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Abstract—Guesswork forms the mathematical framework for
quantifying computational security subject to brute-force de-
termination by query. In this paper, we consider guesswork
subject to a per-symbol Shannon entropy budget. We introduce
inscrutability rate as the asymptotic rate of increase in the expo-
nential number of guesses required of an adversary to determine
one or more secret strings. We prove that the inscrutability rate of
any string-source supported on a finite alphabet X , if it exists, lies
between the per-symbol Shannon entropy constraint and log |X |.
We further prove that the inscrutability rate of any finite-order
Markov string-source with hidden statistics remains the same
as the unhidden case, i.e., the asymptotic value of hiding the
statistics per each symbol is vanishing. On the other hand, we
show that there exists a string-source that achieves the upper limit
on the inscrutability rate, i.e., log |X |, under the same Shannon
entropy budget.

Index Terms—Brute-force attack; Guesswork; Inscrutability;
Rényi entropy; Universal methods; Large deviations.

I. INTRODUCTION

In recent years, data storage has experienced a shift toward
cloud storage where data is stored in a diversity of sites,
each hosted at multiple locations. Cloud service providers
assume responsibility for availability, accessibility, and most
important, the security, of the stored data. But how secure is
the cloud? The vulnerabilities of the cloud storage services
have been exploited in several recent incidents resulting in
the compromise of very private data stored on the cloud.
The security guarantees advertised by individual sites typically
assume an isolated attack. However the actual vulnerability is
to a coordinated attack, where an attacker with access to more
than one site combines partial information to compromise
overall security.

Guesswork, which forms the mathematical framework for
quantifying computational security subject to brute-force de-
termination by query, was first considered in a short paper
by Massey [1] who demonstrated that the number of guesses
expected of an attacker bears little relation to the Shannon
entropy. Arikan [2] then proved that this guesswork grows
exponentially with an exponent that is a specific Rényi entropy
for iid processes. His result has been generalized to ergodic
Markov chains [3] and a wide range of stationary sources [4],
[5]. Arikan and Merhav [6] have also derived fundamental
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limits on guessing, subject to an allowable distortion. Sundare-
san [7] considered guessing on iid processes with unknown
statistics and showed that the growth rate of the average
guesswork is related to a specific Rényi entropy. Recently,
Christiansen and Duffy [8] showed that guesswork satisfies a
large deviations principle, completely characterizing the rate
function, and providing an approximation to the distribution of
guesswork. Finally, in [9], the idea of guesswork was extended
beyond guessing a single secret string to a setup in which
an attacker wishes to guess one or more out of many secret
strings drawn independently from not necessarily identical
string-sources. It was shown in [9] that when the individual
string-sources are stationary, under some regularity conditions,
guesswork satisfies a large deviations principle whose rate
function is not necessarily convex.

In this paper, in a setup similar to [9], we consider V se-
cret strings drawn independently from identical string-sources
that are constrained to satisfy a given per-symbol Shannon
entropy budget. We define inscrutability as the exponent of
the average number of guesses required of an adversary to
determine a secret string by query. Accordingly, per-symbol
inscrutability is the contribution of each symbol in a string to
the exponent of average guesswork. Finally, inscrutability rate
(if it exists) is defined as the asymptotic rate of increase in the
exponent incurred by each additional symbol in the string. Our
contributions in this paper are summarized in the following:
• We show that the inscrutability rate of a constrained

string-source, if it exists, lies between the per-symbol
Shannon entropy constraint and the logarithm of the size
of the support, i.e., log |X |.

• We consider guesswork on finite-memory stationary
string-sources1 with hidden statistics. We show that when
the inquisitor does not know the statistics of a finite-
memory string-source, he can devise a universal guessing
strategy that is asymptotically optimal in the sense that it
achieves the same inscrutability rate as the string-source
with unhidden statistics.

• Finally, we establish that the upper bound on the in-
scrutability rate is tight by showing that there exists a
string-source that achieves an inscrutability rate of log |X |
under the same Shannon entropy budget.

