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Optimizing Consistency by Maximizing Bandwidth Usage
in Distributed Interactive Applications
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A key factor determining the success of a Distributed Interactive Application (DIA) is the maintenance of a consistent shared
virtual world. To help maintain consistency, a number of Information Management techniques have been developed. However,
unless carefully tuned to the underlying network, they can negatively impact on consistency. This work presents a novel adaptive
algorithm for optimizing consistency by maximizing available bandwidth usage in DIAs. This algorithm operates by estimat-
ing bandwidth from trends in network latency, and modifying data transmission rates to match the estimated value. Results
presented within demonstrate that this approach can help optimise consistency levels in a DIA.
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1. INTRODUCTION

Distributed Interactive Applications (DIAs) have become extremely popular, both socially and com-
mercially, in recent years. At their core, they involve multiple participants collaborating and compet-
ing within a virtual environment, even though those participants may be located at geographically
separate locations [Macedonia and Zyda 1997]. Popular examples of DIAs include online games such
as Counter Strike and World of Warcraft (www.blizzard.com), collaborative virtual environments such
as DIVE [Frecon and Stenius 1998], and virtual meeting places such as Second Life and Playstation
Home (www.playstationhome.com) on the Playstation 3.

In a DIA, each participant typically controls a virtual entity or avatar. This is the virtual represen-
tation of the participant, and it is described by a number of state variables. Example state variables
include position and orientation. Communication between participants is achieved by sharing any
changes to the value of these state variables using synchronization messages. These are transmitted
periodically across the network connecting participants, and update the remote state of the virtual
entity, which is the state replicated on other participants’ host computers.
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In order for collaboration and competition between participants within a DIA to be meaningful, it is
vital that all changes to state variables are delivered to relevant participant nodes in a timely manner
[Claypool and Claypool 2006]. However, each synchronization message is subjected to the limitations
of the network connecting participants, meaning that this timeliness constraint can be broken. One
of the most significant limitations is network bandwidth [Roehle 1997]. The bandwidth of a network
link is a measure of maximum throughput of traffic on that link. A network path is typically made up
of many links, each with separate bandwidth characteristics. On such a path, the maximum capacity
of the network path is determined by the link with the lowest available bandwidth, known as the
bottleneck link. In the current-day Internet, the bottleneck link is typically the link connecting the
home user to their Internet Service Provider, also referred to as the “last mile link” [Jehaes et al. 2003;
Dube et al. 2005].

If the data being transmitted by a DIA across the bottleneck link exceeds the available bandwidth
of that link, then data will need to be buffered or dropped until the flow of data decreases, causing
an increase in network latency, and possible loss of data. When this occurs, participants involved in
the DIA will have to update their version of the virtual world with, at best, out of date state data,
or, at worst, no state data at all. This will then cause the value of the world state variables on each
participant host machine to diverge. This divergence is known as inconsistency [Dourish 1995; Vaghi
et al. 1999; Delaney et al. 2006a]. Inconsistency can manifest itself in many ways in a DIA, depending
on the nature of the data transmitted by the DIA. In general, inconsistency can be considered from
either a system or user perspective. A system-centric view of consistency means that inconsistency
is quantified in terms of application-specific characteristics, regardless of how the end user perceives
that inconsistency. An example of this is the spatial distance between a local and remote version of an
entity at the same time instance. On the other hand, user centric consistency quantifies inconsistency
in terms of the end user experience [Xue et al. 2002]. An example of this type of measure includes the
level of latency that has a perceptual impact on user experience within the DIA.

In a modern DIA, the individual flows of data transmitted between participants are very thin, and
can typically fit within the capabilities of a 33kbit/s modem [Feng et al. 2002]. Inconsistencies then
arise due to the aggregation of these streams as an application attempts to accommodate an increas-
ing numbers of players, particularly across the last-mile upstream connection of a modern ADSL net-
work. For example, an ADSL broadband connection with a 2Mbit/s downstream link may have only a
256kbit/s upstream link. In this case, even though a single stream may be only 33kbit/s, the aggregate
data requirements of, for example, 10 players, would quickly overload the 256kbit/s upstream link.
This issue manifests itself in Peer-to-Peer scenarios, where a peer must transmit data to every con-
nected participant, and in Client/Server scenarios, where the server must transmit world state to each
connected client.

In order to improve consistency, a suite of algorithms, collectively referred to as Information Man-
agement (IM) techniques, have been developed. [Singhal and Zyda 1999; Bernier 2001; Delaney et al.
2006b; McCoy et al. 2007]. These algorithms attempt to optimize the streams of data transmitted by a
DIA, and thus reduce the inconsistency caused by overloaded network hardware. IM techniques oper-
ate by purposefully introducing a controlled level of inconsistency into the DIA by reducing the number
of synchronization messages transmitted between participants. Although this means that state incon-
sistency increases, the reduction in the amount of data transmitted across the network should, in
theory, reduce the load on the bottleneck link, and reduce latency. This in turn, would then reduce
overall inconsistency in comparison to transmitting all synchronization messages and overloading the
bottleneck link.

However, in practice, use of an IM technique does not always result in an improvement in consis-
tency. Consider the scenario presented in Figure 1. Here, inconsistency arising within a DIA when an
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Fig. 1. Inconsistency in different network conditions.

IM technique is not employed is plotted against increasing network traffic that is being transmitted
across a single node with a finite amount of bandwidth. In the heavily loaded region, an IM technique
could be used to reduce the load on the bottleneck link and reduce network latency. However, if the
bottleneck link is not overloaded, then using an IM technique reduces data transmission rates, thus in-
curring extra state inconsistency, with little or no reduction in network latency. This increases overall
inconsistency [Marshall et al. 2006b].

This issue arises as the level of inconsistency introduced by an IM technique is typically governed
by system or user centric control parameters, and the characteristics of the underlying network con-
necting participants are rarely considered. This means that the real network level impact of using an
IM technique is largely unknown, so it can be difficult to ascertain whether an IM technique is truly
improving consistency. In this work, we advocate a move towards using network centric control pa-
rameters for determining data transmission rates in DIAs. The value of these parameters is governed
by the characteristics of the underlying network connecting participants. By doing this, the optimal
region of data transmission that gives the lowest inconsistency in the current network environment
can be maintained, as highlighted in Figure 1.

