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Summary 

 

This thesis extends current methods for analysing the biodiversity and 

ecosystem function relationship, focusing on complexities arising from examining 

species rich ecosystems and examining multiple ecosystem functions. I developed a 

parsimonious model for assessing diversity effects on ecosystem function in species 

rich ecosystems, by including random effects in current univariate analysis methods. 

Using multivariate techniques, I created a method for analysing multiple ecosystem 

functions simultaneously. The work presented in this thesis allows for a greater 

ability to model and understand the biodiversity and ecosystem function relationship.  
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Chapter 1  

 

Introduction 

 

Biodiversity and ecosystem functioning 

 

An ecosystem is a community containing a variety of living species which 

coexist and interact with one another and their local environmental factors. The term 

ecosystem covers a wide variety of communities of different types and sizes and 

developing an understanding of how ecosystems operate has been of great scientific 

interest. Ecosystems (such as agronomic, marine, microbial and grassland) have been 

widely studied because understanding how a system works can lead to improved 

management techniques and increased system outputs (Loreau et al. 2001; Tilman et 

al. 2006; Naeem et al. 2009; Weigelt et al. 2009; Finn et al. 2013).  

 Ecosystem functions are the measurable outputs of an ecosystem. What is 

classed as an ecosystem function depends on the ecosystem in question and its 

overall purpose. For agronomic ecosystems, some examples of ecosystem functions 

are the biomass produced by the crops grown or the fodder quality of the biomass 

produced. Ecosystem functions may be influenced by a number of different factors 

within the ecosystem, such as the number of species living in the system or abiotic 

factors such as soil type.  

The biodiversity of an ecosystem is the number and variety of species within 

the ecosystem. Discussions on the importance of biodiversity to the maintenance and 

understanding of ecosystems date back as far as Charles Darwin (1859), who 

advocated more diverse ecosystems for improved outputs, although it wasn’t until 
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the early 1990s that people began to understand the significance of biodiversity for 

ecosystem processes and outputs (Ehrlich & Wilson 1991; Chapin et al. 1992). In 

recent decades it has been established that declining biodiversity frequently has a 

negative effect on ecosystem functioning (Tilman et al. 1996; Hector et al. 1999; 

Loreau et al. 2001; Hooper et al. 2005; Cardinale et al. 2006; Cardinale et al. 2007; 

Cardinale et al. 2012). Developing a better understanding of how biodiversity loss is 

impacting on the ability of ecosystems to produce services has become an important 

research topic for the maintenance, development and sustainability of ecosystems 

globally. Studies across the globe have identified biodiversity loss across multiple 

ecosystems from areas such as marine life (Roger 2013) to forestry (Oldfield & 

Eastwood 2008). This global loss of species has strong effects on the ability of the 

planet to maintain life, through the loss of sustainable food supplies or the ability of 

forests to provide oxygen. There is currently an international drive, formed at the 

Convention of Biological Diversity in 2010, to maintain and improve biodiversity in 

over 160 countries around the globe; in Ireland this drive is headed by the 

Department of Arts, Heritage and the Gealtacht (2010). 

 

Community characteristics and modelling the biodiversity and ecosystem 

function relationship 

 

Community characteristics are aspects of the ecosystem, such as the identity 

of the species present, species richness, species relative abundances or species trait 

information which can illustrate and quantify the biodiversity of the ecosystem. The 

biodiversity and ecosystem function (BEF) relationship is the relationship between 

these community characteristics and the ability of the ecosystem to provide functions 
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such as the biomass produced or the nitrate content of the biomass produced. Here, 

several approaches that have been used in modelling the BEF relationship are 

introduced.  

 

The Diversity-Interactions (DI) model 

 

The Diversity-Interactions (DI) model (Kirwan et al. 2007; 2009) seeks to 

explain ecosystem function using the identity of the species in the ecosystem, the 

relative abundances of those species and how the species interact with one another. 

The DI model identifies how each species will perform in monoculture (a single 

species) and, for mixtures (more than one species), it separates the ecosystem 

function into two components: a component based solely on monoculture 

performances and the additional interaction effect caused by mixing species, known 

as the diversity effect. The use of species proportions allows for the simultaneous 

examination of the effect on ecosystem function of the richness (number of species) 

and evenness (measure of the distribution of the relative abundances of the species) 

of the ecosystem. Further details of this method and potential for its further 

development will be given later in the introduction.  

 

The presence/absence model 

 

Presence/absence modelling (Bell et al. 2009; Naeem et al. 2009)  involves 

modelling the ecosystem function based on which species are present within the 

community using their species identities. The presence/absence model allows for the 

modelling of the relationship between the species present and the ecosystem 
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function, however, the model does not use the relative abundances of the species 

present. As such, the model cannot distinguish between communities that have the 

same composition (species identities) but that differ greatly in relative abundances. 

For example, a community where all species are equally present versus one where 

the same species are present, but one species is highly dominant. Modelling the BEF 

relationship using the species identities can provide a simple summary of the BEF 

relationship and identification of the effects of changing biodiversity levels. 

However, as discussed by Manel et al. (2001) interpretations should be treated 

cautiously as the prevalence of a species can strongly affect the BEF relationship.  

 

Trait analysis 

 

The physical and historical traits of species within an ecosystem have often 

been used in understanding the BEF relationship (for example Engelhardt & Kadlec 

2000; Walters & Reich 2000; Cornelissen et al. 2003; Diaz et al. 2004; Cadotte et al. 

2009).  In grassland communities it has been shown that many traits such as plant 

growth rates or the plant specific leaf area can prove to be useful predictors of 

ecosystem function (Wright et al. 2004; Poorter et al. 2009). The phylogenetic 

distance trait measures how ancestrally distant two species are genetically with 

larger phylogenetic distances implying that species are genetically further apart. 