1This is a viable model for the case where the secret strings are chosen as
chunks of a compressed file.
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II. PROBLEM SETUP AND RELATED WORK

Let X = {a1, . . . , a|X |} be a finite alphabet of size |X |.
Denote xn+k−1

k = xkxk+1 . . . xn+k−1 ∈ Xn as a n-string
over X . Further, let xn = xn1 and for i > n, xni = ∅, where ∅
denotes the null string. Let µn denote a probability measure on
Xn. We refer to {µn}∞n=1 as a string-source. We use the nota-
tion {µn} to denote {µn}∞n=1 as well. Note that the marginals
of {µn} might be position dependent, i.e.,

∑
xn∈X µ

n(xn) is
not necessarily equal to µn−1(xn−1). A string-source is said
to be stationary if

∑
x1,...,xk

µn+k(xn+k) = µn(xnk+1). Let
Xn ∈ Xn be a random n-string drawn from µn.

Some of the results in this paper are derived for finite-
memory parametric string-sources.

Definition 1 (finite-memory parametric string-source): A
finite-memory parametric string-source is parametrized with a
d-dimensional parameter vector θ = (θ1, ..., θd). Let Λ ⊂ Rd
be a d-dimensional open set where the d parameters live. Then,
µnθ denotes a parametric probability measure defined by the
parameter vector θ on n-strings. We assume that {µnθ } is a
stationary string-source for all θ ∈ Λ. We also assume that the
source has a finite memory of at most h, i.e., the probability of
observing each symbol at any position at most depends on the
symbols in the previous h positions. For the convenience of
notation, we assume that x0

−h+1 is a run of length h of symbol
a0. We denote PΛ as the family of parametric string-sources
such that θ ∈ Λ, i.e., PΛ = {{µnθ } : θ ∈ Λ}.

The finite-memory parametric models include all iid and
finite-memory Markov string-sources. The simplest parametric
model is a binary iid string-source with X = {0, 1} and
θ = P{Xi = 1} is the single source parameter, which lives in
Λ = (0, 1). Note that we exclude the boundaries. For example,
µθ(1, 1, 0) = θ2(1 − θ). Consider a binary Markov source
as another parametric model on X = {0, 1} with d = 2
parameters

(θ1, θ2) = (P{Xi = 1|Xi−1 = 0}, P{Xi = 1|Xi−1 = 1}),

that live in Λ = (0, 1) × (0, 1). For example, µθ(1, 1, 0) =
θ1θ2(1 − θ2) since we assume that x0 = 0. Finally, consider
order r Markov processes over alphabet X . In this case,
the source parameters are the non-zero transition probabilities
given the previous r symbols, and hence, d = |X |r(|X | − 1).

Let Hn(µn) denote the Shannon entropy of a random n-
string drawn from µn, i.e.,2

Hn(µn) = −E {logµn(Xn)} =
∑

xn∈Xn
µn(xn) log

(
1

µn(xn)

)
.

Further, let H({µn}) be the Shannon entropy rate of the string-
source (if it exists), i.e., H({µn}) , limn→∞

1
nH

n(µn).
Similar to [9], we consider V strings, denoted by xn,V =

(xn(1), . . . , xn(V )), that are drawn independently from an
identical string-source {µn}. This extends the guesswork
problem to a multi-string system with V strings where an
inquisitor wishes to identify U out of V strings. The case
where V = U = 1 corresponds to a single-string guesswork
problem and has been studied extensively.

2In this paper log(·) always denotes the logarithm in base 2.

We have the following assumptions on the attacker and
chooser:
• The length n of the chosen strings is known to the

attacker.
• The chooser draws V strings independently from the

string-source {µn}.
• {µn} is known to the attacker. This assumption will be

dropped for finite-memory parametric string-sources in
Section IV.

• At each time, the attacker is allowed to pick one of the
systems, say system i, and ask “Is Xn(i) = yn?”. He
continues this process until he correctly guesses U of the
V randomly drawn strings xn,V .

• In Sections III and V, we assume that the chooser is con-
strained to choose a string-source {µn} ∈ ∆HX , where
∆HX is the set of all string-sources supported on the finite
alphabet X that satisfy a per-symbol entropy constraint
of HX for all n ≥ 1. That is (1/n)Hn(µn) = HX . We
also assume that HX > 0.