This article presents the design and evaluation of a novel information management technique, which
we refer to as the Consistency Optimization (CO) algorithm. This application layer technique is de-
signed to optimize the consistency of the data transmitted by a Peer-to-Peer or Client/Server DIA,
where the last-mile link is the bottleneck link. It operates by unobtrusively monitoring trends in net-
work latency, and using these trends to reduce data transmission rates only when the reduction will
improve consistency. The algorithm attempts to minimize the reduction in data transmission rates by
estimating the available bandwidth on the bottleneck link when congestion occurs, and adjusting the
data generation rates of the DIA to match the estimated value. Results collected from a variety of
live Internet trials conducted using this technique demonstrate that it can accurately modify the data
generation rates of a DIA to match the available bandwidth on the bottleneck link. In doing so, it can
optimize and improve the level of consistency arising in the DIA.

The rest of the article is laid out as follows. Section 2 examines the link between the manage-
ment of data transmission within DIAs and inconsistency, and demonstrates the motivating factors
behind the development of the CO algorithm. Section 3 details the operation of the CO algorithm. In
Section 4, results are presented that demonstrate that our approach can accurately estimate the re-
sources available on the last-mile link in a typical ADSL broadband scenario, and suitably adapt the
data transmitted by the application. In doing so, the inconsistency arising during the execution of the
DIA can be minimized. The impact of cross traffic on the CO Algorithm is also explored. Section 5 pro-
vides a comparative study of the CO algorithm with existing techniques. Finally, the article concludes
in Section 6, with a discussion of the results, and some suggestions for future work.
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2. INFORMATION MANAGEMENT AND INCONSISTENCY

In this section, the motivating factors behind the need for the Consistency Optimization algorithm are
explored. To do this, a series of live Internet trials were conducted to investigate the link between data
transmission rates and inconsistency using a representative DIA. All trials were conducted between
Portlaoise, Ireland, and Carlow, Ireland. The former is connected to a wireless access point, which is in
turn connected to the Internet via a residential ADSL broadband connection provided by BT Ireland,
while the latter is connected over a corporate network. The upstream link of the broadband connection
is the bottleneck link in the network. Although the advertised speed was 128kbits/s, its actual capacity
was measured at 100kbits/s using PathLoad [Jain and Dovrolis 2002]. Using the “Traceroute” tool
provided in Windows Vista, a total of 7 hops were measured between the two end points.

Due to the large number of players typically involved in a DIA, it was logistically unfeasible at
the time of testing to employ a single node per player. To compensate for this, three separate nodes
were involved in each test, regardless of the number of players in the DIA. The main player node was
located behind the bottleneck link. This node transmitted state data to a varying number of nodes, and
represented either a server transmitting to many clients, or a peer transmitting to many connected
peers. Another node was located behind the corporate connection at Carlow. Its function was to receive
and simulate the state data received from the Portlaoise node. Finally, another node was also located
at another residential connection in Portlaoise, and represented a “sink node.” This node received all
the data relating to all other players in the DIA from the main player node, and allowed the main
player node to transmit data to varying numbers of players across its upstream link. So, for example,
in a 7-player Client/Server simulation, the main player node would transmit one stream of data to
the node at Carlow, and six streams to the sink node. This means that, although the Portlaoise node
is only transmitting to 2 physical nodes, the number of application-level connections that compete for
bandwidth at the bottleneck link scales linearly with the number of players maintained. Thus, it is
representative of behaviour of a typical DIA across the same link.

Over this network, a testbed application was executed. This application consisted of a simple racing
game. The state of each participant in this test application is described by its position and velocity. This
data was generated using a path curvature simulator developed in Matlab [Marshall et al. 2006a], and
features a typical curving path found in a racing application. Clocks were synchronized between the
nodes at Portlaoise and Carlow.

The control parameters of the application were configured to be representative of modern-day DIAs.
First, as many DIAs aim to present a smooth and fast-paced visual feedback to the participant, their
state is updated often, typically between 30Hz and 60Hz. Thus, for the racing application, the simu-
lation was updated at 50Hz. On each simulation tick, the main player node at Portlaoise recorded the
time stamped value of its own state variables, while the node at Carlow recorded the time stamped
state of the Portlaoise node. This is referred to as the local and remote state respectively. Spatial incon-
sistency is calculated as the Euclidean difference between the local and remote positional information
at each time step.

Second, to ensure that the data transmission rates within the test scenario were realistic and in
line with modern DIAs, the testbed application was configured as follows. The maximum packet rate
of the application was 30 Packets Per Second (PPS), which is representative of modern DIAs such as
Counter-Strike [Claypool et al. 2003; Lang et al. 2004]. When a packet is available for transmission,
the most recent state information is transmitted. The payload of each packet transmitted was set to
50 bytes. This value is again representative of a modern DIA [Feng et al. 2002; Lang et al. 2004]. The
header of each packet, including PPPoE (Point to Point Protocol over Ethernet) and Ethernet header
was 72 bytes, resulting in a total packet size of 122 bytes. As the packet rate was always lower than
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Fig. 2. (a) Inconsistency, (b) Bandwidth utilization, (c) Network Latency, (d) Packet Loss as experienced by the main player
node during the initial test scenario.

the simulation rate, there are often cases where the Carlow node does not receive a packet between
simulation ticks. In this case, the previously received velocity information is used to extrapolate the
current position.

For test purposes, each packet was timestamped and contained a sequence number, which were
used to measure one-way delay and packet loss, respectively. Latency is measured as the time between
sending a particular packet from the local application, and receiving that same packet on the remote
application. Packet loss is measured as the burst of packets lost between two consecutively received
packets. So, for example, if a packet with sequence number 10 was received directly after a packet with
sequence number 5, then loss is measured as 4 packets.

An experiment to examine the link between data transmission and inconsistency was conducted
using this experimental testbed. In this experiment, the main player node located behind the ADSL
connection transmitted data to 8 separate participants for 30 minutes. At the start of the DIA simula-
tion, the packet transmission rate to each participant was 1 Packet Per Second (PPS). Every minute,
the PPS was increased by 1, resulting in 30 PPS being sent to each participant by the end of the test.
Results from this experiment are presented in Figure 2. Here, spatial inconsistency, bandwidth uti-
lization, network latency, and packet loss, as experienced by the main player node, are presented. In
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Figure 2(a), m represents virtual metres within the game world. As a reference point for this measure,
the average speed of the entity was approximately 14 meters per second, and the height of the entity
was approximately 2 meters.