Previous studies have shown that the phylogenetic diversity of an ecosystem can be a 

strong predictor of ecosystem function (Cadotte et al. 2009; Connolly et al. 2011; 

Cadotte et al. 2012). Using a community level metric of the phylogenetic diversity, 

Connolly et al. (2011) have shown that higher phylogenetic diversity corresponds to 

increased ecosystem function.  
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Overyielding 

 

Overyielding occurs when a mixture outperforms the average performance of 

the monocultures (Cardinale et al. 2006; Cardinale et al. 2007; Kirwan et al. 2007). 

Testing for overyielding involves a comparison of the ecosystem function (typically 

biomass in a grassland ecosystem) of mixture communities to monoculture (a single 

species) communities (Schmid et al. 2002; Cardinale et al. 2006; Cardinale et al. 

2007). Transgressive overyielding is achieved when the mixture outperforms the best 

performing monoculture. A number of different methods can be used to evaluate 

overyielding. Kirwan et al. (2007) used a two-sided permutation test whereas 

Cardinale et al. (2006; 2007) and Schmid et al. (2002) used log ratios to examine the 

proportional differences in the communities. These studies have shown evidence of 

overyielding (Cardinale et al. 2006; 2007) and transgressive overyielding (Schmid et 

al. 2002; Kirwan et al. 2007).   

 

Additive Partitioning 

 

The effect of mixing species, or the diversity effect, can be positive 

(negative) if the mixture ecosystem function is higher (lower) than the expected 

performance based on monocultures, or zero if they equal. Loreau and Hector (2001) 

developed the additive partitioning method to divide the diversity effect in mixture 

communities into two components: the complementarity effect and the selection 

effect. Selection effects occur when a species which performed well in monoculture 

also performs well in mixture, i.e. that species contributes largely to the diversity 
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effect. The complementarity effect models any remaining diversity effect once the 

selection effects are accounted for. Loreau and Hector (2001) identified that, even 

accounting for selection effects, there was evidence that plant biodiversity 

significantly affected ecosystem function. 

 

Ecosystem multifunctionality  

 

The methods discussed so far focus on modelling a single ecosystem function 

however ecosystems provide multiple functions simultaneously (multifunctionality).  

The effect of biodiversity loss when analysing a single ecosystem function may 

underestimate how important the loss truly is when considered in the context of 

multiple functions. Multifunctionality is an emerging area of ecological research; 

initial work examining the BEF relationship using multifunctionality has led to the 

development of a number of multifunctional methods include the threshold method 

(Gamfeldt et al. 2008), the overlap method (Hector & Bagchi 2007), the averaging 

method (Maestre et al. 2012a) and multiple univariate analyses (Cardinale et al. 

2013). These methods have shown that communities with higher biodiversity were 

more likely to be able to maintain multiple ecosystem functions. 

 

Challenges that remain in modelling the BEF relationship 

 

Examining the BEF relationship is key to understanding the true effect of 

biodiversity loss on ecosystem function however there are a number of challenges 

remaining. One such challenge is that the complexity of models for the BEF 

relationship can greatly increase as the number of species in the ecosystem increases. 
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Ecosystems can have very high species richness (e.g. Bell et al. 2005) and as the 

number of species present in an ecosystem increases it becomes increasingly difficult 

to create a parsimonious model that fits the data well.  

 The challenge of high species richness is magnified when considering 

multiple ecosystem functions. Current multifunctional methods often try to reduce 

the dimensionality of multiple function responses to a single measurement of 

multifunctionality, such as a threshold of their maximum (Zavaleta et al. 2010; 

Byrnes et al. 2014) or an average functioning metric (Maestre et al. 2012a; 2012b), 

however, this dimension reduction can cause a serious loss of information about the 

relationship between the biodiversity and the individual ecosystem functions. Ideally 

a BEF multifunctional model can simultaneously assess the effects of species 

identities, their relative abundances, community level richness and evenness for 

multiple ecosystem functions and test the relative importance of these effects across 

functions.   

 

Details on the Diversity-Interactions model  

 

The Diversity-Interactions (DI) model (Kirwan et al. 2007, 2009) is 

εδαβ +++= ∑∑
<
==

s

ji
ji

jiij

s

i

ii PPAPy
1,1

)(  

where y is the ecosystem function, s is the number of species in the pool, A is a 

treatment or block factor, α is the effect associated with the treatment or block factor, 

Pi is the sown proportion of species i, βi is the expected response of the ith species in 

monoculture (i.e. when Pi = 1) known as the identity effect, δij is the interaction 

effect between species i and j and ),0(~ 2σε N . This modelling approach has two 
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main components, the first identifies the expected performance based on 

monoculture performances: AP
s

i

ii αβ +∑
=1

and the second is the diversity effect (DE): 

∑
<
=

s
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ji

jiij PP
1,

)(δ . This DI model has s identity parameters and s(s-1)/2 interaction 

parameters. For species rich ecosystems the number of interaction parameters 

required for the full DI model can be difficult to interpret or impossible to fit due to 

lack of data. Kirwan et al. (2009) developed a number of possible ways to reduce the 

number of interaction parameters required to model the diversity effect, such as 

assuming all pairwise species interactions were equal (
avij δδ =  for all i, j), to 

combat this drawback. Connolly et al. (2013) extended the DI model to develop the 

Generalised Diversity-Interactions (GDI) model by adding an additional parameter θ 

to allow for a nonlinear relationship between the ecosystem function and the 

pairwise species interactions. 
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Applications of the Diversity-Interactions model have shown that species 

abundances, as well as their identities, have a significant effect on the BEF 

relationship (Kirwan et al. 2007; Sheehan et al. 2008; Finn et al. 2013). 

