | IndGH L, for some kH-module L.
Let BL be a symmetric H-form on L. The induced symmetric kG-module

IndGH(L,BL) is Ind
G
HL with the induced G-form BGL , where

BGL (g1 ⊗ ℓ1, g2 ⊗ ℓ2) =

{

BL(g
−1
2 g1ℓ1, ℓ2), if g1H = g2H .

0, if g1H 6= g2H .

Let gBL denote the restriction of BGL to gL. Then IndGH(L,BL) is the orthogonal
direct sum of the symmetric k-spaces (gL, gBL). It is clear that B

G
L is symplectic if

and only if BL is symplectic.
There is a version of Mackey’s formula [24, 3.1.9] for symmetric modules. How-

ever its usefulness is limited by the absence of the Krull-Schmidt theorem:

Lemma 4.1. Given K ≤ G, there is an isomorphism of symmetric kK-modules

ResGK IndGH(L,BL) ∼= ⊥
g∈K\G/H

IndKK∩gH Res
gH
K∩gH(gL, gBL).

Proof. Let g ∈ G. The assignment i → ig maps K/K ∩ gH to a set of representa-

tives for the left cosets of H in KgH and
∑

i∈K/K∩gH
igL ∼= IndKK/K∩gH

gL. This

induces an isomorphism
∑

i∈K/K∩gH(igL, igBL) ∼= IndKK/K∩gH(gL, gBL) of symmet-

ric kK-modules. �

4.2. Higman’s Criterion. Higman’s Criterion [24, 4.2.2] is the assertion that the
following are equivalent:

(1) M is H-projective.
(2) trGH(α) is a unit in EG(M), for some α ∈ EH(M).

(3) M | IndGH ResGHM .

We will generalise the equivalence (1) ⇐⇒ (2) to symmetric kG-modules. However,
the analogue of (3) is a strictly stronger statement.

Recall from Section 3.2 that {Bθ | θ ∈ EG(M)×, θσ = θ} give all non-degenerate
G-invariant symmetric bilinear forms on M . Here are some important definitions:

Definition 4.2. Let θ be a σ-invariant unit in EG(M). Then we say that

• θ is (H,σ)-projective if θ = trGH(α) for some α ∈ EH(M) with ασ = α.

• Bθ is H-projective if (M,Bθ) is a component of IndGH(L,BL) for some
symmetric kH-module (L,BL).

• M is symmetrically H-projective if it affords a non-degenerate G-invariant
symmetric bilinear form which is H-projective.

We note that if Bθ isH-projective, then it is projective relative to every subgroup
of G containing a G-conjugate of H .
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Lemma 4.3. Let θ be a σ-invariant unit in EG(M). Then θ is (H,σ)-projective if
and only if Bθ is H-projective. More precisely, if θ = trGH(α) for some σ-invariant

α ∈ EH(M), then there is a kG-isometry (M,Bθ) → IndGH(αM, B̂α).

Proof. Here B̂α is the H-form on αM defined in Lemma 3.4.
Suppose first that θ = trGH(α) for some σ-invariant α ∈ EH(M). Then 1 ⊗ α

can be regarded as a kH-homomorphismM → IndGH(αM). So φ = trGH(1⊗ α) is a

kG-homomorphism M → IndGH(αM). Now

B̂Gα (φm1, φm2) =
∑

g∈G/H

B̂α(αgm1, αgm2) =
∑

g∈G/H

B(αgm1, gm2)

= B(trGH(α)m1,m2) = Bθ(m1,m2).

So φ defines an isometry (M,Bθ) → IndGH(αM, B̂α). Thus Bθ is H-projective.
Now suppose thatBθ isH-projective. Then there is a kG-isometry φ : (M,Bθ) →

IndGH(L,B1) for some symmetric kH-module (L,B1). Let e ∈ EH(IndGH L) be the
orthogonal projection onto 1⊗ L. Now B1(eφ , eφ ) is a symmetric H-form on M .
So there exists α ∈ EH(M) such that ασ = α and

B1(eφm1, eφm2) = B(αm1,m2), for all m1,m2 ∈M .

As φ is an isometry, we have

Bθ(m1,m2) = BG1 (φm1, φm2) =
∑

g∈G/H

B1(eφgm1, eφgm2)

=
∑

g∈G/H

B(αgm1, gm2) = B(trGH(α)m1,m2).

So θ = trGH(α) is (H,σ)-projective. �

We now prove an analogue of Higman’s Criterion for symmetric modules:

Proposition 4.4. The following are equivalent:

(1) M is symmetrically H-projective.
(2) trGH(α) is a unit in EG(M), for some σ-invariant α ∈ EH(M).
(2)′ Bθ is H-projective for some σ-invariant unit θ ∈ EG(M).

Proof. (1) and (2)′ are equivalent from the definitions. Lemma 4.3 shows that (2)
and (2)′ are equivalent. �

Be aware that if (M,Bθ) is a component of IndGH ResGH(M,Bθ) then it does not

follow that it is a component of IndGK ResGK(M,Bθ) when H ≤ K ≤ G. So we
merely state the following analogue of condition (3) in Higman’s criterion:

Lemma 4.5. Let θ be a σ-invariant unit in EG(M). Then

(M,Bθ) | IndGH ResGH(M,Bθ)

if and only if trGH(αθασ) = θ, for some α ∈ EH(M).

4.3. Green and Symmetric Vertices. Now assume that M is indecomposable
and char(k) = 2. We prove the first statement of Theorem 1.2. The main technical
problem is that trace maps do not behave well with respect to adjoints. So Mackey’s
formula for the product of a pair of traces is not useful in our context. Instead we
cancel pairs of terms in triple products of traces.

Lemma 4.6. Each symmetric vertex of M contains a Green vertex of M with
index at most 2.
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Proof. Let T be a symmetric vertex of M and let V be a Green vertex of M which
is contained in T . There is nothing to prove if V = T . So assume that V 6= T .

By Higman’s criterion 1M = trGV (α), for some α ∈ EV (M). Now let θ be a
σ-invariant unit in EG(M) which is (T, σ)-projective. So θ = trGT (β) for some
σ-invariant β ∈ ET (M). Consider the triple product

θ = trGV (α)tr
G
T (β)tr

G
V (α

σ) =
∑

a,b∈G/V,c∈G/T

(aα)(cβ)(bασ).

Each G-orbit in G/V ×G/T ×G/V contains a 3-tuple of the form (aV, T, bV ).
We say that the orbit is:

• diagonal if aV = bV ,
• symmetric if aV 6= bV but the orbit contains (bV, T, aV ),
• antisymmetric if the orbit does not contain (bV, T, aV ).

We denote the collections of such orbits by Od,Os and Oa respectively.
The stabilizer of (aV, T, bV ) is aV ∩ bV ∩ T . So the orbit sum is

tr(a, b) := trGaV ∩bV ∩T (
aαβ(bασ)) ∈ EG(M).

Now tr(a, b)σ = tr(b, a). So θ is a sum, in EG(M), of σ-invariant terms

θ =
∑

Od

tr(a, a) +
∑

Os

tr(a, b) +
∑

Oa

(tr(a, b) + tr(b, a)).