Analyzing the spatial inconsistency in Figure 2(a) clearly shows the presence of the U-shaped trend
in inconsistency, as highlighted by the dashed line, and the optimal data transmission point, as identi-
fied in Figure 1. From Figure 2(b), (c), and (d), it can be seen that up until approximately 600 seconds,
the bandwidth is below 100kbit/s, during which time network latency and packet loss is minimal. This
verifies the estimate taken from PathLoad. During this time period, data generation rates of the DIA
can be increased to reduce inconsistency without affecting latency or loss. Using an Information Man-
agement technique to reduce data transmission rates at this point would be pointless, as it would only
induce inconsistency unnecessarily. After 600 seconds, the data generated by the DIA begins overload-
ing the bandwidth available on the link, resulting in a substantial increase in both latency and packet
loss as bandwidth usage increases, and a subsequent increase in inconsistency.

As a reference point for the network latency values, consider that previous work has shown that
the range of acceptable network latency values for DIAs falls between 0.06s and 0.25s [Claypool and
Claypool 2006]. When latency exceeds these value ranges, the experience of the participant is nega-
tively impacted upon. In this heavily loaded area, a reduction in data transmission rates is required in
order to improve overall consistency. Overall, these results suggest that for this particular case with
8 players, a bandwidth usage of 93.2 kbits/s (or 12 PPS for each player), gives the optimal trade-off
between bandwidth usage and inconsistency. The results presented in Figure 2 demonstrate the need
for a scheme that can actively monitor the impact a DIA is having on the underlying network in or-
der to minimize the inconsistency arising during runtime. In the next section, the operation of such a
scheme, which we refer to as the Consistency Optimisation algorithm, is discussed.

3. OVERVIEW OF THE CONSISTENCY OPTIMIZATION ALGORITHM

The operation of our proposed algorithm is now outlined. This algorithm has been designed to operate
in conjunction with existing DIA synchronization messages transported using UDP. Key to the oper-
ation of the algorithm is the “logical connection,” which is a common construct in DIAs that employ
UDP as a transport protocol. This is an application-layer connection that the server maintains to each
client in a Client/Server scenario, or each peer maintains for each other peer involved in a Peer-to-Peer
scenario. The logical connection represents a software channel of communication between a local and
remote endpoint. Multiple logical connections transmit data over the same physical link, giving rise to
aggregation of traffic at the bottleneck link discussed in Section 1.

Network latency is employed as a congestion indicator. A separate network latency profile and data
transmission rate is maintained for each logical connection, meaning that various data transmission
rates can be supported within the one application instance. The trends in the network latency profile
are constantly monitored, and once congestion is detected via an increase in network latency, the avail-
able bandwidth is estimated using the measured magnitude of congestion. The data transmission rates
of the appropriate logical connections are then modified to match the estimated available bandwidth.

On each logical connection, there are two key elements to the Consistency Optimization algorithm,
as shown in the flowchart in Figure 3. The first element is the detection of impending congestion,
which is carried out collaboratively between local and remote endpoints of a logical connection. The
operation of this is highlighted in area 1 and area 2 of Figure 3. The second is the bandwidth estimation
and reaction to congestion, which is carried out locally, and is highlighted in area 3 of Figure 3. The
operation of each element will now be described in detail.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 6, No. 4, Article 30. Publication date: November 2010.



Optimizing Consistency by Maximizing Bandwidth Usage in Distributed Interactive Applications • 30:7

Fig. 3. Flowchart demonstrating the operation of the CO algorithm.

3.1 Congestion Detection

In the CO algorithm, one-way network latency is used as a congestion indicator. Traditionally, record-
ing one-way network latency requires synchronized clocks. However, this requires extra time-related
data to be transmitted within each packet, and is subject to clock skew effects. To deal with this issue,
our scheme employs an unobtrusive method of tracking latency trends [Marshall et al. 2007]. This
method operates by predicting when packets should arrive from a sender, given that the sender is
transmitting packets at a constant rate. If a packet arrives before or after the predicted time, then
latency has decreased or increased respectively, relative to the initial value received. This gives a mea-
sure of “relative latency.” If a sender changes their sending rate, then this information is transmitted
to interested recipients. This is the only information transmitted as part of the latency-monitoring
scheme. In this way, the trends in latency can be monitored, without imposing extra data require-
ments on the application. This approach is similar in operation to that of “Phase Jitter,” which has
been employed to drop VOIP calls on congested last-mile links [McGovern et al. 2006].

Each remote endpoint of a logical connection maintains a relative latency trend. As can be seen in
area 1 of Figure 3, at regular intervals a “slope request” message is transmitted to all connected nodes.
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Fig. 4. Example of relative latency samples with long and short term averages. Key samples used in trend and slope calculation
are highlighted.

This message indicates to all connected nodes that they should perform analysis of the trends in net-
work latency, and return the result of this analysis to the originating host. To avoid transmission of
extra data on the network, this request is piggybacked on existing application data, and not transmit-
ted in a separate packet. Upon receipt of this request, the remote endpoint determines if congestion is
occurring on the connecting link by analysing the trends in network latency occurring since the last
slope request message was received.

To determine trends in network latency, three separate collections of relative latency values are
maintained for each logical connection, as highlighted in Figure 4. The first, LACT , contains the actual
relative latency values. The second, LLT A, is a long-term running average of the actual relative latency
values and is used to detect the presence of trends. Lastly, LST A, is a short-term running average of the
actual relative latency values and is used to calculate trend magnitude. The two separate trends are
employed to reduce the impact of network jitter on the operation of the trend identification scheme.
In the presence of network jitter, LLT A simplifies the process of increasing trend identification, while
LST A allows for accurate calculation of trend magnitude.

It can be seen from Figure 4 that if the short-term latency values, LST A, are always greater than the
long-term average, LLT A, then network latency is showing an increasing trend. With this in mind, a
modified version of the Pairwise Comparison Test can be used to automate increasing trend detection
[Jain and Dovrolis 2002]. Given a relative latency sample, n, and an earlier sample m, the result of the
Pairwise Comparison Test, PCT, can be calculated using Equation (1).

PCT =

∑
s=m... n

F(s)

(n − m)
, (1)

where F(s) =
{

1 i f L(s)ACT > L(s)LT A

0 i f L(s)ACT ≤ L(s)LT A.

