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ABSTRACT:

Mobile Mapping Systems (MMS) have become important and regularly used platforms for the collection of physical-environment data
in commercial and governmental spheres. For example, a typical MMS may collect location, imagery, video, LiDAR and air quality
data from which models of the built-environment can be generated. Numerous approaches to using these data to generate models can
be envisaged which can help develop detailed knowledge in the monitoring, maintanence and development of our built-environment.
In this context, the efficient storing of this raw spatial data is a significant problem such that bespoke and dynamic access is possible
for the generation of modeling requirements. This fundamental requirement of managing these data, where upwards of 40 gigabytes
per hour of spatial-information can be collected from an MMS survey, poses significant challanges in data management alone. Existing
methodologies mantain bespoke, survey oriented approaches to data management and model generation where the original MMS spatial
data is not generally used or available outside these requirements. Thus, there is a need for an MMS data management framework where
effective storage and access solutions can hold this information for use and analysis in any modeling context. Towards this end we
detail our storage solution and the experiments where the procedures for high volume navigation and LIDAR MMS-data loading are
analysed and optimised for minimum upload times and maximum access efficiency. This solution is built upon a PostgreSQL Relational

Database Management System (RDBMS) with the PostGIS spatial extension and pg_bulkload data loading utility.

1 INTRODUCTION

Infrastructural mapping and monitoring has become an integral
part of the academic, commercial and governmental sphere where
detailed knowledge of the built environment is easily accessible.
To this end Mobile Mapping Systems (MMS) play an important
role in generating these environment-model data sources. They
are particularly suited to the road-network infrastructural man-
agement case, as multiple environmental modelling sensors can
be integrated, calibrated and transported on a single collection
platform. Typically, high accuracy near 3D geospatial data can
be recorded from which detailed, bespoke and comparative anal-
ysis can be performed in order to monitor, understand and plan
a road-networks status and/or requirements. This paper concerns
the LiDAR data collected from an MMS van which is equipped
with a Global Positioning System (GPS), an Inertial Navigation
Sensor (INS), six progressive scan cameras, a Light Detection
and Ranging (LiDAR) unit, a multispectral camera and a thermal-
imaging camera. Upwards of 40 gigabytes of data per hour can
be acquired from this MMS platform with the average hourly Li-
DAR data file outputs containing 18 million points.

When dealing with large datasets such as MMS data, it is not
sufficient to deal with the storage, access and subsequent pro-
cessing of this data in isolation. These three elements in MMS
data handling are interlinked and require a holistic approach. We
are building a mobile mapping data framework based around a
spatial database management system (SDBMS). In this paper we
will deal with our initial investigations into the storage, access
and processing of LiDAR data in a SDBMS with particular fo-
cus on the efficient uploading and storage of this data. Both the
storage and post-survey processing of these data present a num-
ber of computing challenges because of the high volumes of de-
tailed geospatial information involved. However, it is the storage
and accessing of these data that is particularly problematic as no
existing integrated framework solution can exploit not only vast

data sets such as LiDAR, but also the broader spectrum of spatial
information that is being collected, for example video.

Towards this requirement there exists a significant desire to store
vast 3D spatial data in a database management system (DBMS)
(Schon et al., 2009, Nandigam et al., 2010, Breunig and Zla-
tanova, 2011). DBMSs offer transaction guarantees and multi-
user, random access of potentially very large datasets, in addition
to advanced features, such as back-up and restore capabilities.
However, the typical work flow with regards to LiDAR often
does not provide the user with the actual raw LiDAR data. In-
stead, users have to decide on a format for the data that they wish
to perform certain analysis on, for example a Digital Elevation
Model (DEM). For the MMS context in particular, there typically
exist two vast 3D point data sets: one is the navigation points that
describe the GPS track of the MMS throughout the survey, and
the other being the actual LiDAR survey point cloud. Preserv-
ing this information has the potential to empower several queries,
where the collection of navigation points can be employed in or-
der to describe the actual LiDAR data set. Consequently, users
are currently prohibited from exploiting the full range of opportu-
nities that typical MMS surveys offer. As a result Spatial DBMSs
(SDBMSs) appear particularly attractive in this context.