Write tr(a, b) = λ1M + j, with λ ∈ k× and j ∈ J(EG(M)). Then for each
pair of anti-symmetric orbits tr(a, b) + tr(b, a) = j + jσ belongs to J(EG(M)).
Suppose that tr(a, a) is a unit in EG(M), for some diagonal orbit. Then Btr(a,a) is
a (aV ∩ T )-projective symmetric G-form on M . This is impossible, as aV ∩ T � T .

Now θ is a unit in the local ring EG(M). So we can choose a triple (aV, T, bV )
in a symmetric orbit such that tr(a, b) is a unit. We then replace V by a conjugate
so that a = 1, to simplify the notation. Then tr(1, b) is a unit and (V, T, bV ) is in
a symmetric G-orbit.

As (bV, T, V ) is G-conjugate to (V, T, bV ) there is t ∈ T with tV = bV and
tbV = V . So t ∈ NT (V ∩ bV ) and t2 ∈ V ∩ bV . Then V bV = V b−1V is a self-dual
double coset and [(V ∩ bV )〈t〉 : V ∩ bV ] = 2.

Set γ := αβ(bασ). Then γσ = bαβασ = γt. So γ + tγ is fixed by both σ and
(V ∩ bV )〈t〉 ∩ T . Moreover tr(1, b) = trG(V ∩bV )〈t〉∩T (γ + tγ). As T is a symplectic

vertex of M , this forces (V ∩ bV )〈t〉 = T . But V 6= T and t2 ∈ V . We deduce that
V = bV , T = V 〈t〉 and [T : V ] = 2. �

We will use our second result in Proposition 5.13.

Lemma 4.7. Suppose that M is symmetrically H-projective. Then M is a non-
degenerate component of some IndGH(L,BL) where L is indecomposable.

Proof. There is a kG-isometry φ : (M,Bθ) → IndGH(L,BL), where (L,BL) is a
symmetric kH-module and θ is a σ-invariant unit in EG(M). Choose this φ with
dim(L) minimal. So (L,BL) is orthogonally indecomposable, by Lemma 3.2.

We claim that L is indecomposable. For otherwise L = L1+̇L2, with L
∗
1
∼= L2,

according to Lemma 3.8. Let e ∈ EH(IndGH L) be orthogonal projection onto 1⊗L
and let ei = eeie be projection onto 1⊗ Li with kernel 1 ⊗ L3−i, for i = 1, 2. Now
there are αij ∈ EH(M), for i, j = 1, 2, such that

BL(eiφm1, ejφm2) = B(αijm1,m2), for all m1,m2 ∈M .
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As e = e1 + e2 and φ is an isometry, we get
∑

i,j=1,2

trGH(αij) = θ.

Now it can be shown that ασij = αji. So tr
G
H(α12)+trGH(α21) = trGH(α12)+trGH(α12)

σ.

This sum belongs to J(EG(M)), as EG(M) is a local ring and char(k) = 2.
So θii :=trGH(αii) is a unit in EG(M) for some i. Lemma 4.3 gives an isometry

(M,Bθii) → IndGH(αiiM, B̂αii
). But dim(αiiM) < dim(L), contradicting our choice

of L. This establishes our claim and completes the proof. �

5. Symmetric vertices

For the rest of the paper k is an algebraically closed field of characteristic 2.

5.1. Projective modules and involutions. We interpret some of the results of
[8] and [22] in terms of induction of forms. The structural map of the left regular
module kG is ℓ : kG→ E(kG), where ℓ(x)y := xy, for x, y ∈ kG. We also consider
the k-algebra isomorphism r : kGop → EG(kG), defined by r(x)y := yx. Also kG
is a left k(G×G)-module via (g1, g2)x := g1xg

−1
2 , for g1, g2 ∈ G and x ∈ kG.

Recall that B1 is the G×G-form on kG such that for all g1, g2 ∈ G in kG

B1(g1, g2) =

{

1k, if g1 = g2,
0k, if g1 6= g2.

We will use σ to denote the adjoint of B1 on E(kG). Then ℓ(x)σ = ℓ(xo) and
r(x)σ = r(xo), for all x ∈ kG, where o is the contragredient map on kG.

Recall from 3.2 that the G-invariant bilinear forms on kG are Br(a), for a ∈ kG.
We simplify Br(a) to Ba. So Ba(x, y) = B1(xa, y), for all x, y ∈ kG. Then Ba is
non-degenerate if a is a unit in kG, symmetric if a = ao and symplectic if a = ao

and B1(a, 1) = 0. As an important example, Bt is a non-degenerate symplectic
form, for each involution t ∈ G.

Now suppose that a is a symmetric unit in kG cf. [19]. So a = ao. Set σa as the
adjoint of Ba on E(M). Then it is easy to check that

(3) ℓ(x)σa = ℓ(xo) and r(x)σa = r(axoa−1), for all x ∈ kG.

The fact that the adjoint has a different effect on the isomorphic subrings ℓ(kG)
and r(kG) of E(kG) has been neglected in previous works such as [18] and [8].

Let P be a self-dual principal indecomposable kG-module. If P is the projective
cover of the trivial module then it affords a diagonalizable form and at least one
symplectic form. Otherwise P has symmetric type if and only if it has symplec-
tic type. In fact, each non-degenerate G-invariant symplectic form on P is the
polarization of a G-invariant quadratic form. For full details, see [8].

Our first result includes Fong’s Lemma:

Lemma 5.1. Let M be a non-trivial self-dual irreducible kG-module. Then M af-
fords a unique, up to scalars, non-degenerate G-invariant symplectic bilinear form.

The non-symplectic form B1 is degenerate on each direct summand of kG which
is isomorphic to P (M).

Proof. There is a point ǫ of EG(M) such that P (M) ∼= kGe for e ∈ ǫ. Then
πǫ : kG → E(M) is surjective. As P (M) ∼= P (M)∗, we have ker(ǫ)σ = ker(ǫ). So
σ induces an involution, also denoted σ, on E(M). Let B be the non-degenerate
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symmetric form on M whose adjoint is σ, as given by Lemma 3.1. Then B is
G-invariant as B1 is G-invariant, symplectic as M has no trivial submodule, and
unique up to multiplication by a non-zero scalar, as EG(M) ∼= k.

We claim that B1 is degenerate on kGe, for all e ∈ ǫ. Otherwise Lemma 3.5
shows that r(e)σ = r(e) for some e ∈ ǫ. But then ℓ(e)σ = ℓ(e). So πǫ(e) is an σ-
invariant primitive idempotent in E(M). Again by Lemma 3.5, B is non-degenerate
on the 1-dimensional space πǫ(e)M . This contradicts the fact that B is symplectic
and our claim follows. �

Our next result includes a proof of [8, (1.6)].

Lemma 5.2. B1 restricts to a diagonalizable G-form on each direct summand of
kG which is isomorphic to P (kG). Also dimP (kG)/|G|2 is odd.

Proof. We may write kG ∼=
∑

P (S)dimS where S ranges over all irreducible kG-
modules. As P (S) ∼= P (kG)

∗ if and only if S ∼= kG, Lemma 3.8 implies that B1

is non-degenerate on each direct summand of kG which is isomorphic to P (kG).
Now B1 is symplectic on each direct summand of kG which is not isomorphic to
P (kG). As B1 is not symplectic on kG, it is not symplectic on any direct summand
isomorphic to P (kG).