If the value of PCT is greater than a specified threshold, then the relative latency values are assumed
to be showing an increasing trend. In practice, the value of this threshold depends on the deviation in
network jitter values, as this will determine how many of the actual latency values are greater than
the long-term average.
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If PCT is greater than the threshold, then the slope in network latency, LS, is calculated using
two relative latency samples from the short term running average, L(n)ST A and L(i)ST A, as shown in
Equation (2). L(n)ST A is the most recently received relative latency value, while L(i)ST A is the value
recorded when the relative latency trends first began to increase, as can be seen in Figure 4. The short-
term average, LST A, is employed in order to reduce erroneous calculations due to jitter in the actual
relative latency values.

LS =
{ L(n)ST A−L(i)ST A

t(n)ST A−t(i)ST A
i f PCT ≥ threshold

0 otherwise,
(2)

where t(x)is the time when sample x was received.
The value of LS is an indicator of the magnitude of congestion on the connecting link between two

participants. Once calculated, as can be seen in area 2 of Figure 4, it is then piggybacked on the next
available application packet.

3.2 Bandwidth Estimation

Following transmission of the slope request, each participant waits to receive the slope value, LS, for
all logical connections before estimating available bandwidth, rather than reacting to each slope value
individually. Thus, the local node can determine where the congestion, if any, is occurring. If all slope
values received show congestion, then it is assumed that the upstream bandwidth is saturated. If only
some are showing congestion, then other links out on the network are showing congestion. Determining
where the congestion is occurring is important to our bandwidth estimation technique, as will be seen
in this section.

Existing bandwidth estimation techniques, such as Self Loading Periodic Streams (SloPS) and Trains
of Packet Pairs (ToPP), employ a similar latency trend analysis to estimate available link bandwidth
[Cheng and Marsic 2001; Jain and Dovrolis 2002; Prasad et al. 2003; Ribeiro et al. 2003]. However,
these approaches use an iterative algorithm to determine bandwidth. Due to this, Pathload, which is
an implementation of SloPS, takes approximately 15 seconds to estimate bandwidth. Although this
results in accurate link capacity estimates, the iterative approaches they employ are not suited to real
time DIAs, which have very strict time constraints.

To deal with these limitations, a different estimation approach, which can operate in real time,
is employed by the CO algorithm. In order to satisfy the real time constraint, and considering that
the scheme is tailored towards the last mile link, here we make the following assumptions. First,
our approach assumes that the application under our control is the only application occupying the
connection. Second, the estimation approach operates by assuming that the link buffer can be modelled
using a queuing system with a deterministic arrival rate and deterministic service rate, also known as
a D/D/1 queuing system.

Under these assumptions, if the arrival rate, RA, at a link is greater than the service rate, RS, of that
link, then messages will be added to a queue and delayed. The system is then said to be unstable, and
the queue length and delay will grow indefinitely (assuming an infinite buffer). The increase in delay
per packet, LP is given by Equation (3).

LP = 1
RS

− 1
RA

. (3)

The increase in one-way latency over a second, as measured by one of the recipients connected to
the bottleneck link, is given by RSLP , as the recipient receives RSpackets per second. However, the
rate of increase in latency is already known, and is given by the value of LS received from the remote
node. The value of RA is also known, as this is the amount of data the node is transmitting over the
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bottleneck link. Therefore, the capacity of the bottleneck node on a link, RS, can be calculated in terms
of LSand RA, as shown in Equation (4).

RS = RA − LS RA. (4)

In order to gain an accurate value of RS, it is crucial that RA is set equal to the amount of data
being transmitted over the bottleneck link. This is why each node waits to receive all values of LS

from all participants. If all connections on the same link are found to be showing increasing trends,
then it is assumed that the upload bandwidth is saturated. In this case, RA is set equal to the sum of
data transmitted to all participants, and LSis set to the maximum LS value received. Otherwise, RA is
set to the packet transmission rate of the connection showing the increasing trend. These values are
then employed along with the slope value in Equation 4 to estimate RS, the available bandwidth. The
available bandwidth per logical connection, ABi, given N logical connections from the DIA transmitting
across bottleneck connection is then:

ABi = Rs

N
. (5)

3.3 Reaction to Congestion

When congestion occurs, the remote node returns a positive slope value, and the value of ABiis de-
termined. A suitable packet transmission rate is then calculated by dividing the estimated bandwidth
value by the required packet size. Under the CO Algorithm design, a minimum packet transmission
rate can also be specified. This is the minimum rate below which the consistency of the DIA cannot be
maintained to acceptable standards. Once a reduction occurs, latency will begin to decrease for a short
period, as the excess data within the buffer at the bottleneck link is scheduled for transmission. Once
this data is transmitted, the latency value will return to the normal operating value for that particular
network link.

The transmission rate is decoupled from the rate of generation of events within the DIA. This re-
quires that events generated between the transmission of packets be buffered until a packet is avail-
able for transmission, at which time multiple events can be aggregated into a single packet. Such an
approach is necessary so that the bandwidth requirements of the DIA can be managed by the applica-
tion, and is not susceptible to the possibly irregular and bursty nature of event generation.

When a new participant joins the DIA, a check is first made to see if the available bandwidth is
known for the link on which the new connection is formed. If not, then the participant transmits
at their default maximum packet rate. This means that when the DIA first begins, each participant
transmits at the maximum transmission rate. However, if the bandwidth value has been previously
calculated, then the capacity of the bottleneck link is known. Thus, the bandwidth can be further
subdivided between all participants using Equation (5), which further reduces the data generation
rates of each connection. Similarly, when a participant leaves the DIA, and the bandwidth value of the
link is known, then the data generation rates along each logical connection can be increased.

Optimally, the CO Algorithm should perform the bandwidth estimation once throughout the entire
execution of the DIA, with the only modification to packet transmission rates occurring when a par-
ticipant joins or leaves the DIA. This would reduce the network latency induced by the algorithm,
whilst still maximising bandwidth usage. However, a key issue is the behaviour of the algorithm in the
presence of transient external congestion. For example, we have noted during our live Internet trials
that network latency values are prone to infrequent increases for short periods of time, which typi-
cally passes after a few seconds without any algorithm intervention. This can lead to situations where
the CO algorithm will interpret the increase in latency as a persistent congestion, and react accord-
ingly. Although judicious choice of control parameters, particularly the long- and short-term window
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sizes, can minimize the impact of the transient congestion periods, this is not an ideal solution, as the
observed patterns in latency values can vary slightly throughout the day, and across different links.