 

The goals of my PhD work 

 

My research aims to extend the current statistical and biological 

understanding of the BEF relationship, primarily focusing on potential extensions to 

the Diversity-Interactions modelling framework. I aim to focus on two main 
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challenges in understanding the BEF relationship; firstly, the modelling of high 

species richness and secondly, modelling multiple ecosystem functions 

(multifunctionality). To address the first challenge, I will make use of species 

biological trait information and statistical techniques involving random effects to 

parsimoniously describe diversity effects and to provide validation for fixed effects 

models which have made assumptions about the diversity effects due to high species 

richness. To address the second challenge, I aim to examine and modify current 

multifunctionality methods. I also intend to build a multifunctional BEF model 

which will provide knowledge on how the biodiversity of the ecosystem affects each 

ecosystem function and allows for comparison of the relationship across ecosystem 

functions.  

For species rich ecosystems, the use of underlying species traits, such as the 

phylogenetic distance, could potentially be useful to aid understanding a large 

number of interactions between species. Connolly et al. (2011) found that including 

a measure of community phylogenetic diversity improved model fit for two datasets 

in a model containing an average diversity effect, in lieu of estimating all pairwise 

interactions. Their results concluded that ecosystems with higher phylogenetic 

diversity had stronger diversity effects. In chapter 2, section 1, I aim to test whether 

the findings of Connolly et al. (2011) hold across multiple grassland ecosystems. If 

they do, then this is further evidence that the phylogenetic diversity is strongly 

linked to how species interact within an ecosystem.  

In chapter 3, I aim to advance current modelling techniques for a single 

ecosystem function to address the challenge of building parsimonious models for 

complex ecosystems with high species numbers by using random effects alongside 

fixed effects. The use of random effects provides additional information about the 
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diversity effects in the ecosystem without requiring the estimation of high numbers 

of interaction coefficients. The inclusion of the random effects can also be used to 

assess lack of fit in the fixed diversity effects component of the model.  

Chapter 4 is concerned with examining the multifunctional BEF relationship. 

Ecosystems provide multiple functions simultaneously and full understanding of the 

effects of biodiversity loss on ecosystem function requires multifunctional models. 

Some current multifunctional methods (overviewed in chapter 4, section 1) either 

examine each function individually or try to reduce the multiple responses into a 

binary or metric value. These reduction techniques can cause a serious loss of 

information, especially in methods such as the averaging method (Maestre et al. 

2012a; 2012b) which analyses only the average of all ecosystem functions for each 

community. I aim to modify and improve upon the current averaging method 

(chapter 4, section 2). The current averaging metric may not differentiate between 

two communities that are functioning very differently (e.g. in one community all 

functions could be performing at similar levels, whereas in a different community 

one function could be strongly outperforming the others but both communities have 

the same average metric value). I will modify the average metric to penalise 

communities where functions are not performing similarly to each other. However, 

the improved metric will likely still suffer from many of the problems associated 

with the current averaging metric, such as interpretation. Finally, I aim to develop a 

more advanced method for analysing multiple functions by extending the DI model 

to a multivariate framework (chapter 4, section 3). By extending the DI model in this 

way I can gain information about how the community characteristics affect each 

ecosystem function simultaneously and how the functions correlate with one another. 

I can also compare the effects of community characteristics across functions. The 
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Multivariate DI model allows for the examination and prediction of ecosystem 

function responses across the full range of species proportions. The model can 

provide a full assessment of the multifunctional BEF relationship, which can be used 

for identification of areas where the ecosystem is performing well for all ecosystem 

functions or where trade-offs are occurring among functions. 

To summarise, the main four goals of my PhD are 

1. To explore the use of community phylogenetic diversity information to 

help improve models for the BEF relationship for species rich 

communities. 

2. To develop a random effects Diversity-Interactions model to increase the 

understanding of the BEF relationship for a single function. 

3. To review and improve upon current multifunctionality metrics focusing 

on the averaging metric. 

4. To develop a Multivariate Diversity-Interactions model to analyse the 

multifunctional BEF relationship. 
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Chapter 2 

 

Phylogenetic distance and its relationship to the diversity effect 

 

Collaborators:  Caroline Brophy, John Connolly, Laura Kirwan, John A. Finn and 

Marc W. Cadotte. 

 

INTRODUCTION 

 

In grassland ecosystems the underlying physical traits of the plants within the 

community have often been used to examine the biodiversity and ecosystem 

function (BEF) relationship. The focus of this chapter is the use of the 

phylogenetic distance between plant species to examine patterns in the BEF 

relationship. The phylogenetic distance between two plant species is a measure of 

how genetically related the species are, based on their ancestry. A small 

phylogenetic distance implies that the species shared a common genetic ancestor 

more recently than those with larger phylogenetic distances.  

In previous work, discussed in section 2.1, it was established that a 

community phylogenetic distance measurement is a useful predictor in BEF 

relationship models in addition to species relative abundances and an average 

species interaction effect, and that communities with higher phylogenetic 

distances are more likely to have larger diversity effects. In section 2.1 we test 

whether these results hold across a range of different datasets and examine 

possible reasons as to why they may or may not hold. 
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Section 2.1  

 

Testing the association between phylogenetic distance and 

ecosystem functioning across eight grassland experiments. 