Now |G|2′ =
∑

(dimP (S)/|G|2) dimS, where each dimP (S)/|G|2 is an integer.
If S ∼= S∗ and S 6∼= kG then dimS is even, by Fong’s Lemma. If S 6∼= S∗, then S
and S∗ contribute equally to the sum. Thus |G|2′ ≡ dimP (kG)/|G|2 (mod 2). �

Recall that E(kG) is a G-algebra, as kG is a kG-module. So by definition
gf(z) := gfg−1(z), for all g ∈ G, f ∈ E(kG) and z ∈ kG. To describe the relative
trace maps trGH : EH(kG) → EG(kG), we first need a description of E(kG). We
use B1 to identify kG⊗ kG with E(kG): x⊗ y is the rank-1 endomorphism

(4) (x⊗ y)(z) = B1(y, z)x, for z ∈ kG.

Then the structure of the involutary G-algebra (E(kG), σ) is given by

(5) (x⊗ y)σ = y ⊗ x, and g(x⊗ y) = gx⊗ gy, for g ∈ G.

Using this we see that

trG1 (x⊗ y) = r(yox), for all x, y ∈ kG.

It is useful to list the elements of G as

1, t1, . . . , tm,
g1, . . . , gn
g−1
1 , . . . , g−1

n

where each ti is an involution.

Lemma 5.3. A basis for the σ-invariant elements in EG(kG) is

r(1), r(t1), . . . r(tm), r(g1 + g−1
1 ), . . . , r(gn + g−1

n ).

Of these r(1) and r(gj + g−1
j ) are (1, σ)-projective, while r(ti) is (H,σ)-projective,

for H ≤ G, if and only if gti ∈ H, for some g ∈ G.

Proof. The first statement follows from kGop ∼= EG(kG) and (3). Let g ∈ G. Then
1⊗ 1 and g ⊗ 1 + 1⊗ g are σ-invariant and

trG1 (1⊗ 1) = r(1), trG1 (g ⊗ 1 + 1⊗ g) = r(g + g−1).

So r(1) and r(g + g−1), for g 6= g−1, are (1, σ)-projective.
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Let t = ti. Then t⊗ 1 + 1⊗ t ∈ E〈t〉(M) is σ-invariant and

trG〈t〉(t⊗ 1 + 1⊗ t) = r(t).

So r(t) is (〈t〉, σ)-projective, if t 6= 1.
Let H be a subgroup of G. Then the endomorphisms trH1 (a ⊗ b) span EH(M),

as a, b range over all elements of G. Now

trH1 (a⊗ b)(g) =

{

gb−1a, if g ∈ Hb.
0, if g ∈ G\Hb.

So trH1 (a⊗b) is σ-invariant if and only if Ha = Hb and b−1a = a−1b i.e. if and only
if t := b−1a is an involution such that bt ∈ H . The last statement of the lemma
follows from this. �

Lemma 5.4. Let H ≤ G and let a be a unit in kH. Then

IndGH(kH,Ba) ∼= (kG,Ba).

In particular (kG,Bt) ∼= IndG〈t〉(k〈t〉, Bt), for all t ∈ G with t2 = 1.

Proof. Let rH(a) be the endomorphism x → xa of kH . Then rH(a) extends to a
kH-endomorphism of kG (acting as 0 on k(G\H)) and trGH(rH(a)) = r(a). The
Lemma is a consequence of this fact. �

Lemma 5.5. Two involutions s, t ∈ G are G-conjugate if and only if (k〈s〉, Bs) is
a component of ResG〈s〉(kG,Bt).

Proof. It is clear that there is an 〈s〉-isometry (k〈s〉, Bs)→ResG〈s〉(kG,Bt) if and only

if Bt(x, sx) 6= 0, for some x ∈ kG. If x =
∑

g∈G xgg, with xg ∈ k, then

Bt(x, sx) = B1(xt, sx) =
∑

g∈G

xgxsgt =
∑

g∈G,g=sgt

x2g,

using xgxsgt + xsgtxg = 0. So if Bt(x, sx) 6= 0 then g = sgt, for some g ∈ G. In
that case s = gtg−1 is conjugate to t.

Conversely, if s = gtg−1, then Bt(g, sg) = 1. �

Our next result is an elaboration of parts of [8, Section 3].

Lemma 5.6. Let e be a primitive idempotent in kG and let B̂ be a non-degenerate
G-invariant symplectic form on kGe. Then there is an involution t ∈ G such that

Bt is non-degenerate on kGe and (k〈t〉, Bt) is a component of ResG〈t〉(kGe, B̂).

Proof. By Lemma 3.6 there is a ∈ ekGeσ so that B̂(xe, ye) = Ba(x, y), for all

x, y ∈ kG. Then a = aσ and B1(a, 1) = 0, as B̂ is symplectic. Write a =
∑m
i=1 αiti +

∑n
j=1 βj(gj + g−1

j ), with αi, βj ∈ k. Now EG(kGe) is a local ring.
So each Bβj(gj+g

−1

j
) is degenerate on kGe. It follows that Bαiti is non-degenerate

on kGe, for some i. Set t = ti. Then Bt is non-degenerate on kGe and Ba(e, te) =

αi 6= 0. So ke+ kte is a Ba-direct summand of ResG〈t〉(kGe) which is isomorphic to

k〈t〉. We conclude that (k〈t〉, bt) is a component of ResG〈t〉(kGe, B̂). �

We note that Bt is non-degenerate on kGe if and only if kGe = kGf for some
primitive idempotent f ∈ kG with tft = fo, using Lemma 3.5 and (3). This is [8,
3.4 and 3.5]. Our last result strengthens [22, 6.5].
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Corollary 5.7. Suppose that Bt is non-degenerate on kGe where t ∈ G and t2 = 1.
Then (kGe,Bt) is a component of IndG〈t〉Res

G
〈t〉(kGe,Bt).

Let M be the irreducible head of kGe. Then ResGCG(t)M has diagonalizable type.

In particular kCG(t) is a submodule and a quotient module of ResGCG(t)M .

Proof. If t = 1, then kGe ∼= P (kG), and Lemma 5.2 gives all conclusions. So assume
that t is an involution. By Lemma 5.6 there is an involution s ∈ G and an isometry
(k〈s〉, Bs) → ResG〈s〉(kGe,Bt). Then s and t are G-conjugate, according to Lemma
5.5. This proves the first assertion.

We may assume that M 6∼= kG. Let B be the G-invariant symplectic form on M .
Recall that πǫ : kG→ E(M) has kernel Mǫ. Now σt is an involution on kG which
fixes Mǫ. So it induces an involution σt on E(M). As ℓ(g)σt = ℓ(tg−1t), we get
πǫ(g)

σt = πǫ(tg
−1t). So the corresponding non-degenerate symmetric bilinear form

onM is B̂(m1,m2) := B(tm1,m2), for all m1,m2 ∈M . Then B̂ is CG(t)-invariant.
Let f ∈ kG be the σt-invariant primitive idempotent with kGe = kGf , as given

by Lemma 3.5. Then πǫ(f) is a σt-invariant primitive idempotent in E(M). It

follows that B̂ is a diagonalizable form on M . The last assertion now follows from
Lemma 2.4. �

Finally we prove Theorem 1.6 of the introduction. This gives an intriguing new
criterion for a principal indecomposable module to be of quadratic type, which
depends entirely on the irreducible head of the module.