A more suitable solution is the development of an appropriate recovery scheme, which allows the ap-
plication to increase its data transmission rates following a reaction to a transient congestion period.
The proposed recovery scheme of the CO algorithm acts as follows. If the slope value received, LS, is
zero, then no congestion has been detected on the link. In this case, if the bandwidth value is known,
then the bandwidth being utilized by the DIA can be increased, if required. The estimated bandwidth
value is increased by fixed amounts (for example, 1 kilobyte), and this value can be evenly distributed
between all connections on that link using Equation (5). The rate at which bandwidth utilization in-
creases determines the aggressiveness of the algorithm. A highly aggressive algorithm will maximize
bandwidth usage, at the risk of increased network latency. A minimally aggressive algorithm will min-
imize latency, but may not promptly react to a congestion period, and thus may under utilize available
bandwidth. Ideally, the aggressiveness of the recovery scheme for a DIA should be tailored to mini-
mize latency, while at the same time allowing for relatively prompt reaction following a decrease in
bandwidth usage. Under our scheme, the level of aggressiveness is controlled by varying the number
of slope values received where LS is equal to 0, before data transmission rates are increased.

In the next section, the performance of the Consistency Optimization algorithm in a series of live
and simulation trials is evaluated.

4. ALGORITHM EVALUATION

To test the algorithm, the same test scenario outlined in Section 2 was again employed. The CO Al-
gorithm was implemented in the test DIA. Following a series of initial tests to examine the patterns
in network latency and jitter, the parameters of the CO algorithm were set as follows. The threshold
value for the PCT threshold was set 0.7, combined with a long-term and short-term running average of
10 and 5 latency samples respectively. A slope request message was transmitted in every 10th packet.
If 10 slope values were received showing an absence of congestion, the bandwidth usage of the DIA
was increased by 8 kbits/s. These values were found to give the best trade-off between compensating
for network jitter values and trend detection. Finally, a minimum packet rate of 5 Packets per Second
was specified, meaning that the CO Algorithm will not reduce its transmission rates below this value
for each logical connection.

Several tests were carried out at different times of the day throughout the week. Representative
results are presented here for afternoon tests (between 12pm and 3pm) carried out on a weekday. Each
test lasted 80 minutes, during which players randomly joined and left the simulation (simulated by the
main player node creating and deleting logical connections with the sink node), resulting in varying
bandwidth requirements across the bottleneck link.

4.1 Impact on Network Conditions

For comparison purposes, the first set of experiments tested the application without the CO algorithm.
In this case, a constant packet rate of 30 PPS was transmitted along each logical connection. The
varying bandwidth requirements arose due to the varying number of participants. Figure 5 shows the
number of players, bandwidth usage, network latency and packet loss, as experienced between the
Portlaoise and Carlow node throughout the test scenario.

It is evident from the Figure 5(a) and (b) that the upstream bandwidth of the ADSL link can only
support 4 players at 30 PPS, without exceeding the available bandwidth. The impact of exceeding the
available bandwidth is clear from the latency and loss values in Figure 5(c) and (d), as both increase
dramatically each time available bandwidth is exceeded. Comparing the loss and available bandwidth
graphs, bursts of up to 60 packets, or 2 second worth of state data, can be lost when the link is heavily
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Fig. 5. (a) Number of players (b) Bandwidth utilisation (c) Network Latency (d) Packet Loss as experienced by the main player
node when the CO algorithm is not employed.

overloaded. Examination of the latency values demonstrates that during the heavily loaded periods,
latency falls between 100 and 400ms. This range exceeds the latency values where the player expe-
rience is negatively affected, as identified in other work [Beigbeder et al. 2004; Nichols and Claypool
2004; Yasui et al. 2005].

The next set of experiments conducted employed the same player join and leave pattern. In this case
the CO algorithm is employed. The results from this test are presented in Figure 6, and again show
the number of players, bandwidth usage, network latency and packet loss, as experienced by the node
throughout the 80-minute simulation. Comparing the bandwidth usage results in Figure 5(b) to those
in Figure 6(b), the impact of using the CO algorithm is immediately obvious. Throughout the entire 80
minutes of the live trial, bandwidth usage stays below the available bandwidth value, regardless of the
number of players involved in the simulation, as seen in Figure 6(a). However, as the available band-
width value is being estimated from the trends in network latency, the bandwidth usage is close to that
of the available bandwidth, with an average bandwidth usage of approximately 85kbit/s. This result
also provides validation for the assumptions made when developing the bandwidth estimation scheme
as cross traffic from external links has little effect on the performance of the algorithm throughout the
80 minutes of the simulation.
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Fig. 6. (a) Number of players (b) Bandwidth utilisation (c) Network Latency (d) Packet Loss as experienced by the main player
node when the CO algorithm is employed.

The operation and accuracy of the impending congestion detection scheme used within the CO algo-
rithm is evident from Figure 6(b). It can be seen that every time the actual bandwidth usage of the DIA
rises above the available bandwidth, a reduction in the bandwidth usage will occur. A period of gradual
increases in bandwidth usage will then follow, as the recovery algorithm operates. The usefulness of
the recovery algorithm is also evident at the time period of approximately 500 seconds. Here it can
be seen that the algorithm has responded to a rare transient congestion period, resulting in a reduc-
tion in bandwidth usage even though the actual bandwidth usage was not above the available value.
However, the recovery algorithm allows the application to increase bandwidth usage, and maximize
overall bandwidth usage.

The main benefit of using the CO algorithm is evident from the latency and loss graphs presented in
Figures 6(c) and (d). Unlike the results presented in Figure 5(c), network latency now remains below
100ms, on average. Throughout the test scenario, the latency values match that of the unloaded period
before 600 seconds in the results presented in Figure 2(c). From Figure 6(d), it can be seen how packet
loss bursts are now reduced to a maximum of 2, compared to the packet loss burst of up to 60 packets
seen in Figure 5(d).

Figure 7 further highlights the operation and performance of the CO algorithm during the live In-
ternet trials. Here, a sample of bandwidth utilization and network latency for the 100-second period
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Fig. 7. (a) Bandwidth utilisation (b) Network Latency as experienced by the main player node when the CO algorithm is
employed.

between 4380 and 4480 seconds from Figure 6 are highlighted. Between the period of 4380 and 4450
seconds, the recovery algorithm is gradually increasing the bandwidth being utilized by the DIA. As
this is less than the available bandwidth in general, network latency remains constant on average.
However, between the times of 4450 and 4460, the bandwidth being used by the application is per-
sistently greater than the available bandwidth for an extended period. This causes queuing at the
bottleneck link, resulting in an increasing trend in network latency over the same period. At this
point, reducing the data transmission rates would improve inconsistency. This increasing trend is
detected by the CO algorithm, resulting in a reduction in network latency via a reduction in the data
transmission rates of the DIA.