However, with regards to the storage of LIDAR data while DBMSs
have been used in this context, (Schon et al., 2009, Nandigam et
al., 2010, Sharma et al., 2006, Rottensteiner et al., 2005, Chen
et al., 2010, Ming et al., 2009), no significant solution currently
exists to support this approach over and above existing LAS file
format solutions. A number of methodologies have been pro-
posed that attempt to define a comprehensive LiDAR-data man-
agement framework, (Ferede et al., 2009, Hongchao and Wang,
2011, Hongchao and Wang, 2011), where the storage, access and
analysis of these data are defined and all propose at some level
the requirement for a database core. In (Nandigam et al., 2010),
it is suggested that alternative support that includes LAS file for-



mats should form an integral part of their implementations where
they only store metadata related to the point data in the DBMS,
while the actual data remains stored across several files. How-
ever, retrieving bespoke sets of raw point cloud data using this
methodology is not optimal when spatial constraints are required.
In, (Jaeger-frank et al., 2006), a Grid computing solution is con-
sidered while in, (Mumtaz, 2008), an object-relational database
solution is presented as part of the CityServer 3D application.
(Sharma and Parikh, 2008, Parikh et al., 2004b, Parikh et al.,
2004a) define a web-based LiDAR analysis, experimentation and
educational platform built around a MySQL database.

In our approach we use the popular PostGIS SDBMS (2001),
which is an implementation and extension of OCG standards and
provides a spatial extender to PostgreSQL. PostGIS enjoys wide
spread support and substantial integration with GIS software, such
as Mapserver, Geotools, FDO and many more. However, the ad-
vantages of a system like PostGIS remain relatively unexploited
with regards to MMS surveys. Thus, in this paper we discuss
the specific problem of inputting large volumes of LiDAR point
cloud data into an integrated SDBMS framework for MMS data.
We do this by detailing the results of our comparisons in perfor-
mance scaling for populating PostGIS tables with LiDAR data
and building spatial indices. This is achieved by comparing the
PostgreSQL’s COPY functionality to the pg_bulkload extension,
which we have adapted for spatial data in this case. A signifi-
cant performance increase has already been achieved through our
ongoing test implementations.

2 MOBILE MAPPING SYSTEMS DATA

Empirical experience with MMS geospatial data, in particular Li-
DAR data, suggests that the primary obstacles in the processing
of these data is their considerable size and the inability to easily
constrain the data based on spatial attributes. Towards a solution
to this problem we have implemented a SDBMS approach that in
this instance handles the type of MMS data detailed in Table 1.
The first stage in our solution is the developement of a platform
and methodology where large volumes of data can be stored in
a accessible form. However, populating a SDBMS from a data
source that is generating, on average, 36GB’s of spatial informa-
tion every hour is no trivial task. In this paper we present the
results of our testing the feasibility of batch processing the MMS
into a well structured, spatially-indexed database.

Navigation LiDAR
10kHz - 250kHz 75kHz - 400kHz
GPS Time GPS Time
Latitude, Logitude, Altutude | Latitude, Logitude, Altutude
Roll, Pitch, Yaw Pulse Width
Amplitude, Reflectance
Target Number
Scanner X,Y,Z
Target Type
Channel Descriptor
Scanner angles

Table 1: Properties of the spatial data collected from the XP1
MMS survey vehicle.

The survey-processing methodology that prevails in industry stan-
dard software suites has proven to be a significant constraining
factor in a number of aspects of our LiDAR analysis work, not
least the ability to easily segment LiDAR data across a number
of different surveys. These suites provide no context for spatial
optimisation across numerous surveys, where data segmentation

for road-edge detection, for example, can be easily implemented
based on where the interest area is rather than which survey it be-
longs too. Therefore, numerous runs of the same algorithm have
to be performed on separate surveys. Alternatively, difficult data-
assimilation processes have to be followed to generate the single
source data set within these software solutions. This is because
the generally accepted commercial approach to using LAS files to
store LiDAR on a survey based approach, visualised in Figure 1,
does not easily lend itself to spatial segmentation and analysis.
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Figure 1: This example of a Survey-based approach for LiDAR
data management in commercial software is typical.