Proposition 5.8. Let M be a non-trivial self-dual irreducible kG-module, with
symplectic form B, and let t ∈ G be an involution. Then P (M) is a Bt-component
of kG if and only if B(tm,m) 6= 0, for some m ∈M .

Proof. We proved the ‘only if’ in Corollary 5.7. So suppose that there is m ∈ M
such that B(tm,m) 6= 0. Define B̂ on M as above, with an involution σt on E(M)

which lifts to the involution σt of kG. Now B̂ is non-degenerate on the subspace
km of M . So by Lemma 3.5 there is a unique σt-invariant primitive idempotent

f̂ ∈ E(M) such that f̂(M) = km. By Lemma 2.3(iii) there is a σt-invariant

primitive idempotent f ∈ kG such that πǫ(f) = f̂ . In particular kGf ∼= P (M).
Lemma 3.5 guarantees that Bt is non-degenerate on kGf . �

Example 5.9. [14, 11.2] Let Sn be the symmetric group of degree n ≥ 2 and let λ
be a non-trivial 2-regular partition of n. The Specht module Sλ affords a non-zero
Sn-invariant symplectic bilinear form B such that Dλ := Sλ/(Sλ)⊥ is an irreducible
kSn-module. Let T be a λ-tableau, so there is a corresponding polytabloid eT in Sλ.
Now T is a filling of the boxes in a Young diagram for λ with the symbols 1, 2, . . . , n.
Let t be the involution in Sn which reverses the entries in each row. Then the tabloid
labelled by T is the only tabloid common to teT and eT . So B(teT , eT ) = 1k. It
follows that P (Dλ) is a Bt-component of kSn. Note that if λ has ℓ non-zero parts
then t is a product of (n− ℓ)/2 commuting transpositions.

5.2. Puig correspondence. In parts 5.2 through to 5.6 we take M to be an
indecomposable kG-module, with Green vertex V and V -source Z.

We will use the following notation:

• Ω is the point of EG(Ind
G
V Z) such that ω IndGV Z

∼=M , for all ω ∈ Ω.

• F : E(M) → E(IndGV Z) is the embedding of G-algebras induced by Ω.
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• δ is the point of EV (M) such that dM ∼= Z, for all d ∈ δ.

• ∆ is the point of EV (Ind
G
V Z) containing F(δ).

Let NG(V, Z) be the stabilizer of Z in NG(V ). Set N := NG(V, Z)/V . Then
E(P∆) is an N -algebra. So P∆ is a module for a twisted group algebra kγN of N
over k. Likewise E(Pδ) is an N -algebra and Pδ is a module for a twisted group
algebra kγ′N of N over k. According to [28, (26.1)], P∆ is the regular kγN -module.
Now F induces an embedding of N -algebras E(Pδ) → E(P∆). This in turn induces
a group isomorphism between the central extensions of N corresponding to the
cocycles γ and γ′. In this way, Pδ can and will be identified with an indecomposable
component of P∆, as kγN -modules.

Lemma 5.10. Suppose that Z ∼= Z∗ and either Z or M is of symmetric type. Then
kγN ∼= kN . So P∆ is the regular kN -module.

Proof. Suppose first that Z has a symmetric V -form B0. Let σ0 be the adjoint of
BG0 on E(IndGV Z). As Z

∼= Z∗, Lemma 3.4 implies that ∆σ0 = ∆. So M
σ0

∆ = M∆

and σ0 is an involution on EV (Ind
G
V Z)/M∆. In this way (E(P∆), σ0) is a simple

involutary N -algebra.
By Lemma 3.9, there is a symmetric form Bσ0

on P∆ such that the action of N
on E(P∆) lifts to a representation N → GL(P∆, Bσ0

). In particular kγN ∼= kN as
twisted group algebras and P∆ is the regular kN -module.

Conversely suppose thatM has a symmetricG-form B. Let σ be the adjoint of B
on E(M). Then δσ = δ. So M

σ
δ = Mδ and σ induces an involution on EV (M)/Mδ.

According to Lemma 3.9, the action of N on E(Pδ) lifts to a representation N →
GL(Pδ, Bσ), where Bσ is a symmetric form on Pδ. Thus kγ′N ∼= kN as twisted
group algebras. But kγN ∼= kγ′N . So as before P∆ is the regular kN -module. �

Set N∗ = N∗
G(V, Z)/V , where N∗

G(V, Z) is the stabilizer of {Z,Z∗} in NG(V ).
So [N∗ : N ] ≤ 2. The following is based on [28, (14.8)].

Lemma 5.11. Let L be a component of IndGV Z and let ǫ be a point of EV (L)
contained in ∆. For V ≤ H ≤ G set NH=NH(V, Z)/V and N∗

H=N∗
H(V, Z)/V .

Then for all f ∈EV (L)ǫEV (L) we have:

(i) πǫtr
H
V (f) = trNH

1 πǫ(f) and πǫ res
H
V : EH(L) → ENH

(Pǫ) is onto.

(ii) If σ is a G-involution of E(L), then πǫ,ǫσtr
H
V (f) = tr

N∗

H

1 πǫ,ǫσ(f) and

πǫ,ǫσ res
H
V : EH(L) → (E(Pǫ)× E(Pǫσ))

N∗

H is onto.

Proof. (i) follows from Remark (19.9) in [28] as EH(L) = trHV (EV (L)).

From the proof of [28, (14.7)] we see that πǫ,ǫσtr
H
V (f) = tr

N∗

H

1 (πǫ,ǫσ(f)). So πǫ,ǫσ

maps trHV (EV (L)) onto tr
N∗

H

1 (E(Pǫ) × E(Pǫσ )). This is a 2-sided ideal of the fixed

point subalgebra (E(Pǫ)× E(Pǫσ ))
N∗

H which is contained in πǫ,ǫσEH(L).

We now modify [28, (14.8)]. As L | IndGV Z, we have 1L = trHV (ι) for some

ι ∈ EV (L)ǫEV (L). So 1Pǫ+Pǫσ
= tr

N∗

H

1 πǫ,ǫσ(ι) and hence

tr
N∗

H

1 (E(Pǫ)× E(Pǫσ )) = (E(Pǫ)× E(Pǫσ ))
N∗

H .

Now (ii) follows from this and the previous paragraph. �

In our situation the Puig correspondence [28, (19.1)] is a multiplicity preserving

bijection between the indecomposable components of IndGV Z with vertex V and



22 JOHN C. MURRAY

the indecomposable components of P∆. More concretely, if e is a primitive idem-
potent in EG(Ind

G
V Z) such that e IndGV Z has vertex V , then π∆(e) is a primitive

idempotent in EN (P∆), and π∆(e)P∆ is the Puig correspondent of e IndGV Z.