In the single-string special case, it is straightforward to see
that when the probability distribution µn is known to the
attacker, the optimal strategy (that stochastically dominates
any other strategy) would be to order all possible n-strings
from the most likely outcome to the least likely (breaking ties
arbitrarily), and then query the strings one by one from the
top of the list until the correct password has been guessed.

In [9], it was proved that an asymptotically optimal strategy
for the multi-string guesswork would be to round-robin the
single-string optimal strategies. That is to query the most likely
string of system 1 followed by the most likely string of system
2 and so forth till system V , before moving to the second most
likely string of each system.

In the multi-string case, let Gµn(U, V,xn,V ) denote the
number of queries required of an attacker to guess U out
of V of sequences xn,V = (xn(1), . . . , xn(V )) using the
asymptotically optimal strategy described above. In the single-
string case, we further use the short-hand Gµn(xn) to denote
Gµn(1, 1,xn,1). We use the subscript µn in Gµn(·) to empha-
size that it is dependent on the specific string-source probabil-
ity measure µn. The average guesswork E{Gµn(U, V,Xn,V )}
quantifies the average number of guesses required of an
attacker to identify U out of V of the secret strings, where
the expectation is taken with respect to the iid copies of µn

on each string.
Massey [1] demonstrated that the average guesswork in the

single-string case is lower bounded by

E{Gµn(Xn)} ≥ (1/4)2H
n(µn) + 1.

The bound is tight up to a factor of 4/e for a geometric
distribution (on an infinite support). Massey also proved that an
upper bound on the average guesswork in terms of the Shannon
entropy does not exist proving that average guesswork bears
little relation to the Shannon entropy of the string-source in
general.

In [2], Arikan considered an iid process and proved that the
exponent of the average growth rate of the average guesswork
(which we refer to as the inscrutability) is the specific Rényi
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entropy with parameter α = (1/2). In other words,

Hn
1/2(µn)−log(1+log |X |) ≤ logE{Gµn(Xn)} ≤ Hn

1/2(µn),

where Hn
α(µn) is the Rényi entropy of order α (α > 0, α 6= 1)

defined as

Hn
α(µn) =

1

1− α
log

( ∑
xn∈Xn

µn(xn)α

)
.

Further, if it exists, the Rényi entropy rate of the string-
source is defined as Hα({µn}) = limn→∞

1
nH

n
α(µn). Note

that Hα({µn}) if it exists converges to H({µn}) as α→ 1.

Definition 2 (inscrutability): The inscrutability of identify-
ing U out of V of the V random n-strings Xn,V , denoted by
Sn(U, V, µn) is defined as

Sn(U, V, µn) , logE{Gµn(U, V,Xn,V )}.

The inscrutability rate of a string-source, denoted by
S(U, V, {µn}), if it exists, is defined as

S(U, V, {µn}) , lim
n→∞

1

n
Sn(U, V, µn).

In particular, it can be concluded from Arikan’s result that
for an iid string-source {µn} the inscrutability rate for U =
V = 1 is

S(1, 1, {µn}) = H1/2({µn}).

Arikan’s result was later generalized to ergodic Markov
chains [3] and a wide class of stationary sources [4], [5],
for which the inscrutability rate can be related to the specific
Rényi entropy rate with parameter (1/2) under those setups
as well. Recently, the authors in [9] derived the inscrutability
rate for arbitrary U and V as the specific Rényi entropy rate
with parameter (V − U + 1)/(V − U + 2). That is

S(U, V, {µn}) = H(V−U+1)/(V−U+2)({µn}). (1)

In particular, it can be deduced from this result that in the
large system limit when V →∞, if U/V stays bounded away
from 1 the inscrutability rate converges to the specific Shannon
entropy rate. This is stated in the following proposition.

Proposition 1: If U scales with V in such a way that U/V <
(1− δ) for some δ > 0, then

lim
V→∞

S(U, V, {µn}) = H({µn}).