 

Introduction 

 

Reduced biodiversity in ecosystems is known to have a negative effect on 

the sustainability and productivity of grassland ecosystems (Naeem et al. 1994; 

Tilman et al. 1996; Hector et al. 1999), however, less is known about the role 

played by evolutionary associations among species in ecosystems. Evolutionary 

relationships among species in an ecosystem can be described by phylogenetic 

information and there has been a recent increase in the availability of species 

phylogenetic information which may be useful in examining the biodiversity and 

ecosystem function (BEF) relationship. Webb et al. (2002) provide a review of 

phylogenetic biology and the development of an increased understanding of how 

it is linked to community characteristics such as species identities, diversity and 

species relative abundances within an ecosystem. They also discuss possible 

metrics for including phylogenetic information in a BEF model, such as the 

phylogenetic distance metric net relatedness index which measures the mean 

phylogenetic distance between pairs of species within an ecosystem and the 

nearest taxon index which examines the phylogenetic distance of a species to the 

nearest taxon. Taxa are groups of species which have similar genetic 

characteristics.  Phylogenetic distance is a trait measure of how genetically related 

two plant species are, based on their ancestry. A smaller phylogenetic distance 
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between two species implies that they had a common ancestor more recently than 

those with a larger phylogenetic distance. Cadotte et al. (2008; 2009; 2012) 

showed that a community measure of the phylogenetic distance was a more useful 

predictor for biomass produced in grasslands than the species richness (count of 

species) and functional groups classifications (grouping of species that perform 

similarly, such as grasses and legumes). Cavender-Bares et al. (2009)  discuss 

various studies which have examined the relationship between phylogenetic 

distance and community characteristics within the ecosystem such as the species 

abundances present or other trait information of the species. These studies have 

shown mixed results as to the relationship between phylogenetic distance and the 

community characteristics in the ecosystem. However, Cavender-Bares et al. 

(2009) discuss how these mixed results may be due to the differing methods 

applied in the studies and points out a need for a more rigorous approach.  

 The Diversity-Interactions model (Kirwan et al. 2007; 2009) has been 

used to model the BEF relationship with explanatory variables including species 

relative abundances and species interactions. In our previous work in Connolly et 

al. (2011), we extended the Diversity-Interactions model to include a combined 

measurement of the phylogenetic distances of all species in a community. This 

allowed us to determine whether the community phylogenetic diversity could 

explain patterns in ecosystem function in addition to species relative abundances 

and an average species interaction effect. We found (in two data sets) that the 

community phylogenetic distance was a significant predictor for the ecosystem 

response, with more phylogenetically diverse communities yielding higher than 

expected ecosystem function. In this current work we apply the Connolly et al. 

(2011) approach to a further eight datasets to examine whether community 
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phylogenetic distance is consistently a useful predictor of ecosystem function 

across multiple datasets. The aim of this work is to test how robust the results 

found in Connolly et al. (2011) are to varying species and ecosystem conditions. 

 

Methods 

 

The Diversity-Interactions model including community phylogenetic distance  

 

The Diversity-Interactions model (Kirwan et al. 2007; 2009) is  

εδαβ +++= ∑∑
<
==

s

ji
ji

jiij

s

i

ii PPAPy
1,1

)(         

where y is the ecosystem function, Pi is the sown proportion of species i, for i  = 

1,…,s, s is the number of species present in the ecosystem, A is a block or 

treatment factor,  α is change in the response for the changing levels of A, iβ  is 

the identity effect or, equivalently, the expected response of the ith species in 

monoculture, 
ijδ  is the interaction effect between species i and j and ),0(~ 2σε N .  

In this model the diversity effect (DE) of sowing species together in a community 

is modelled through the interaction terms, DE:∑
<
=

s

ji
ji

jiij PP
1,

)(δ . Through various 

assumptions about patterns among the species interaction coefficients, this model 

can be made more parsimonious (Kirwan et al. 2009). For example, by assuming 

each species interaction effect is equal (
ijδ = avδ  for all i, j) we can reduce the 

number of parameters required to model the diversity effect from s(s-1)/2 down to 

one.  
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Connolly et al. (2011) expanded the Diversity-Interactions model by 

including a community measure of phylogenetic diversity giving the model 

εκδαβ ++++= ∑∑
<
==

D

s

ji
ji

jiav

s

i

ii CPPAPy
1,1

)(        

where CD is a combined measure of the phylogenetic distances of all species in 

the community. Specifically  

∑
<
=

−=
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ji

jiijD PPDDC
1,

)(   

where Dij is the phylogenetic distance between species i and j, D is the average 

phylogenetic distance of all species present in the species pool (i.e. species in the 

ecosystem) and Pi represents the sown proportion of the ith species present in the 

plot. Positive values of CD indicate greater than average phylogenetic diversity 

and vice versa for negative. Using this modelling approach, Connolly et al. (2011) 

found that, for two grassland datasets, the community phylogenetic distance 

explained significant variability in ecosystem function in addition to the average 

pairwise effect and that the greater the community phylogenetic diversity the 

larger the diversity effect.  

 

Application to multiple datasets 

 

 We applied the methodology of Connolly et al. (2011) to eight datasets 

from field and greenhouse grassland biodiversity experiments. The datasets used 

were a subset of the database compiled by Cadotte et al. (2008), for which the 

phylogenetic distances between all species in the experiment were available 

(Table 2.1.1). In each of these experiments the species richness was manipulated 
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to examine the effect of species diversity on ecosystem function. In some cases 

additional treatments were also tested (Table 2.1.1; additional dataset details are 

available in Appendix 2.1.1).  

 

 

Table 2.1.1: The eight datasets with reference to their source, the number of 

species in the species pool, the number of plots analysed, any additional 

treatments applied and whether the data was from a greenhouse or field 

experiment. 