5.3. Theorem 1.2(i).

Proposition 5.12. Suppose that Z affords a non-degenerate V -invariant sym-
metric bilinear form B0. Then the Puig correspondent of P (kN ) is the unique

indecomposable BG0 -component of IndGV Z that has vertex V .

Proof. Lemma 5.10 applies, and we adopt its notation. Let d ∈ ∆ be the orthogonal
projection IndGV (Z) → 1 ⊗ Z. So dσ0 = d and trGV (d) = 1IndG

V
Z . Set d := π∆(d).

Then 1P∆
= trN1 (d), using Lemma 5.11(i). Moreover d

σ0

= d. So (P∆, Bσ0
) |

IndN1 (dP∆, B̂d), according to Lemma 4.3. But dim(dP∆) = 1. So (dP∆, B̂d)
∼=

(k1, B1) and thus IndN1 (dP∆, B̂d)
∼= (kN,B1). So we can and do identify (P∆, Bσ0

)
with (kN,B1).

Write IndGV (Z) = L1+̇L2 · · · + . . . +̇Ln, where the Li are indecomposable kG-
modules and L1 is the Puig correspondent of P (kN ). Then Li 6∼= L∗

1 for i > 1. So
BG0 is non-degenerate on L1, by Lemma 3.8.

Now suppose that BG0 is non-degenerate on Li, where Li has vertex V . Then

Li has V -source Z. Let ω ∈ EG(Ind
G
V Z) be orthogonal projection onto Li. Then

π∆(ω) is a σ0-invariant primitive idempotent in EN (P∆). So π∆(ω)kN ∼= P (kN ),
by Lemma 5.1. We deduce that Li = L1. �

From now on we assume that M is of symmetric type.

Proposition 5.13. The following are equivalent:

(i) Each symmetric vertex of M is a Green vertex of M .
(ii) Z has symmetric type and M is the Puig correspondent of P (kN ).
(iii) Z has symmetric type and if B0 is a V -form on Z then M is a BG0 -

component of IndGV Z.

(iv) M has G-form B such that Z is a B-component of ResGV M .

Proof. Assume (i). Then by Lemma 4.7, there is symmetric kV -module (Y,B1)

such that Y is indecomposable and M is a BG1 -component of IndGV (Y ). Then Y is
a V -source of M . But Z = nY , for some n ∈ NG(V ). So (iii) holds. Moreover, (i)
and (ii) are equivalent, by Proposition 5.12.

Lemma 5.10 applies if (ii), (iii) or (iv) hold. We adopt its notation.
Assume (iii). Then M has a V -projective G-form. So (i) is true. Lemma 3.5

implies that there is a σ0-invariant idempotent ω in Ω and BG0 is non-degenerate

on ω IndGV Z
∼= M . Set ω = π∆(ω). Then ωkN ∼= P (kN ). Lemma 5.2 implies that

B1 is non-degenerate on a 1-dimensional subspace of ωkN . So again using Lemma
3.5, there is a σ0-invariant primitive idempotent d ∈ ωE(kN)ω, .

Now π∆ restricts to a surjective map ωEV (Ind
G
V Z)ω → ωE(kN)ω. So by Lemma

2.3(iii) there is a σ0-invariant primitive idempotent d ∈ ωEV (Ind
G
V Z)ω such that

π∆(d) = d. In particular d ∈ ∆ and d = ωdω. Then BG0 is non-degenerate on the

V -component d IndGV Z of ω IndGV (Z)
∼=M . So (iv) holds.

Assume (iv). By Lemma 3.5 this means that there is d ∈ δ with dσ = d. As πδ(d)
is a σ-invariant primitive idempotent in E(Pδ), Bσ is a diagonalizable N -form on
Pδ. So Pδ ∼= P (kN ), using Lemma 5.1. Now P (kN ) is the only self-dual principal
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indecomposable kN -module which has multiplicity 1 in kN . So Pδ ∼= P (kN ), when
regarded as a component of P∆. So (ii) holds. �

The principal 2-block B0 = B0(G) of G is the block of kG which contains kG.

Corollary 5.14. If some Green vertex of M is a symmetric vertex of M then M
belongs to the principal 2-block of G.

Proof. From Proposition 5.13, M is the Puig correspondent of P (kN ). Set C =

V CG(V ). Then ResNC/V (P (kN )) ∼= P (kC/V )
m, for some m ≥ 1. So (V, P (kC/V )) is

a root of M , in the terminology of [16]. Now P (kC/V ) is in B0(C), and Brauer’s
Third Main Theorem implies that (V,B0(C)) is a B0-subpair. So M belongs to B0,
according to [16]. �

5.4. Theorem 1.2(ii).

Proposition 5.15. Suppose that the sources ofM are self-dual, but B is degenerate
on each direct summand of ResGV M that is a source of M . Then

(i) There is V ≤ T ≤ NG(V, Z) with [T : V ] = 2 such that IndTV Z is a

B-component of ResGT M .

(ii) Let B0 be a T -form on IndTV Z such that Z is not a B0-component of

ResTV IndTV Z. Then M is a BG0 -component of IndGV Z.
(iii) Either V or T is a symmetric vertex of M .

Proof. Lemma 5.10 applies, and we adopt its notation.
As B is degenerate on each direct summand of ResGV M that is isomorphic to

Z, σ does not fix any idempotent in δ. So by Lemma 2.3(i), σ does not fix any
primitive idempotent in E(Pδ). This means that (Pδ, Bσ) is a symplectic kN -
module. Lemma 5.6 gives an involution t ∈ N such that Bt is non-degenerate on
Pδ. Moreover ResG〈t〉(Pδ, Bσ) has a component (k〈t〉, Bt). So there is a σ-invariant

primitive idempotent y ∈ E〈t〉(Pδ).

Let T ≤ N with T/V = 〈t〉. Then πδ res
T
V : ET (M) → E〈t〉(Pδ) is surjective, by

Lemma 5.11(i). So by Lemma 2.3(iii), there is a primitive σ-invariant idempotent

y ∈ ET (M) with πδ(y) = y. So Y = yM is a B-direct summand of ResGT M . Now

Y is V -projective, |T/V | = 2 and Z is a component of YV . So Y ∼= IndTV Z. The
conclusion of (i) follows.

Assume the hypothesis of (ii) and set Y := IndTV Z. Note that Ind
G
T Y

∼= IndGV Z.

Let σ0 be the adjoint of BG0 on E(IndGV Z). Now (E(P∆), σ0) is an involutary N -
algebra. So kγN ∼= kN , P∆ is the regular kN -module and σ0 is the adjoint of a
symmetric N -form Bσ0

on P∆. By hypothesis on B0, the N -form Bσ0
is symplectic.

Let e ∈ ET (Ind
G
V Z) be orthogonal projection onto 1⊗Y . Then trGT (e) = 1IndG

V
Z

and e ∈ trTV

(

EV (Ind
G
V Z)∆EV (Ind

G
V Z)

)

. Set e = π∆(e). Then

1E(P∆) = πtrGT (e) = trN〈t〉(e), using Lemma 5.11(i).