Proof: This is an immediate consequence of (1).
The authors in [9] further showed that the guesswork
Gµn(U, V,Xn,V ) satisfies a large deviations principle and
identified its rate function which is stated in Lemma 4 of [9].

III. LOWER BOUND ON INSCRUTABILITY

In this section, we consider a multi-string system with secret
strings drawn independently from the string-source {µn}. We
assume that {µn} ∈ ∆HX . First, we identify the string-
source in ∆HX , denoted by {µn}, that achieves the smallest
inscrutability for all n ≥ 1.

Theorem 2: For any 1 ≤ U ≤ V , the inscrutability of
identifying U out of V secret strings chosen from any string-
source {µn} ∈ ∆HX is bounded from below by

Sn(U, V, µn) ≥ Sn(U, V, µn), (2)

where µn is a truncated geometric distribution on the support
Xn that satisfies the per-symbol entropy constraint. Further,
the inscrutability rate exists for the string-source {µn} and is
equal to the per-symbol Shannon entropy constraint. That is

S(U, V, {µn}) = lim
n→∞

1

n
Sn(U, V, µn) = HX . (3)

Sketch of the proof: It turns out this is an optimization
problem with concave constraints where the set over which
the optimization is performed is convex, hence, the minimiz-
ing distribution is either found by the method of Lagrange
multipliers or lies on the boundary of the set. In this case, it
can be shown that the minimizer is obtained by forming the
Lagrangian.

By considering Proposition 1 and Theorem 2, when {µn}
is a finite-memory parametric string-source, if U scales with
V such that U/V < (1− δ), then

lim
V→∞

S(U, V, {µn}) = S(U, V, {µn}) = H({µn}).

This shows, as V grows large, the inscrutability rate of any
finite-memory parametric string-source with a given Shannon
entropy rate approaches the lowest limit of the inscrutability
rate. Observe that inscrutability rate is defined as the asymp-
totic limit as n → ∞ of the per-symbol inscrutability and in
the above statement the limits as n→∞ and V →∞ are not
interchangeable.

IV. INSCRUTABILITY OF FINITE-MEMORY PARAMETRIC
STRING-SOURCES WITH HIDDEN STATISTICS

In this section, we investigate the impact of hiding the
string-source statistics on the inscrutability of identifying U
out of V secret strings drawn independently from a parametric
string-source {µnθ }. Note that the round-robin of single-string
optimal strategies is an asymptotically optimal strategy for the
multi-string system [9], and hence, we only need to find an
asymptotically optimal single-string guessing strategy. This is
the essence of the universal ordering problem first studied by
Weinberger et al. [10]. Later Arikan and Merhav [6] proposed
a universal ordering based on the empirical entropy of iid
sources, which also bears great similarity with Kosut and
Sankar’s recently proposed universal type-size coding [12]
(universal compression without prefix constraint) on iid pro-
cesses.

A. Universal Type-Size Guessing Strategy
We shall provide a guessing strategy for parametric string-

sources using the method of types (see [11]) and in particular
by considering more general notion of types [17].

The type class of sequence xn is defined as

TΛ(xn) = {yn ∈ Xn : µnθ (yn) = µnθ (xn) ∀θ ∈ Λ}. (4)

Further, |TΛ(xn)| denotes the size of the type class of xn, i.e.,
the total number of sequences with the same type as xn.
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Single-string universal guessing strategy:
• Order all sequences based on the size of their correspond-

ing type classes in an ascending fashion and break ties
arbitrarily.

• Let G?(xn) be the order in which the sequence xn

appears in the above list. Clearly, the sequence xn may
appear before yn only if |TΛ(xn)| ≤ |TΛ(yn)|.

Our main result on the universal type-size guessing strategy
described above is the following.