Dataset  Reference Number of 
species 

Number 
of  
plots / 
pots 

Additional 
treatment 

Type 

1 Dimitrakopoulos 
& Schmid 
(2004) 
 

10 90 Soil depth Greenhouse 

2 
 

Fridley  (2002) 9 233 Soil fertility Field 

3 Fridley (2003) 7 252 Soil fertility, 
light  
 

Field 

4 Lanta & Leps 
(2006) 
 

16 178 Soil fertility Greenhouse 

5 
 

Naeem (1999) 6 360 None Greenhouse 

6 Naeem et al. 
(1996)  
 

13 90 None Field 

7 Craine et al. 

(2003) 
 

11 56 CO2, light  Field 

8 Tilman (1997) 12 22 None Field 
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The following models were fitted to each of the eight datasets:  

Model 1: εαβ ++=∑
=

APy
s

i

ii
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Model 2: εδαβ +++= ∑∑
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==

s
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ji
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i

ii PPAPy
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Model 3: εκδαβ ++++= ∑∑
<
==

D

s

ji
ji

jiav

s

i

ii CPPAPy
1,1

 

Model 1 has no diversity effect and assumes 
ijδ = 0 for all i, j, Model 2 is the 

average Diversity-Interactions model which assumes 
ijδ  = avδ  for all i, j and 

Model 3 includes the average interaction effect and the community phylogenetic 

distance effect. All models were fitted using SAS 9.3 (SAS Institute Inc.) software 

and model comparisons (2 vs. 1 and 3 vs. 2) were made using F-tests. To examine 

how the variability of the phylogenetic effect parameter changes across datasets 

the response variable (the plant biomass produced) was standardized for each 

dataset by subtracting the mean and dividing by its standard deviation. Model 3 

was then refitted to the standardized response. Model assumptions, i.e. 

),0(~ 2σε N  are independent and identically distributed, were tested for the final 

model selected for each dataset. Residual diagnostics plots from model 3 for each 

dataset are given in Appendices 2.1.2 to 2.1.9 respectively.  

We also fitted the full pairwise Diversity-Interactions model to dataset 5:  

Model 4: εδαβ +++= ∑∑
<
==

s

ji
ji

jiij

s

i

ii PPAPy
1,1

)(  

This model could not be fully fitted to the other datasets because of insufficient 

data for estimating the s(s-1)/2 pairwise interaction terms or because of 

confounding of the interactions terms due to experimental design. For dataset 5, 
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we compared models 3 and 4 using an F-text to test for lack of fit in the two-

parameter (i.e. avδ  and κ ) explanation of diversity effects in model 3. This is a 

nested comparison since model 4 can be reparametrized as: 

Model 4*: εδκαβ ++++= ∑∑
<
==

s

ji
ji

jiijD

s

i

ii PPCAPy
1,1

 

 

Results 

 

The inclusion of an average pairwise interaction effect δav (Model 2) 

significantly improved the model fit over the identity effects model (Model 1) for 

seven of the eight datasets (Table 2.1.2, Model 2 vs. 1). The inclusion of the 

community phylogenetic distance variable further improved the model fit for two 

of the datasets (datasets 4 and 5, Table 2.1.2, Model 3 vs. 2). For both of these 

datasets the estimated community phylogenetic distance measure κ was positive 

(Table 2.1.2, estimated κ), implying that communities with higher phylogenetic 

diversity have increased expected biomass produced. These two datasets also had 

the smallest associated standard errors of all the datasets (Table 2.1.2, 

Standardized Response Estimated κ). The residual diagnostic plots for model 3 for 

datasets 4 and 5 generally indicated that model assumptions were satisfied 

although there were some indications of issues with assumptions for some of the 

other datasets (Appendices 2.1.2 to 2.1.9). For dataset 5, the F-test comparing 

models 3 and 4 showed a significant lack of fit (F=2.12, p-value =0.012).  
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Table 2.1.2: Model comparisons using F-tests for the eight datasets and the estimated phylogenetic coefficient (κ) on the raw data scale and on a 

standardised scale. The p-value for each F test is given in brackets after the test value. Standard errors are given in brackets after the coefficient 

estimates. Significant tests are highlighted in bold (α=0.05).  

 

 

  

Dataset F-tests Estimated κ 

 Model 2 vs. 1 ( δav) Model 3 vs. 2 (κ) Model 4 vs. 3 (lof) Scale of data  Standardized 

1 0.35 (0.554) 0.06 (0.802)  70.03 (277.709) 0.26 (1.047) 

2 5.72 (0.018) 2.62 (0.107)  509.54 (314.821) 5.47 (3.377) 

3 27.29 (<0.001) 0.38 (0.541)  -206.86 (337.644) -2.46 (4.014) 

4 87.01 (<0.001) 8.56 (0.004)  2.68 (0.916) 1.69 (0.579) 

5 11.08 (0.001) 4.86 (0.028) 2.12 (0.013) 6.30 (2.856) 1.16 (0.527) 

6 9.22 (0.003) 1.47 (0.229)  -10.08 (8.315) -1.55 (1.274) 

7 4.34 (0.043) 0.23 (0.631)  286.26 (590.652) 1.60 (3.297) 

8 7.17 (0.032) 0.27 (0.623)  181.48 (350.494) 1.63 (3.143) 
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Discussion 

 

Connolly et al. (2011) found that the community phylogenetic distance 

was a useful predictor for ecosystem function. The aim of this current work was to 

examine whether this result held in general. To do this, we fitted a Diversity-

Interactions model with an average pairwise interaction effect and a community 

measure of phylogenetic diversity to a range of datasets and, where possible, 

tested for lack of fit in the two-parameter description of diversity effects.  

Of the eight different grassland experiments tested, we found that for two 

datasets (datasets 4 and 5) the community phylogenetic distance measure 

contributed significantly to the ecosystem response, in addition to the average 

pairwise interaction effect. For both of these datasets the phylogenetic effect κ 

was positive, agreeing with the conclusion found in Connolly et al. (2011) that 

more phylogenetically diverse communities tend to have higher ecosystem 

function values. Thus we provide some further evidence of the patterns shown in 

Connolly et al. (2011). For dataset 5 we found there was evidence of lack of fit 

between the model containing the phylogenetic effect and an average diversity 

effect (model 3) and the model with all pairwise interaction effects (model 4 or 

4*). For this dataset, it may be useful to explore additional patterns (e.g. related to 

functional groups) to the average pairwise interaction term alongside the 

phylogenetic description. For dataset 4, it may be possible to test for lack of fit 

using a random effects approach to modelling pairwise interactions (see thesis 

Section 3.1). 