As eσ0 = e, Lemma 4.3 gives a kN -isometry (P∆, Bσ0
) → IndN〈t〉(eP∆, B̂e). But

dim(eP∆) = 2. So this isometry is surjective, as both sides have dimension |N |.
Now Bσ0

is symplectic, and 〈t〉 is cyclic of order 2. So (eP∆, B̂e) ∼= (k〈t〉, Bt). We
deduce that (P∆, Bσ0

) ∼= (kN,Bt).
Now Pδ is a Bt-component of P∆. So there is a primitive σ0-invariant idempotent

ω ∈ EN (P∆) with ωP∆
∼= Pδ. Since π∆res

G
V : EG(Ind

G
V Z) → EN (P∆) is surjective,
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Lemma 2.3(iii) gives a primitive σ0-invariant idempotent ω ∈ EG(Ind
G
V Z) with

π∆(ω) = ω. So ω IndGV Z is a BG0 -direct summand of IndGV Z. But ω IndGV (Z)
∼=M .

The conclusion of (ii) follows.
(iii) holds as M has a T -projective symmetric G-form. �

5.5. Theorem 1.2(iii).

Proposition 5.16. Suppose that no source of M is self-dual. Then

(i) N∗
G(V, Z) has a subgroup T which contains V such that [T : V ] = 2 and

IndTV Z is a B-component of ResGT M . Then N∗ = N ⋊ T/V .

(ii) M is a BG0 -component of IndGV Z, if B0 is a symmetric T -form on IndTV Z.
(iii) T is a symmetric vertex of M .

Proof. Set ∆σ as the point of EG(Ind
G
V Z) corresponding to Z∗. Lemma 3.4 im-

plies that δσ 6= δ. So (E(Pδ)×E(Pδσ ), σ) is an involutary N∗-algebra satisfying
the hypothesis of Lemma 3.1(ii). Moreover, this algebra is embedded in the N∗-
algebra E(P∆)×E(P∆σ) as follows. According to Lemma 5.11(ii), the restriction

map π∆,∆σ : EG(Ind
G
V Z)→ (E(P∆)×E(P∆σ))N

∗

is surjective. Let ω ∈ Ω. Then

ω := π∆,∆σ(ω) is a primitive idempotent in (E(P∆) × E(P∆σ ))N
∗

. We identify
E(Pδ)× E(Pδσ ) with ω (E(P∆)× E(P∆σ ))ω, and Pδ + Pδσ with ω(P∆ + P∆σ).

By Lemma 3.10 there is a commutative diagram

1 −−−−→ O
inc−−−−→ H

θ−−−−→ N∗ −−−−→ 1




y

η





y

χ





y

ρ

1 −−−−→ K
inc−−−−→ Sp(Pδ , Pδσ )

ρ−−−−→ PGL(Pδ, Pδσ , σ) −−−−→ 1

where O is a finite cyclic group of odd order and θ(CH(O)) = N . Each element
of H\CH(O) maps Pδ onto Pδσ . Moreover σ is the adjoint of a symplectic H-form
Bσ on Pδ + Pδσ , with

(6) (Pδ)
⊥ = Pδ and (Pδσ )

⊥ = Pδσ .

Now eη = 1
|O|

∑

λ∈O η(λ
−1)λ is a central idempotent in kH such that P∆+P∆σ ∼=

kHeη as kH-modules. So EN∗(P∆ + P∆σ ) ∼= eηkHeη.
By Lemma 5.6 there is an involution t ∈ H such Bt is non-degenerate on Pδ+Pδσ

and k〈t〉 is a Bσ-component of ResH〈t〉(Pδ + Pδσ ). This means that there is p ∈
Pδ + Pδσ such that Bσ(p, tp) 6=0. Write p = p1 + p2 where p1 ∈ Pδ and p2 ∈ Pδσ .

We claim that t 6∈ CH(O). Otherwise, tp1 ∈ Pδ and tp2 ∈ Pδσ . Then

Bσ(p, tp) = Bσ(p1, tp2) +Bσ(p2, tp1), by (6)
= Bσ(p1, tp2) +Bσ(tp1, p2), as Bσ is symmetric
= 0, as tσ = t.

This contradicts our choice of p and thus establishes our claim.
Now tp1 ∈ Pδσ and tp2 ∈ Pδ. So Bσ(p, tp) = Bσ(p1, tp1) +Bσ(p2, tp2). Replace

p by p1 or tp2 so that p ∈ Pδ and Bσ(p, tp) 6= 0. Then replace p by
√

Bσ(p, tp)−1 p,
so that Bσ(p, tp) = 1.

Define y ∈ E〈t〉(Pδ + Pδσ ) by y(x) = B(x, tp)p+B(x, p)tp, for all x ∈ Pδ + Pδσ .
Then y is orthogonal projection onto kp+ktp. Moreover, yPδ ⊆ Pδ and yPδσ ⊆ Pδσ .
So y is a σ-invariant primitive idempotent in (E(Pδ)× E(Pδσ ))

〈t〉.
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Let T ≥ V such that T/V = 〈θ(t)〉. Then T/V is a complement to N in
N∗, as N∗

G(V, Z) = NG(V, Z)T and NG(V, Z) ∩ T = V . Now by Lemma 5.11(ii)

the restriction πδ,δσ : ET (M) → (E(Pδ) × E(Pδσ ))
〈t〉 is surjective. So by Lemma

2.3(iii) there is a σ-invariant primitive idempotent y ∈ ET (M) such that πδ,δσ (y) =

y. Then yM is a B-direct summand of ResGT M which lies over Z and Z∗. But

|T/V | = 2. So yM ∼= IndTV Z.

Let B0 be any symplectic T -form on IndTV Z. Identifying IndGT (Ind
T
V Z) with

IndGV Z, we regard BG0 as a symplectic G-form on IndGV Z. Let σ0 be the adjoint

of BG0 on E(IndGV Z). Then (E(P∆)×E(P∆σ), σ0) is an involutary N∗-algebra
satisfying the hypothesis of Lemma 3.1(ii). So σ0 is the adjoint of a symplectic
N∗-form Bσ0

on P∆ + P∆σ such that (P∆)
⊥ = P∆ and (P∆σ0 )⊥ = P∆σ0 .

Let e ∈ ET (Ind
G
V Z) be orthogonal projection onto 1⊗ IndTV Z. Then trGT (e) =

1IndG
V
Z and e ∈ trTV

(

EV (Ind
G
V Z)∆EV (Ind

G
V Z)

)

. Set e = π∆,∆σ(e), a primitive

idempotent in (E(P∆)×E(P∆σ))〈t〉. As O acts trivially on E(P∆)×E(P∆σ), we
have

1P∆+P∆σ = π∆,∆σtrGT (e) = trN
∗

〈θ(t)〉(e), by Lemma 5.11(ii)

= trN1 (e), as N∗ = N :〈θ(t)〉.
= tr

CH(O)
O (e) = tr

CH(O)
1 (e), as |O| is odd.