Theorem 3: Let Λ denote the set of parametric sources
over finite alphabet X . Let Gµnθ be an optimal non-universal
guessing strategy for parametric source with parameter vector
θ, such that in Gµnθ ties are broken in favor of guessing
sequences with smaller type-sizes first and if there is a tie
in the size of the type the tie is broken arbitrarily. Then for
any individual sequence xn, the universal guessing function
G?(x

n) obeys:

G?(x
n)

Gµnθ (xn)
= O(nd+1), (5)

where d is the number of source parameters.
Sketch of the proof: Let Nn denote the total number

of types associated with n-strings. It is straightforward to
show that Nn = O(nd) (see [11]). Observe that using the
defined guessing strategy, only sequences whose type size is
at most |TΛ(xn)| are guessed before xn. Hence, G?(xn) ≤
Cnd|TΛ(xn)| for some absolute constant C. If xn is not of
highest likelihood and smallest type-size, we can change one
symbol in xn to achieve a sequence yn, which is guessed
earlier than xn in the optimal non-universal strategy Gµnθ .
Therefore, Gµnθ (xn) ≥ |TΛ(yn)|. On the other hand, since
yn is obtained by changing only one symbol in xn, we have
|TΛ(xn)|
|TΛ(yn)| < n. Putting these together completes the proof.

Theorem 3 is pointwise and hence can be invoked to prove
the large deviations principle for the multi-string system with
unknown statistics. The derivation is omitted due to page limit.
This was expected in light of the analysis of the single-string
universal strategies in [7], and the recent results on the large
deviations for multi-string guesswork [9]. Let the universal
inscrutability rate of the universal type-size guessing strategy
be defined as

S?(U, V, {µn}) = lim
n→∞

1

n
logE{G?(U, V,Xn,V )}.

Here, we also obtain the multi-string counterpart of Sundare-
san’s Theorem 16 of [7] on the growth rate of the average
universal guesswork.

Corollary 4: The universal inscrutability rate of the univer-
sal type-size guessing strategy is given by

S?(U, V, {µn}) = H(V−U+1)/(V−U+2)({µn}). (6)

This is straightforward by from the large deviations principle
and Corollary 1 of [9].

This establishes that the inscrutability rates for a finite-
memory parametric sources with hidden and unhidden statis-
tics are equal.

B. Universal Bayesian Guessing Strategy

In this section, we present a Bayesian viewpoint on uni-
versal guesswork. The Bayesian construction assumes the
least-favorable Jeffreys’ prior in the context of universal
compression (see [13]) and is readily applicable to finite-
memory sources, such as, finite-state machines [15] and con-
text trees [16]. Let I(θ) be the Fisher information matrix
associated with the parameter vector θ, i.e.,

Ii,j(θ), lim
n→∞

1

n log e
E

{
∂2

∂θi∂θj
log

(
1

µnθ (Xn)

)}
. (7)

We assume that the source is ergodic such that the above limit
exists. Let Jeffreys’ prior, denoted by pΛ, be

pΛ(θ) ,
|I(θ)| 12∫

Λ
|I(λ)| 12 dλ

. (8)

Let µnΛ denote the mixture distribution with Jeffreys’ prior:

µnΛ(xn) =

∫
Λ

µnθ (xn)pΛ(θ)dθ. (9)

Let GµnΛ be the optimal procedure for the distribution µnΛ.
Theorem 5: GµnΛ and G? are asymptotically equivalent, and

hence are both asymptotically optimal.
The proof follows the same lines of Theorem 6 of [14].

C. Twice Universal Guesswork on Finite-Memory Sources

Thus far, we assumed that the source parameters of a finite
memory source were unknown but Λ is known. We further
extend to twice universal guessing on finite-memory sources,
where in addition to the source statistics being unknown to the
inquisitor, the (finite) source model is also unknown (see [18]
for a formal definition).

Let h : N → N be any function such that h(n) = o(log n)
and h(n) = ω(1). For any n ≥ 1, let the unknown source
model be described by a Markov source of order h(n), which
defines a parametric source with d(n) = (|X | − 1)|X |h(n)

parameters. Let Λd(n) denote the space of parameter vectors
for the model. Note that using this strategy we asymptotically
overestimate the number of unknown source parameters of
any finite-order process as the number of source parameters is
growing unboundedly. On the other hand, even with this model
we can achieve the inscrutability of known source parameter
vector case. Let µnΛd(n)

be defined similar to (9). We use h
instead of h(n) when it is clear from the context. Let GµnΛd(n)

be the order in which xn appears when the sequences are
sorted based on µnΛd(n)

in a descending fashion. Then, similar
to Theorem 3 and considering the growth rate of h(n) we have

1

n
log

(
GµnΛd(n)

(xn)

Gµnθ (xn)

)
= o(1).