However, approaching this problem with a spatial-constraint per-
spective, it is possible to optimise the LiDAR data being output.
This can be achieved through procedures that leverage the power
of a platform such as PostGIS and its numerous, integrated, spa-
tial API’s. The geo-referenced raw LiDAR is stored in a database
where optimised spatial indexes can be generated in order to fa-
cilitate efficient querying of the data set. Consequently, optimally
located LiDAR data can be output in a user requirements spatial
context where use cases, such as the road detection algorithm,
can operate on a reduced target data set.

Drawing on the spatial variables collected from an MMS survey,
shown in Table 1, a selective LIDAR data segmentation can be
generated. Given the known calibration information for the MMS
platform a spatial extent query can be performed using the low
resolution navigation data to segment the high resolution LiDAR.
As an example of segmenting an optimised road surface data set,
a bounding box can be constructed where, in the altitude plane,
it defines 3D space that is below the GPS track, in the orthogo-
nal plane to the traversal direction, it is extended to a adjustable
distance likely to cover beyond the road edge and, in the traver-
sal plane, can extend to an adjustable distance along the GPS
track. Based on this bounding box a 3D spatial query can isolate
from the larger LiDAR data store all points contained within, thus
reducing the amount of points that need to be processed by any
process or algorithm that is relevant to LiDAR road-data analysis.
Using this selective example it has been shown in (Mc Elhinney et
al., 2010, Lewis et al., 2010) that a road-edge detection algorithm
can produce results more efficiently, however, and importantly, it
can be applied across multiple different surveys much easier.

3 SDBMS ARCHITECTURE

The navigation and LiDAR data described in the previous sec-
tion are stored in a PostgreSQL relational database management
system. Integrated into this database solution are the PostGIS
spatial extensions and the pg_bulkload data loading utility. It is
through the use of the pg_bulkload utility that LiDAR data input
and spatial-index generation have been optimised. Figure 2 gives
a broad overview of the MMS data management framework being
developed on this platform.
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Figure 2: MMS data management framework overview.

While in Figure 3 we provide a more detailed sample from our
SDB schema which incorporates a number of levels of spatial
detail from which data extraction is optimised.
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Figure 3: Sample from our MMS spatial database schema.

Using this platform we have shown in (Lewis et al., 2010) how
this technology decision has enabled us to optimise the large vol-
umes of LiDAR data for processing by feature extraction algo-
rithms. However, the core component to being able to implement
this approach is the ability to use the extensive functionalities
provided by PostgreSQL’s PostGIS spatial extensions. Through
PostGIS we have been able to generate and store Open Geospa-
tial Consortium (OGC) compliant spatial objects in a standard
relational database. Extending from this functionality is the spa-
tial indexing options provided by PostGIS. However, while it is
trivial to generate a PostGIS spatial object (geometry) and its as-
sociated spatial-index, doing so for huge volumes of LiDAR data
is not trivial. It is at this point that the need to input these large
volumes of spatial data in a efficient manner becomes important.
While it has been identified that our access and analysis approach
has proven optimal for LIDAR processing, this advantage may be
offset by requirements to push the data through very long data
uploading processes.

To this end we have completed a set of experiments where we
have implemented and tested the built in PostgreSQL bulk data
input functionality, the COPY command, against the pg_bulkload

bulk data loading utility. The PostgreSQL COPY command moves
data from a file into a DB table through a SQL statement. Its per-
formance is better on initial data loading if the destination table
is empty. Performance is also improved when the data are loaded
without an index constraint; thus dropping and recreating the in-
dexes after loading is optimal. Pg_bulkload provides an alterna-
tive method that has been developed by the Nippon Telegraph
and Telephone Corporation for PostgreSQL. It is an optimised
high volume data loading utility that skips some of the process-
ing overheads used by COPY. It is designed to load huge amounts
of data to a database where you can choose whether database con-
straints are checked, whether errors are ignored during the load-
ing and to have the index updated as a synchronous operation.
Pg_bulkload has two operation modes; Direct and Parallel. Direct
uses one core of the system to upload the data while parallel at-
tempts to distribute as much processing across the systems cores.
On servers this should increase the efficiency of pg_bulkload. The
following sections detail the experiments we performed and the
analysed results achieved.