= trH〈t〉(e), as H = CH(O) : 〈t〉.
Now (e(P∆ + P∆σ), Bσ0

) ∼= (k〈t〉, Bt) as symmmetric k〈t〉-modules. It then follows
from Proposition 4.4 that (P∆ + P∆σ , Bσ0

) ∼= (kHeη, Bt).
As Bt is non-degenerate on Pδ + Pδσ , we may choose ω so that σ0 is non-

degenerate on ω(P∆ + P∆σ ). Then ω belongs to E(P∆)×E(P∆σ), which is a σ0-
invariant semi-simple subalgebra of E(P∆ + P∆σ ). So Lemma 3.7 implies that the

orthogonal projection ω1 onto ω(P∆ + P∆σ ) belongs to (E(P∆)× E(P∆σ))N
∗

.

Lemma 5.11(ii) states that π∆,∆σ : EG(Ind
G
V Z) → (E(P∆) × E(P∆σ ))N

∗

is
surjective. So by Lemma 2.3(iii) there is a σ0-invariant primitive idempotent ω1 ∈
EG(Ind

G
V Z) such that π∆,∆σ(ω1) = ω1. Then ω1 Ind

G
V Z is a BG0 -direct summand

of IndGV Z that is isomorphic to M . This completes the proof of (i) and (ii).
(iii) holds as M has a T -projective G-form, but V is not a symmetric vertex of

M . �

5.6. Theorems 1.3 and 1.4. Now let T be a symmetric vertex of M .

Lemma 5.17. Let B be a T -projective G-form on M and let H be a subgroup of
G. Then B is H-projective if and only if T ≤G H.

Proof. The ‘if’ implication holds by Proposition 4.4. The ‘only if’ holds if T is a
Green vertex of M . So we assume from now on that T is not a vertex of M .

Let V be a Green vertex and let Z be a V -source of M . By Propositions
5.15 and 5.16 there are isometries (IndSV (Z), B0) → ResGS (M,B) and (M,B2) →
IndGS (Ind

S
V (Z), B0). Here S is a symmetric vertex of M containing V , B0 is an

S-form on IndSV (Z) and B2 is a G-form on M . Now suppose that there is a kG-

isometry (M,B) → IndGH(L,B1) for some symmetric kH-module (L,B1).
Composing the 3 isometries of the previous paragraph produces a kG-isometry

(M,B2) → IndGS ResGS IndGH(L,B1). Now Lemma 4.1 gives

IndGS ResGS IndGH(L,B1) ∼= ⊥
g∈S\G/H

IndGS∩gH Res
gH
S∩gH(gL, gB1).
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So by Lemma 3.2 there is a kG-isometry

(M,B3) → IndGS∩gH Res
gH
S∩gH(gL, gB1),

for some g ∈ G and some symmetric G-form B3 on M . So B3 is S ∩ gH-projective.
But S is a symmetric vertex of M . It follows that S ≤ gH .

Choosing H = T , the work above shows that S = gT . Then taking H to be any
subgroup of G, we get T ≤G H . �

Here is a precise statement and proof of Theorem 1.4:

Lemma 5.18. Suppose thatM is a self-dual irreducible kG-module, with symmetric
G-form B. Then the symmetric vertices of M are determined up to G-conjugacy.

Let V ≤ T where V is a Green vertex and T a symmetric vertex of M and let
Z be a V -source of M . Then IndTV Z is a B-component of ResGT M . Moreover, if

B0 is any T -form on IndTV Z, then M is a BG0 -component of IndGT (Ind
T
V Z).

Proof. Let S be any symmetric vertex of M . As B is the unique G-form on M ,
B is both T and S-projective. Then by Theorem 1.3, T ≤G S and S ≤G T . So
T =G S. So there is only one G-conjugacy class of symmetric vertices of M .

The other conclusions now follow from Propositions 5.13, 5.15 and 5.16. �

Note that in case T = V is a vertex of M , Proposition 5.13 implies that the defect
multiplicity module Pδ of E(M) is P (kN ). But Pδ is an irreducible projective kN -
module, by a well-known theorem of R. Knörr. This forces Pδ = kN . So V is a
Sylow 2-subgroup of NG(V, Z).

5.7. Real 2-blocks. We turn our attention to the 2-blocks of G. Let B be a real
block of kG. So B is a k(G × G)-direct summand of kG which is o-invariant. As
EG×G(kG) = Z(kG), we have B = kGeB, where eB is an o-invariant primitive
idempotent in Z(kG). Let ωB be the central character of B; the unique k-algebra
map Z(kG) → k such that ωB(eB) = 1k. Recall that the conjugacy class sums form
a basis for the centre Z(kG) of kG. We will use the notation X+ :=

∑

x∈X x for
the sum of the elements of a subset X of G, taken in kG.

There are 2-regular conjugacy classes C1, . . . , Cn ofG such that eB =
∑n

i=1 αiC
+
i ,

with non-zero αi ∈ k. For each i let i be the index of the class of inverses of the
elements of Ci. Then αi = αi, as B is real. Choose ci ∈ Ci, such that ci = c−1

i if

Ci 6= Ci. Set CG(ci) and C∗
G(ci) = NG({ci, c−1

i }) as the centralizer and extended
centralizer of ci in G, respectively.

Let Ei be a Sylow 2-subgroup of C∗
G(ci) and let Di = CEi

(ci). So [Ei : Di] ≤ 2,
with equality if and only if Ci is a non-trivial real class. We call Di a defect group
of Ci and Ei an extended defect group of Ci. When Ci and Cj are real classes, we
write (Di, Ei) ≤G (Dj , Ej) if D

g
i ≤ Dj and Ej = DjE

g
i , for some g ∈ G.

R. Brauer showed that αj 6= 0k and ωB(C
+
j ) 6= 0K , for some j. Any such Cj is a

defect class of B. Then Dj is independent of the choice of Cj , and is called a defect
group of B. Moreover Di ≤G Dj , for all Ci.

R. Gow showed that there is a real defect class Cj . Then Ej is independent of
the choice of real Cj [6, Theorem 2.1]. Gow called Ej an extended defect group of
B. In [21, Proposition 14] we proved that (Di, Ei) ≤G (Dj , Ej), for all real Ci. In
particular, we can and do choose ci so that Di ≤ Dj , and moreover Ej = DjEi, if

Ci is real. So for real Ci we have ceii = c−1
i for some ei ∈ Ej\Dj .
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Now consider the involutary G-algebra (kG,o ). Each subgroup H of G defines
a trace map trGH : kGH → Z(kG). Then for all i

C+
i = trGCG(ci)

(ci) = trGDi
(ci), as [CG(ci) : Di] is odd.

Set θ =
∑n
i=1 αi tr

Ej

Di
(ci). As C+

i = trGEj
(tr

Ej

Di
(ci)) and tr

Ej

Di
(ci) = tr

Ej

Di
(ci)

o and

αi = αi, we have

θ ∈ kGEj , θo = θ and eB = trGEj
(θ).

We use this to prove parts (i) and (ii) of Theorem 1.5:

Lemma 5.19. Each symmetric vertex of an indecomposable B-module is contained
in an extended defect group of B.
Proof. Let (M,B) be a symmetric B-module, where M is indecomposable, and let
σ be the adjoint of B on E(M). Let π : kG → E(M) define the module structure
on M . Then π maps kGH into EH(M), for all H ≤ G. Moreover π(g)σ = π(g−1),
for all g ∈ G, as B is G-invariant. So π(θ) is a σ-invariant element of EEj

(M) and

trGEj
(π(θ)) = π(trGEj

(θ)) = π(eB) = 1M .