4.2 Impact on Inconsistency

Now, the impact of the varying network latency, packet loss, and packet transmission values shown
in the previous section on inconsistency are presented. Figure 8 shows the inconsistency arising for
the two scenarios with varying participant numbers, as presented in the previous section. Figure 8(a)
shows the number of players throughout the two test scenarios. Figure 8(b) shows spatial inconsistency
for the case when the CO algorithm is not used, while Figure 8(c) shows spatial inconsistency for the
case where the CO algorithm is used.

The benefits of using the CO algorithm are immediately obvious from the results. In the case of Fig-
ure 8(b), as the number of players increases and packet loss and network latency also increase, spatial
inconsistency is seen to grow accordingly. Clearly such a scenario would impact negatively on player
experience in a DIA. On the other hand, in Figure 8(c), the application can gracefully accommodate
numerous players, while at the same time minimizing inconsistency. As the number of participants in
the DIA varies, the amount of inconsistency also varies as the algorithm constantly adjusts the packet
transmission rates. However, as bandwidth usage is maximized, the consistency values are optimised,
given the available bandwidth resources on the bottleneck link.

The variable inconsistency due to varying number of users is further highlighted in Figure 9, which
presents a magnified view of 300 seconds of the inconsistency values between 1800 and 2100 sec-
onds. For clarity, the packet transmission rate per logical connection and the number of simulated
players involved in the DIA during the same time period are also presented. From these results, it
can be seen how the packet transmission rate is constantly modified to accommodate the varying
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Fig. 8. (a) Number of players (b) Spatial Inconsistency without the CO algorithm (c) Spatial Inconsistency with the CO algo-
rithm.

Fig. 9. (a) Number of Players (b) Packet Transmission rate (b) Spatial Inconsistency with the CO algorithm.
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Fig. 10. Network Topology used in NS2 simulations.

number of users. Although this results in worse inconsistency as the number of players increases and
the packet rate decreases, it is still an improvement on the consistency experienced without the CO
algorithm. In this case, the algorithm is only reducing data reduction rates when the reduction will
provide an actual reduction in inconsistency. It is also of interest to note that when 8 players are
involved in the DIA, the packet transmission rate is between 10 and 12 PPS. This value is approxi-
mately equal to the optimal packet transmission rate that was identified in the results presented in
Figure 2.

4.3 Impact of Cross Traffic

While the previous results have demonstrated that the assumptions made in the development of the
CO Algorithm are reasonable, given the practical usage scenarios of modern day DIAs, it is still impor-
tant to consider the effect of competing external flows, particularly TCP flows, on the performance of
the CO Algorithm. In general, if the CO Algorithm and a constantly transmitting TCP flow are operat-
ing on the same bottleneck link, then the TCP flow will increase its bandwidth share at the expense of
the flows managed by the CO Algorithm. This occurs as the CO Algorithm responds to latency, while
TCP will respond primarily to loss. Therefore, once congestion begins to arise, the CO Algorithm will
be the first to respond to the congestion, and thus will reduce its data transmission rates first. The TCP
flow will then have more available bandwidth, so will further increase its transmission rates, leading
to a negative feedback loop situation for the CO Algorithm. This is an issue for all purely delay-based
congestion control mechanisms [Leith et al. 2007].

However, consider again the practical usage scenarios of a modern DIA. In general, if other TCP
traffic is present on the same link as a DIA employing the CO Algorithm, it is likely to be “bursty”
Web-browsing traffic employing the Hyper Text Transfer Protocol (HTTP). Therefore, the performance
of the CO Algorithm in the presence of this type of traffic is now considered. To carry out this study,
the NS2 network simulation tool was employed. Within NS2, a network simulating that of the live
test environment outlined in Section 2 was created. An overview of this simulated network is shown
in Figure 10. Within this simulated network, the Server maintained a separate logical connection to
eight clients. The data transmission rates along of each logical connection were controlled by the CO
Algorithm. As with the live trial scenarios, the maximum and minimum packet transmission rate
was set to 30 and 5 packets per second respectively, and packet size was set to 122 bytes. Similarly, the
bandwidth of the last mile links were set to 100 kbit/s and 1024 kbit/s in the upstream and downstream
direction, respectively. The queue size at each last mile link was set to 50 packets. To ensure realistic
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Table I. Latency Trends Used within the
NS2 Simulations

Site Name Mean Latency
google.ie(morning) 27.39 ms
google.ie(evening) 27.75 ms
google.fr(morning) 58.43 ms
google.fr(afternoon) 55.2 ms
google.fr(evening) 55.4 ms
yahoo.com(morning) 113.87 ms
yahoo.com(afternoon) 114.38 ms
yahoo.com(evening) 113.78 ms

network latency values for each logical connection, eight separate latency trends were collected at
different times of day to live locations from the link at Portlaoise, Ireland. The characteristics of these
latency trends are highlighted in Table I. Each logical connection employed one of these latency trends
throughout the simulation.

To simulate cross traffic across the last mile link from the Server, a Cross Traffic Source and Sink
node were added to the simulated network. In order to generate realistic network traffic typical of
normal web browsing activity, the PackMIME traffic generator module available within the NS2 sim-
ulation framework was employed [Cao et al. 2001]. The PackMIME module generates traffic typical
of browsing behaviour due to the sending and receiving of HTTP requests and responses. To use the
PackMIME generator, the user specifies the average number of new requests to generate per second
and a random number generator seed. The PackMIME module then uses these input parameters to
randomly generate requests, and the responses to those requests, at intervals with a mean equal to
the user specified value.

A PackMIME client was attached to the Cross Traffic Source node. Its responsibility was to generate
HTTP requests at the specified intervals. These intervals were varied per simulation. A PackMIME
server was attached to the Cross Traffic Sink node. Its responsibility was to generate HTTP responses
as it received HTTP requests. The Maximum Segment Size of the TCP segments transmitted by both
Source and Sink nodes was set to 1500 bytes including header information.