Alternatively, a universal strategy could be achieved by us-
ing type-size coding using the twice universal types defined
in [18], which would also be asymptotically equivalent to the
aforementioned Bayesian strategy. Let S??(U, V, {µn}) be the
twice universal inscrutability rate of guessing U out of V
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secret strings chosen from an unknown Markov string-source
with unknown finite order.

Corollary 6: For any 1 ≤ U ≤ V , the twice universal
inscrutability rate of a finite-memory Markov source with
unknown order and unknown parameters is the specific Rényi
entropy rate satisfies:

S??(U, V, {µn}) = H(V−U+1)/(V−U+2)({µn}).

Observe that when the number of unknown parameters
grows, the class of probability distributions that can be well
approximated using the parametric model becomes richer. On
the other hand, the cost associated with universality also grows
linearly with the number of unknown parameters resulting in
a fundamental tradeoff. Although our results show that the
cost of universality is asymptotically negligible, this overhead
can be quite large for moderate problem sizes when the class
of distributions is fairly complex. This is analogous to the
cost of universal compression that can be quite large for small
to moderate sequence lengths while universal compression is
known to asymptotically achieve the Shannon entropy.

V. UPPER BOUND ON INSCRUTABILITY

Thus far, we showed that with a constrained Shannon
entropy budget, choosing strings independently from a station-
ary string-source, corresponds to the minimum inscrutability
rate against adversarial attacks. Furthermore, if the string-
source is finite-memory parametric, hiding the string-source
statistics is not asymptotically a remedy in the sense that it
does not decrease the inscrutability rate. A natural question
is whether there exists a string source in ∆HX that has a
larger inscrutability rate than the Shannon entropy rate. This
is answered in the following theorem.

Theorem 7: For any 1 ≤ U ≤ V , the inscrutability of
identifying U out of V strings drawn independently from
{µn} ∈ ∆HX is bounded from above by

Sn(U, V, µn) ≤ Sn(U, V, µn), (10)

where µn is such that all symbols but one are uniform
and the probability measure is distributed between the most
probable symbol and the rest of the uniform symbols such
that the Shannon entropy budget HX is satisfied. Further, the
inscrutability rate exists for the string-source {µn} and is equal
to log |X |. That is

S(U, V, {µn}) = lim
n→∞

1

n
Sn(U, V, µn) = log |X |. (11)

The proof is omitted due to page limit.
Theorem 7 indeed reveals that given any non-zero Shannon

entropy budget HX , the inscrutability rate of the string-source
{µn} is equal to that of a uniform distribution on the entire
support set. In light of Theorems 2 and 7, if the inscrutability
rate exists for a string-source {µn} ∈ ∆HX , then for all 1 ≤
U ≤ V it satisfies:

H1({µn}) = HX ≤ S(U, V, {µn}) ≤ log |X | = H0({µn}).
(12)

VI. CONCLUSION

In this paper, we considered multi-string guesswork subject
to source constraints. We defined inscrutability as the average
growth rate of the exponential number of guesses required
of an inquisitor to determine one or more secret strings
out of many in a brute-force attack. We established that
the inscrutability rate lies between the Shannon entropy rate
(Rényi entropy rate of order 1) and the logarithm of the size of
the support set (Rényi entropy rate of order 0) and showed that
there exist sources that achieve either end of the range. Finally,
we also proved that hiding the statistics of any finite-memory
string-source does not provide larger inscrutability rate, i.e.,
the per-symbol gain of hiding the statistics of a finite-memory
string-source is asymptotically vanishing.
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[18] Á. Martı́n, N. Merhav, G. Seroussi, and M. J. Weinberger, “Twice-
universal simulation of markov sources and individual sequences,” IEEE
Trans. Inf. Theory, vol. 56, no. 9, pp. 4245–4255, Sept. 2010.

2761