We conclude from Proposition 4.4 that B is Ej-projective. �

Corollary 5.20. There is a self-dual irreducible B-module whose symmetric ver-
tices are the extended defect groups of B.
Proof. If B is the principal 2-block of G, the symmetric vertices of the trivial kG-
module are the Sylow 2-subgroups of G. These are also the extended defect groups
of B. Suppose then that B is not the principal block. Now [8, Proposition 1.4(v)]
implies that the defect group Dj of B is a Green vertex of some self-dual irreducible
B-moduleM . Let T be a symmetric vertex ofM containing Dj . Then [T : Dj ] = 2,
by Theorem 1.2. But T ≤G Ej , according to Lemma 5.19. Since [Ej : Dj] = 2 we
conclude that T =G Ej is an extended defect group of B. �

To prove part (iii) of Theorem 1.5, we work in the involutary G × G-algebra
(E(kG), σ). Here σ is the adjoint of B1, as in Section 5.1. Recall the identification
(4) of x ⊗ y as an endomorphism of kG, for x, y ∈ kG. Then (g1, g2) · x ⊗ y =
g1xg

−1
2 ⊗ g1yg

−1
2 , for all g1, g2 ∈ G, as can be checked. So

StabG×G(x⊗ y) = {(g1, g2) ∈ G×G | g1x = xg2, g1y = yg2}.
Now CG(x) = CG(x

2), if x ∈ G has odd order. It follows from this that

StabG×G(x⊗ x−1) = ∆CG(x), if x ∈ G is 2-regular.

Set ∆H = {(h, h) | h ∈ H}, for H ≤ G. Let D be a defect group of x and let C be

the conjugacy class of G containing x2. Then trG×G
∆D (x ⊗ x−1) = C+.

Recall that Cj is a real defect class of B, Dj is a defect group of B and Ej is an
extended defect group of B. Moreover each class Ci occurring in eB is 2-regular.
So there is a unique di ∈ 〈ci〉 such that d2i = ci. Define

Θ =

n
∑

i=1

αi tr
∆Ej

∆Di
(di ⊗ d−1

i ).

If ci is real, then c
ei
i = c−1

i , where ei ∈ Ej\Dj. So eidie
−1
i = d−1

i and

(ei, ei) · di ⊗ d−1
i = d−1

i ⊗ di = (di ⊗ d−1
i )σ, using (5).
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It follows from this that tr
∆Ej

∆Di
(di ⊗ d−1

i
) = tr

∆Ej

∆Di
(di ⊗ d−1

i )σ, for all i. So

(7) Θσ = Θ and trG×G
∆Ej

(Θ) = eB.

Now notice that eB is the identity element of EG×G(B) = Z(B).

Lemma 5.21. Let E be an extended defect group of B. Then the restriction of B1

to B is non-degenerate and ∆E-projective. So ∆E is a symmetric vertex of B.

Proof. LetD ≤ E be a defect group of B. So ∆D is a Green vertex of B as k(G×G)-
module. Now B is the only direct summand of kG isomorphic to its k(G×G)-dual
B∗. So B1 is non-degenerate on B, by Lemma 3.8. Then (7) and Proposition 4.4
imply that B1 is ∆E-projective.

Suppose that B is the principal 2-block of G. Then E = D is a defect group
of B. So ∆E is , as k(G × G)-module. As B1 is ∆E-projective, Proposition 5.13
implies that ∆E is a symmetric vertex of B.

Suppose that B is not the principal 2-block of G. Then B belongs to a non-
principal 2-block of G × G. So ∆D is not a symmetric vertex of B, by Corollary
5.14. As B1 is ∆E-projective and [∆E : ∆D] = 2, Proposition 5.15 implies that
∆E is a symmetric vertex of B. �

5.8. Examples. We give examples to show that all cases in Theorem 1.2 actually
occur. So as above let M be a self-dual indecomposable kG-module of symmetric
type, let T be a symmetric vertex of M , let V be a Green-vertex of M contained
in T and let Z be a V -source of M . In view of the literature on vertices, most of
our examples involve a self-dual irreducible kG-module.

To get examples of Theorem 1.2(i), choose M so that V is a Sylow 2-subgroup
of G. Then the symmetric vertex T will also be a Sylow 2-subgroup of G. For a
non-trivial example, if S2n is the symmetric group of degree 2n ≥ 6 and M is the
irreducible kS2n-module labelled by the 2-regular partition [2n− 1, 1], then V is a
Sylow 2-subgroup of S2n according to [20].

There are examples of Theorem 1.2(i) where V is not a Sylow 2-subgroup ofG: let
M be the 4-dimensional irreducible kS5-module labelled by [3, 2]. Then according

to [3] V is conjugate to a Klein-four subgroup of A4 ≤ S5 and ResS5

V (M) = Z1⊕Z2

is the direct sum of two non-isomorphic self-dual V -sources. Then it follows from
Lemma 3.8 and Proposition 5.13 that V = T is a symmetric vertex of M .

Now suppose that G has even order and M is irreducible and projective as kG-
module. Then M belongs to a real 2-block B of G which has a trivial defect group
V = 1. According to [6], there is an involution t ∈ G such that 〈t〉 is an extended
defect group of B. It then follows from Lemma 4.6 that 〈t〉 is a symmetric vertex
of M . As Z = k is self-dual, this gives an example of Theorem 1.2(ii).

Next let M be the irreducible kS7-module labelled by [4, 3]. It is shown in [3]
that M shares its vertices and sources with the irreducible kS5-module labelled by
[3, 2], as discussed above. Once again we have an example of Theorem 1.2(ii), but
here the vertex V is not a defect group of the 2-block B.

It is relatively difficult to find examples of Theorem 1.2(iii). Take n ≥ 3, and set
H = GL(n, 2) and G = H : 〈τ〉, where τ is the transpose inverse automorphism of

H . Let M1 be the natural n-dimensional kH-module and set M = IndGHM1. Then

V is a Sylow 2-subgroup of H and Z = ResHV (M1) is a V -source ofM . It is not too
difficult to check that Z is not self-dual, giving us an infinite family of examples of
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Theorem 1.2(iii). We note that in case n = 4, H ∼= A8 and G ∼= S8. Then we can
identify M with the irreducible kS8-module labelled by [5, 3].

E. C. Dade [2] gave us an example of a solvable group which has a self-dual
irreducible module whose sources are not self-dual: LetG be the semi-direct product
of an extra-special group of order 27 and exponent 3 with a semi-dihedral group
of order 16. Take M to be the unique 6-dimensional kG-module. Then V is a
quaternion group of order 8 and ResGV M = Z ⊕Z∗ with Z 6∼= Z∗. We describe this
in more detail in [23].

In [23] the author and G. Navarro use the results of the current paper to show
that if G is solvable, and M is irreducible, then case (i) of Theorem 1.2 does not
occur. Moreover a symmetric vertex of M splits over a Green vertex if and only if
P (M) is of quadratic type, in the sense of [8].
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