A number of experiments were conducted using this simulation environment to investigate the im-
pact of cross traffic on the performance of the CO Algorithm. Within each experiment, a new par-
ticipant joined the simulation every 3 seconds, up to a maximum of 8 participants. Each experiment
lasted 200 seconds. The PackMIME nodes generated cross traffic throughout the entire simulation. The
amount of cross traffic generated was varied per experiment. In particular, request intervals of 0.1, 0.3,
0.5, 1, and 5 HTTP requests per second were simulated. These represent light to heavy web browsing
activity. The aggressiveness of the CO Algorithm was also varied per simulation. As discussed in Sec-
tion 3.3, aggressiveness is determined by varying the number of slope values received that show an
absence of congestion before data transmission rates are increased. Intervals of 10, 5, and 1 received
slope values per increase were simulated. For clarity, these are referred to as low, medium and high
aggressiveness, respectively, in the results presented below.

Each experiment was repeated five times for each HTTP request interval and CO Algorithm aggres-
siveness value. In each experiment, a different seed was employed for the random number generator
used by the PackMIME nodes. The average upstream bandwidth collectively utilized by the Server
nodes in each test scenario was then determined, and is presented in Table II.

The impact of cross traffic on the performance of the CO Algorithm is clear from Table II. For the low
level of aggressiveness used within the live test scenarios, the CO Algorithm can maintain a reasonably
high level of bandwidth usage in the presence of a light to medium amount of cross traffic. However,
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Table II. Impact of Aggressiveness on Upstream Bandwidth Usage in
Varying Cross Traffic Conditions

CO Algorithm Aggressivness
HTTP
Requests/s Low Medium High
0.1 (Light) 80.46 kbit/s 80.79 kbit/s 85.25 kbit/s
0.3 (Light) 72.51 kbit/s 79.54 kbit/s 85.65 kbit/s
0.5 (Medium) 58.79 kbit/s 70.51 kbit/s 83.64 kbit/s
1 (Heavy) 47.62 kbit/s 62.49 kbit/s 72.62 kbit/s
5 (Heavy) 39.76 kbit/s 42.51 kbit/s 60.66 kbit/s

Fig. 11. Impact of CO Algorithm aggressiveness on standard deviation in network latency.

in the case of 5 HTTP Requests/s, which represents heavy cross traffic, the performance of the CO
Algorithm begins to suffer. For example, for low and medium aggressiveness, the CO Algorithm forces
the DIA to reduce its data transmission rates to the minimum packet transmission rate of 5 packets
per second per logical connection, resulting in a bandwidth utilization of approximately 40 kbit/s in
both scenarios.

By increasing the aggressiveness of the CO Algorithm, performance can be improved. For example,
for the maximum aggressiveness tested here, the average bandwidth usage is approximately 85 kbit/s
for light to medium cross traffic. This is the same average bandwidth usage reported within the live
trial scenario results presented in Section 4, where no cross traffic was present on the last mile link
(but was present on external links). As the level of cross traffic increases, performance does begin to
suffer, but not to the extent of the less aggressive test scenarios.

While the results presented in Table II suggest that the low level of aggressiveness used within the
live trial scenarios was unsuitable, consider the results presented in Figure 11. Here, the standard
deviation in network latency along each of the eight logical connections from the Server within the
NS2 simulation is shown for varying levels of aggressiveness of the CO Algorithm. To collect these
results, the NS2 simulations described previously were repeated. On this occasion, however, no cross
traffic was present.

It can be clearly seen from Figure 11 that as the aggressiveness of the CO Algorithm increases,
it negatively impacts on the network latency experienced by the DIA. The standard deviation in
network latency doubles when the aggressiveness of the CO Algorithm increases from low to high
aggressiveness. This arises as, when the aggressiveness of the algorithm is increased, packet
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transmission rates are increased rapidly following a reduction in response to congestion. This means
that the DIA frequently exceeds available bandwidth on the last mile link, resulting in a subsequent
increase in fluctuation of network latency.

The results presented in this section highlight the delicate balance between network latency and
algorithm aggressiveness, as first discussed in Section 3.3. A high level of aggressiveness can allow
the algorithm to maintain a high level of bandwidth usage in response to the presence of competing
flows on the same link. However, it can result in an increase in fluctuation in network latency for the
DIA. A question then arises regarding which of these elements is of most importance to maintaining
consistency within the DIA employing the CO Algorithm. This issue, and a more in-depth study of the
effect of cross traffic on the CO Algorithm, remain the focus of future work with the CO Algorithm.

5. RELATED WORK

While much of the work related to adaptive data transmission schemes for DIAs has focused on adap-
tation based on application-level parameters, such as player behavior [Cai et al. 1999; Zhang et al.
2004; Chen 2005; McCoy et al. 2007], there has been work in the area of network based adaptation. An
earlier example of such a scheme is Kravets et al. [1998]. The approach detailed in this work operates
by dynamically adjusting transport level reliability requirements of a DIA to minimise the volume of
data transmission during periods of congestion. Another variable reliability approach is the Interac-
tivity Loss Avoidance (ILA) mechanism [Palazzi et al. 2005]. This mechanism operates on the premise
that fast-paced games can tolerate a certain degree of loss without affecting user experience. Based
on this assumption, the ILA approach drops game-related events that are deemed unimportant to the
game state in order to avoid impending congestion. Our approach differs to these as it attempts to
deal with congestion via data transmission management at the application level rather than relying
on transport or network level congestion management.

Other mechanisms that adopt a similar data transmission management to ours are the Switchboard
architecture and the Network Aware Bandwidth Adaptation (NABA) mechanism [Trefftz et al. 2003;
Yu et al. 2007]. The Switchboard architecture is a Client/Server approach that attempts to adjust
system parameters, such as world detail and message update rate, to satisfy both user and system
designer constraints. In particular, message update rates are managed via a subscription mechanism.
Each world variable is associated with a multicast address that transmits updates at varying rates.
To reduce the number of updates a client receives from a server, the client can subscribe to a multicast
address with a slower update rate. While this approach can be used to manage data transmission
rates, it requires user intervention at runtime in order to choose the optimal rate best suited to the
underlying network, unlike our automated approach.