However, we also found that in six datasets there were no significant 

community phylogenetic diversity effects. This lack of datasets where the 

26



community phylogenetic distance was a significant predictor could be due to a 

number of reasons. The studies we examined were not originally designed to 

examine phylogenetic distance. As such it may be that we do not have a wide 

enough range of phylogenetic diversity in our datasets to truly examine its effect. 

There was considerable overlap and a range of widths in the confidence intervals 

for the phylogenetic effects constructed on a standardised scale (Figure 2.1.1).  

 

 

 

Figure 2.1.1: Estimated κ on a standardised scale for each dataset with 95% 

confidence intervals.  

 

 

Examining the individual datasets showed that datasets 4, 5 (where κ was 

significant) and 6 were among those with the greatest range in community 

phylogenetic distance measures of the eight datasets (Appendix 2.1.10).  In 

addition, the datasets come from differing environments, namely some datasets 

are greenhouse and some are field experiments and seven of the eight experiments 
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have additional treatments applied. While we included additive effects of 

treatments, there could be interaction effects between these factors and 

community phylogenetic distance which we did not account for but which might 

influence our ability to detect phylogenetic effects.   

Although overall we only found two out of eight datasets agreed with the 

results found by Connolly et al. (2011) there are a number of possible reasons as 

to why the community phylogenetic distance may not have explained significant 

variability for the other datasets. Therefore further research is needed to test the 

robustness of community level phylogenetic diversity on ecosystem function. Of 

the datasets where the community phylogenetic distance was significant we found 

that our conclusions agreed with those of Connolly et al. (2011), i.e. increased 

community phylogenetic diversity had a positive effect on ecosystem function.  
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Chapter 3 

 

Modelling the biodiversity and ecosystem function relationship in 

species rich systems 

 

Collaborators:  Caroline Brophy, John Connolly, Laura Kirwan, John A. Finn, 

Thomas Bell and Marc W. Cadotte. 

 

INTRODUCTION 

 

Modelling the biodiversity and ecosystem function (BEF) relationship in species rich 

systems can be challenging because the large number of parameters required may be 

difficult to interpret or impossible to estimate. Previously, assumptions have been 

made to reduce the number of parameters required to model the BEF relationship. 

The focus of this chapter is to create a mixed model which is parsimonious for 

species rich ecosystems and can test whether there is evidence of lack of fit in 

models with reduced numbers of parameters. This model will provide additional 

information about the relationship between ecosystem functional response and 

species interactions that does not rely on a fixed effect estimate of each pairwise 

interaction, which will be useful in a species rich ecosystem in particular. 
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Section 3.1 

 

The use of random effects for modelling the biodiversity and 

ecosystem function relationship in diverse species rich communities. 
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Summary 

 

1. Biodiversity research has shown that ecosystem function can be improved by 

increasing community biodiversity such as species richness. In addition to richness, 

evenness and interactions among species may also play important roles. 

Disentangling the various diversity impacts on the biodiversity and ecosystem 

function (BEF) relationship can be complex, particularly in species rich ecosystems.  

2. Generalised Diversity-Interactions models have been used for testing how 

ecosystem function is affected by a range of community characteristics including 

species identity, species interactions, richness and evenness. However, the number of 

coefficients required to describe species interactions in a species rich system may be 

difficult to interpret or impossible to estimate. Parsimonious descriptions using 

constraints among fixed coefficients have been developed but a combination of fixed 

and random coefficients may provide further explanatory power. 

3. We develop the Generalised Diversity-Interactions Mixed model to model the 

biodiversity and ecosystem function relationship across a wide range of community 

characteristics using a combination of fixed and random terms, resulting in a 

relatively small number of coefficients to describe diversity effects. If the random 

effects are not needed, it provides validation for the fixed effect explanation of the 

diversity effect. If they are needed, the additional variability will feed into standard 

errors for fixed effects, improving inference.   

4. We apply the methods to two data sets from a grassland and a bacterial 

experiment. The random effects were significant in the final model fitted to the data 

from the grassland experiment, while in the bacterial experiment, the random effects 
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were not needed, providing reassurance for the inference provided by the fixed effect 

component. 

5.  The Generalised Diversity-Interactions Mixed model provides a parsimonious 

description of how species interact in a community and can address a wide range of 

questions related to which community characteristics affect ecosystem function. It 

provides a platform for assessing species interactions that does not rely on a fixed 

effect estimate of each pairwise interaction, which is particularly useful in a species 

rich ecosystem.  

 

Keywords: community characteristics, evenness, mixed model, random diversity 

effects, random effects, richness, species interactions, species rich. 

 

Introduction 

 

The biodiversity and ecosystem function (BEF) relationship has been widely studied 

(Tilman et al. 1996, Hector et al. 1999, Tilman 1999, Loreau et al. 2001, Cardinale et 

al. 2002, Petchey and Gaston 2006, Tilman et al. 2006, Kirwan et al. 2007, Duffy 

2009) and it is often concluded that increasing the biodiversity of a system improves 

its ability to maintain and/or increase functionality (Hooper et al. 2005, Duffy 2009, 

Hillebrand and Matthiessen 2009). Models of the BEF relationship often seek to 

explain the conditions under which ecosystem function will be maximised (e.g. 

biomass yield in agronomy) or minimised (e.g. invasion by exotic species in natural 

systems) using species richness as the main driver (Tilman et al. 1996, Hooper et al. 