4 EXPERIMENTS

We selected four files and three different uploading strategies to
compare COPY and pg_bulkload. For the four files, we first se-
lected a large dataset over 6GBs in size and a small dataset over
800MBs in size. We create two files from each, as shown in Ta-
ble 2. The first file has 10 columns while the second file has 14
columns. By keeping the data constant and only changing the row
size we intended to examine the effect row size had on the upload-
ing approaches. Our server is a Dell PowerEdge with 32GBs of
RAM, 64-bit Ubuntu Server, a 16-core Intel(R) Xeon (R) 2.8GHz
X5560 and 7TBs of storage.

In the first experiment we compared like with like. Both COPY
and pg_bulkload followed the same process for uploading where
the spatial index is created from the table after all the data has
been uploaded. This is the most inefficient approach. This pro-
cess was:

1. Create the Table - A empty table is created from the input
file header fields.

2. Load Data - Populate the whole table with all the raw Li-
DAR file data.

3. Create Geometry Column - Add a PostGIS POINT-geometry
data type field to the table.

4. Update Geometry Column - Update the geometry field from
the tables raw latitude, longitude and altitude data.

5. Create Index - Create the spatial index on the PostGIS ge-
ometry field.

6. Vacuum Table - Flush the table of all empty tuples etc. to
reclaim and optimise table size.

In the second experiment, we tested one of pg_bulkloads unique
features. It can use an SQL filter to process the data as it is being
loaded into the database. It is also one of pg_bulkload’s con-
straints as it cannot load data from a file that does not have a
structure exactly the same as the target table, whereas the COPY
command can have its parameters set to reflect file and/or table
constraints. This SQL filter option allows us to load a file without
a spatial index and create the spatial index using this SQL filter
while uploading. In this case the process was:



File H Rows [ Cols [ Size (MBs) [ Avg. Row Size (KBs) [ Python (s) [ Table Size (MBs) [ Index Size (MBs)
La 66,182,260 | 10 4359.52 0.0675 308.72 9401 3363
Lb 66,182,260 14 6757.94 0.1046 375.82 12000 3362
Sa 8,138,952 10 526.90 0.0663 38.06 1156 520
Sb 8,138,952 14 821.85 0.1034 47.67 1479 426
Table 2: File properties.
1. Create the Table. 4.1 Results
Create G | File || SQL COPY | PG direct | PG parallel
2. Create Geometry Column. La 9815 95.99 05 44
Lb 108.77 103.39 103.89
3. Create Index. Sa 9.24 8.84 8.84
Sb 10.42 9.64 9.67

4. Load Data.

In the third experiment, we selected the most efficient upload-
ing approach we have found for both COPY and pg_bulkload and
compared them. For our data we found that by pre-processing the
file using python and adding the spatial index column directly to
the file as a string we significantly decreased the uploading time.
This process involved using the Latitude, Longitude and Altitude
fields in the LiDAR data file to concatenate a canonically suitable
representation of a PostGIS base-geometry data type. This base
data type is an Extended Well Know Text (EWKT) representa-
tion, in three dimensional space, of the OGC Simple Features for
SQLspecification which only defines a two dimensional structure.
For COPY the process was:

1. Python - Process the original file to add the PostGIS geom-
etry data type representation into it.

2. Create the Table.
3. Create Geometry Column.
4. Load Data.

5. Create Index.

Table 3: Total upload time in minutes for Experiment 1.

In Table 3 the runtime results from experiment 1 are presented.
This experiment proved to be the slowest procedure in terms of
runtime mainly due to the requirements to perform a full VAC-
UUM procedure to optimize disk space once data loading and
index creation had been completed. Because of the update proce-
dure that generates the PostGIS geometries a significant amount
of redundant database tuples are created which in the case of files
La and Lb bloated an optimized 12GB table to 21GB before the
VACUUM. Comparatively, however, in all the cases the runtimes
for pg_bulkload are faster than the standard COPY command.