The NABA mechanism represents an approach that is closest to our own. In this work, the authors
present an approach that attempts to find the trade-off between state inconsistency and bandwidth us-
age when an Information Management technique, known as dead reckoning, is employed. Dead reckon-
ing reduces data transmission rates by providing a controlled level of spatial inconsistency [IEEE 1995;
Delaney et al. 2006]. It does this by only transmitting a synchronization message when the difference
between the actual and remote entity position exceeds a predefined error threshold, known as the spa-
tial error threshold. In the absence of state information, remote participants predict the position using
previously received entity dynamics information. The NABA technique operates by tracking the num-
ber of updates arising from the use of dead reckoning, and tailoring the spatial error threshold so that
the number of updates lies within a specific bandwidth value. Where the CO algorithm differs from
this approach is that our algorithm will attempt to estimate the available bandwidth during run time,
and is suited to more general applications as it uses constant packet generation rather than dead reck-
oning. The NABA mechanism, on the other hand, does not provide any bandwidth estimation facility.
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Fig. 12. Traditional adaptive control algorithms attempt to stay left of the cliff. However, to minimise delay, a protocol needs to
stay left of the knee.

The recent surge in popularity of Massively Multiplayer games, such as World of Warcraft, has seen
an increase in research activity towards adaptive mechanisms for managing load and scale in such
large-scale simulations, which typically feature thousands of simultaneous players [Lee and Lee 2003;
Lu et al. 2006]. Early examples of these architectures include RING [Funkhouser 1995] and NetEffect
[Das et al. 1997] while more recent adaptive approaches include Matrix [Balan et al. 2005]. Although
our work is related to these, the adaptation approach differs. While these approaches assume the
presence of some extra resources (such as another available server node) that can be called upon to
accommodate increased load, our approach attempts to adapt the application characteristics to accom-
modate the increased load within the same available resources.

One cannot discuss any adaptive data transmission algorithm without making reference to the large
body of work has focused on adaptive transport level protocols for non traditional networked based
applications, such as streaming video [Rejaie et al. 1999; Mukherjee and Brecht 2000; Krasic et al.
2001; Aboobaker et al. 2002]. Of these, the most pertinent in relation to our own mechanism are the
class of protocols referred to as “Slowly Responsive” congestion control algorithms [Bansal et al. 2001;
Widmer et al. 2001]. Such algorithms have been developed in response to the widespread deployment
of applications that require congestion control, but cannot tolerate the large and sudden changes in
data transmission rate that ensues when TCP reacts to congestion.

The current state of the art in such protocols is the TFRC (TCP-Friendly Rate Control) protocol
[Floyd et al. 2000]. The goal of TFRC is to provide stable data generation rates, whilst still being fair
to coexistent TCP streams. This is referred to as “TCP-Friendliness.” The TFRC protocol achieves this
by using an equation to model how a TCP flow would react to the network congestion indicators the
TFRC flow is experiencing, and adjusting its data transmission rates accordingly.

There are two issues that affect the use of such protocols with a DIA. First, as they operate at the
transport level, they cannot exploit application semantics in order to manage data transmission rates.
Second is their TCP heritage and thus their effect on bottleneck link queue dynamics. As they respond
primarily to packet loss, they are designed to maximize throughput, and ensure that the load on the
bottleneck link is as close to the maximum as possible, the “cliff” in Figure 12(a), without exceeding it.
Due to this, such protocols tend to maximize queue usage, and as can be seen from the latency profile
in Figure 12(b), cause an increase in network latency [Goel et al. 2008].

This issue is exacerbated in Slowly Responsive algorithms, such as TFRC. As TFRC is designed to
respond gradually to congestion indicators, it tends to converge to a state of persistent queue usage
[Floyd et al. 2000]. Such behaviour could make TFRC unsuitable for the strict timeliness requirements
of a DIA. The main difference between our approach, and that taken in TFRC, is that our mechanism
attempts to track the position of the “knee,” as shown in Figure 12(b), where network latency and
queue usage are minimised.
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6. CONCLUDING DISCUSSION

In this work, the issue of consistency and Information Management (IM) techniques in Distributed
Interactive Applications (DIAs) was considered. As the majority of existing IM techniques are con-
trolled by application or user-centric parameters, they risk creating more inconsistency issues than
they resolve. In order to minimize inconsistency, the performance of the network needs to be constantly
considered. Based on this, a novel information management technique for adaptive data transmission
in DIAs, which we refer to as the Consistency Optimization (CO) algorithm, was proposed. This ap-
proach operates with minimal extra data requirements, and is designed to optimize the consistency
of the state data transmitted by a DIA. It does this by continually measuring the impact of the DIA
on the underlying network, and estimating the available bandwidth when congestion arises. The data
transmission characteristics of the DIA can then be modified to match the estimated value.

Results from live Internet trials demonstrate that the CO algorithm can accurately track bandwidth
values in a typical current day broadband environment. In doing so, the data generation rates of a DIA
can be modified to suit the available bandwidth. As the number of participants involved in the DIA
increases and decreases, the algorithm can quickly modify data generation rates to accommodate the
extra load, with little impact on network latency or packet loss. In this way, the consistency arising
during the execution of the DIA can be optimized.

Although the CO algorithm operates using network-centric control parameters, it can easily be com-
bined with existing IM mechanisms that employ system-or user-centric control parameters as it oper-
ates at the application level. By doing this, consistency can be further optimized. For example, consider
the popular IM technique known as dead reckoning. Consider a situation where the dead reckoning
algorithm may be employing a predetermined threshold that under utilizes the available bandwidth.
However, the threshold value is perceptually acceptable to the end-user. In this case, there is little
point in transmitting extra position and velocity information in every packet, as it will make no dif-
ference to the end user’s experience. In such a situation, the CO algorithm could use dead reckoning
to remove redundant spatial data from packets that will be transmitted over the network. In its place,
other types of data, such as voice data, can be transmitted. In this way, the available bandwidth us-
age could still be maximized by the CO algorithm, and the consistency of other types of data could be
improved. Future work will examine the usefulness of such a scheme in the context of our algorithm.

Other previous work has examined how existing bandwidth estimation schemes can be expressed
and compared in terms of service curves [Liebeherr et al. 2007]. A service curve describes the available
service at a network link. Using Network Calculus, multiple service curves can be combined to describe
the end-to-end bandwidth characteristics from a path with multiple links. Future work will examine
how the bandwidth estimation approach used by the CO Algorithm can be interpreted using service
curves. By doing this, the relationship between our bandwidth estimation approach and existing band-
width estimation approaches could be thoroughly examined, and the performance of our technique in
the presence of other flows on the same bottleneck link could also be analyzed.
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