2005, Lanta and Lepš 2006), however species evenness or species interactions may 

also contribute significantly to the relationship. In a species rich ecosystem 
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quantifying species interactions may present analytical difficulties due to the 

potentially large number of influential interactions. 

The Diversity-Interactions (Kirwan et al. 2007, Kirwan et al. 2009) and 

Generalised Diversity-Interactions (GDI) (Connolly et al. 2013) modelling 

approaches estimate the contributions of species-specific and pairwise species 

interaction effects to total ecosystem functioning. These models have successfully 

assessed the impact of community characteristics such as species identity, species 

initial proportions, species interactions, species richness and evenness on ecosystem 

function. When there is a large species pool, interpretation of the high number of 

pairwise interaction coefficients in GDI models may be difficult, or estimation of all 

pairwise coefficients may not be possible due to study design. Biologically motivated 

constraints among the interaction coefficients can however lead to meaningful and 

parsimonious model variants (Kirwan et al. 2009), i.e. assuming patterns in species 

interactions that can be represented by a few coefficients. While these models 

involving fixed effect solutions are useful, their explanatory power could be 

improved by modelling the remaining variability among the constrained interaction 

coefficients using variance components. This would provide a more parsimonious 

description of species interaction effects than estimating all individual pairwise 

interactions. 

The relationship between ecosystem function and richness has been shown to 

be a positive saturating curve in many systems (e.g. Hector et al. 1999), as in Figure 

3.1.1. The spread of communities or variability around the line may be somewhat 

constant at each level of richness (Fig. 3.1.1a) or it may vary depending on richness 

(Fig. 3.1.1b). This spread (constant or not) is not pure replicate variability and is  
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Fig. 3.1.1. Hypothetical illustration of how the spread of community responses (�) 

around the mean response (_____) may be (a) constant or (b) may change 

across the richness axis.  

 

 

likely caused by factors such as species identities, species relative abundances, 

specific pairwise interactions or community evenness, each of which can be tested 

for using a GDI model (Connolly et al. 2013). In this paper, we extend the GDI 
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model to a mixed modelling framework. We assume a random distribution for the 

pairwise interaction coefficients and test various assumptions about the error terms. 

The benefits of our proposed Generalised Diversity-Interactions Mixed (GDIM) 

model are two-fold; 1. Large numbers of fixed effect species pairwise interaction 

coefficients can be replaced by a smaller number of fixed coefficients combined with 

variance components providing a parsimonious but powerful description of diversity 

effects. 2. The inclusion of variance components for interaction coefficients provides 

a means to test for lack-of-fit in the fixed effect description of the diversity effect. 

We apply the method to data sets from two experiments, one grassland and one 

bacterial. Our approach provides new methodological tools to assess the relationship 

between biodiversity and ecosystem function that is particularly useful for species 

rich ecosystems. 

 

Materials and Methods 

 

MODELS 

 

The Generalised Diversity-Interactions (GDI) model (Connolly et al. 2013) is of the 

form  

εδαβ θ +++= ∑∑
<

==

s

ji
ji

jiij
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ii PPAPy
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where ),0(~ 2
1σε N        (Model 1a) 

The community ecosystem function is y, Pi is the initial relative abundance of the ith 

species (i=1,...,s), A is a block or treatment factor, α is the block/treatment effect and 

there is a pool of s species. The GDI model is a generalised version of the Diversity-
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Interactions (DI) model (Kirwan et al. 2007, Kirwan et al. 2009); if θ1 = 1 then the 

GDI model reverts to the DI model. In model 1a, βi is the expected performance of 

species i in monoculture and δij measures the potential interactive effect of species i 

with species j (for i,j=1, …, s and i<j) on the ecosystem function (y). Each δij 

coefficient is scaled by the product of the initial relative abundances of the two 

species (Pi and Pj) to the power of θ1 to compute the expected interactive 

contribution of those two species to ecosystem function. The value of θ1 determines 

the nature of this contribution (see Figures 2 and 3 in Connolly et al. 2013), for 

example if θ1 = 0 then the δij pairwise interaction coefficients are not scaled 

regardless of the sown species proportions, while if θ1=1, the scaling is exactly the 

product of the sown proportions. In the absence of any species interactions (i.e. δij = 

0 for all i, j) then ΣβiPi+αA is the expected ecosystem response. The diversity effect 

is an additional effect on the expected response caused by mixing of species, i.e. the 

difference between the expected mixture response and what would be expected based 

solely on the species monoculture responses; in model 1a the diversity effect is 

Σδij(PiPj)
θ1.  For the full pairwise Generalised Diversity-Interactions model (model 

1a), the diversity effect requires estimating θ1 and s(s-1)/2 δij coefficients, which is, 

for example, seven coefficients in a four-species system but 191 coefficients in a 20-

species system. This number of coefficients can be substantially reduced by testing 

for various patterns among the interactions coefficients (Kirwan et al. 2009). 

Here we propose the Generalised Diversity-Interactions Mixed (GDIM) 

model which assumes that the pairwise interaction coefficients follow a random 

normal distribution as opposed to being fixed:  
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where dij ~ ),0( 2
2σN  and ),0(~ 2

1σε N , (independent of each other)         (Model 1b) 

This model requires only four coefficients (δav, θ1, θ2 and 2
2σ ) to describe the 

diversity effect, regardless of the species pool size, which is a more parsimonious 

description than with model 1a. The coefficient δav is the average of the true pairwise 

interactions δij. In addition to reducing the number of coefficients required to model 

the ecosystem function, the GDIM model allows us to test for lack-of-fit in the fixed 

effect description of the diversity effect. Specifically, testing if 2
2σ  = 0 allows us to 

test whether, after accounting for fixed effects, there is additional variability among 

the true δij pairwise interaction coefficients; if the test is non-significant, it can be 

assumed that the fixed effects sufficiently capture the variability across the δij 

coefficients.  