File || SQL COPY | PG direct | PG parallel
La N/A 78.66 75.84
Lb N/A 81.99 79.00
Sa N/A 8.67 8.32
Sb N/A 9.21 8.93

Table 4: Total upload time in minutes for Experiment 2.

In Table 4 the results show an optimized load procedure and
database size as redundant data is not generated during any of
the operations. In this case a comparative SQL COPY procedure
could not be implemented as no similar state could be achieved
at each operational stage between COPY and pg_bulkload. How-
ever, this experiment does show an improved runtime for loading
these large datasets over that of experiment 1.

File | SQL COPY | PG direct | PG parallel

La 54.50 52.42 48.08
Lb 59.47 56.03 51.75
Sa 5.87 5.28 5.09
Sb 6.42 5.82 5.59

While the process for pg_bulkload differed slightly:

1. Python.

2. Create the Table.

3. Create Geometry Column .
4. Create Index.

5. Load Data.

The following section analyses the results from these procedures.

Table 5: Total upload time in minutes for Experiment 3.

In Table 5 the results show the fastest runtimes from all three ex-
periments. In this case a comparative procedure could be gener-
ated between COPY and pg_bulkload. The only difference in the
operational procedures is when the spatial- index is created; in the
COPY case it is initiated after the table has been loaded with data
from the input file, while, in the case of the pg_bulkload an empty
spatial-index is created before loading commences. This differ-
ence is required to initiate the index update procedures within
pg-bulkload, otherwise initiating the creation of the spatial-index
could follow as in the COPY case, however, this would not be op-
timal based on pg_bulkloads inherent PostgreSQL operational ef-
ficiencies. Significantly in this case it can be seen that the speed-
up gain using pg_bulkload in parallel mode is, on average, 87%
that of the standard COPY procedure provided with PostgreSQL.

In an attempt to develop a method to predict the length of time up-
loading a file would take based on the file attributes we examined
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Figure 4: Timing plots for data load time per row for files (a) La
and (b) Lb.
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Figure 5: Timing plots for data load time per row for files (a) La
and (b) Lb.

the average upload time per row for the four files. As expected,
the time to upload a row of data for the two files with 10 columns,
Figures 4 and 5 (a), was shorter than when uploading the data for
the 14 column case, Figures 4 and 5 (b). However, uploading the
smaller file had a consistently shorter per row upload time. Also,
the percentage increase in row processing time for these extra 4
columns was always significantly smaller than the percentage in-
crease in row size (kilobytes). Adding these columns to the files
resulted in a file size change ranging between 33-56%, while the
resulting row uploading time change ranged between only 8-15%.
In Figures 6 and 7 the timing information per kilobyte is plotted.
For all experiments an increase in row size resulted in a reduc-
tion in the row processing time per kilobyte. These results show
that, with PostgreSQL, as the number of rows of data to upload
increases the time per row increases and that an increase in row
size will lead to a decrease in time per kilobyte. This implies
that there is a non-linear relationship between upload time, the
number of rows and row size.

5 CONCLUSION

In this paper, we have discussed in detail the different tools and
strategies for uploading large LiDAR data into a PostGIS enabled
PostgreSQL database. We have compared PostgreSQLs inbuilt
COPY function with pg_bulkload in a number of experiments.
Our comprehensive suite of experiments have shown that the best
method for uploading LiDAR data and adding a spatial index
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Figure 6: Timing plots for data load time per kilobyte for files (a)
La and (b) Lb.
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Figure 7: Timing plots for data load time per kilobyte for files (a)
Sa and (b) Sb.

to the database is to append the geometry information for each
point to the file by pre-processing the files using a scripting lan-
guage such as python. This resulted in a minimum 40% speedup
over the traditional SQL approach used by COPY or pg_bulkload.
We have also demonstrated that using pg-bulkload in the parallel
mode is the fastest method for uploading large LiDAR data. In
all cases we achieved a minimum of a 12% speedup over COPY
using this method.
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