The residual error variance, 2
1σ , in model 1b is assumed to be constant across 

all communities; however it may be related to community characteristics. To explore 

this, we first fitted model 1c which is as stated in model 1b but with different residual 

error variance for monoculture ( 2
1a

σ ) and mixture ( 2
1b

σ ) communities. We then also 

fitted model 1d which is as per model 1c but with 2
1bσ  allowed to vary according to 

some mixture community measurement (e.g. richness), i.e. the residual error variance 

for monocultures was 2
1aσ  while that for mixtures was 2

1*)( bzf σ , where f(z) was a 

function of some community characteristic measurement z. There are many forms 

f(z) could take; we let f(z) = zγ, where z is either a measure of community species 

richness (species number) or evenness (E = (2s/(s-1))*Σi<jPiPj) and γ is a coefficient 

whose value determines whether f(z) is an increasing or decreasing function of the 

community characteristic. If γ = 0 then f(z)=1 and 2
1bσ  is constant across mixtures. 
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The Generalised Diversity-Interactions model (before any random 

assumptions are added) can take a variety of different forms (Kirwan et al. 2007, 

Kirwan et al. 2009, Connolly et al. 2013), for example, 

εδαβ
θ
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Models 2a and 3a are versions of model 1a with some coefficient constraints applied 

(Kirwan et al. 2009); model 2a constrains all δij to equal δav, model 3a assumes two 

functional groupings of species and constrains the δij among the t (s-t) species from 

group 1 (2) to equal δwfg1 (δwfg2), and the δij for pairs of species with one from each 

group to equal δbfg, where wfg and bfg stand for ‘within functional group’ and 

‘between functional groups’ respectively. For simplicity, model 3a is specified for 

two functional groups but can be modified for more functional groups as required. 

Each of these models can be extended to a GDIM model as described for model 1a; 

the coefficients and their descriptions are listed in Table 3.1.1 with full algebraic 

specifications in Appendix 3.1.1. Note while models 1a and 2a differ, models 1b-1d 

are equivalent to models 2b-2d respectively. 

 

DATA SETS 

 

We tested our methods on two data sets. The first data set, referred to as the Jena data 

set, was from a nine-species grassland experiment in Jena, Germany (Roscher et al. 

2004). There were 206 communities assembled with various levels of species 

richness (1, 2, 3, 4, 6 or 9 species) and across four blocks based on soil  
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Table 3.1.1: List and description of the fixed and random coefficients in each model 

1a-d, 2a-d and 3a-d. Full model specifications are in Appendix 3.1.1. Note 

that models 1a and 2a differ but models 1b, 2b are the same (as are models 1c 

and 2c and models 1d and 2d). 

 

Model 1 2 3 

 
a 

 

Fixed 

Identity effects (βi) 
Treatment effects (α) 
Pairwise interactions 
(δij) 
Power on PiPj (θ1) 
 

 

Fixed 

Identity effects (βi) 
Treatment effects (α) 
Average pairwise 
interactions (δav) 
Power on PiPj (θ1) 
 

 

Fixed 

Identity effects (βi) 
Treatment effects (α) 
Functional group 
pairwise interactions 
(δwfg1, δwfg2, δbfg) 
Power on PiPj (θ1) 

 
b 

 

Fixed 

Identity effects (βi) 
Treatment effects (α) 

Average pairwise interactions (δav) 
Powers on PiPj (θ1,θ2) 

 
Random 

Pairwise interactions (dij) 
 

Assumptions 

ε ~ N(0, ��
�) 

dij ~ N(0, ��
�) 

 

 

Fixed 

Identity effects (βi) 
Treatment effects (α) 
Functional group 
pairwise interactions 
(δwfg1, δwfg2, δbfg) 
Powers on PiPj (θ1,θ2) 
 
Random 

Pairwise interactions (dij) 
 
Assumptions 

ε ~ N(0, ��
�) 

dij ~ N(0, ��
�) 

 

 
c 

 

Additional assumptions 

ε ~ N(0, ���
� ) for monocultures 

ε ~ N(0, ���
� ) for mixtures 

 
d 

 

Additional assumptions 

ε ~ N(0, f(z)*���
� ) for mixtures 
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characteristics. The species were classified into three functional groups (grasses, 

legumes and non-legume herbs), and aboveground biomass was the ecosystem 

function measured.  The second data set, referred to as the Bell data set, was from a 

72-species bacterial experiment (Bell et al. 2005). There were 1,374 microcosm 

communities inoculated with species of bacteria across varying richness levels (1, 2, 

3, 4, 6, 8, 9, 12, 18, 24, 36 and 72 species). The ecosystem function measured was 

the average daily respiration rate (over a period of 28 days) of the bacterial 

community. Additional information on both experiments can be found in Appendix 

3.1.2. 

 

ANALYSIS 

 

The first step in the analysis was to select a ‘baseline’ model for the data sets. A set 

of candidate Generalised Diversity-Interactions models (including models 1a, 2a and 

3a) were tested and the best was selected using likelihood ratio tests for comparisons 

involving the non-linear coefficient θ1 and F-tests otherwise. If the model with the 

estimate of θ1 was not a significant improvement over the model with its value set to 

1, then the simpler model with θ1=1 was used. These models were fitted using least 

squares, maximum likelihood or profile maximum likelihood as appropriate using the 

software package SAS 9.3 (SAS Institute Inc.). Each chosen baseline model was then 

extended to a Generalised Diversity-Interactions Mixed (GDIM) model to test for the 

inclusion of the pairwise interaction random effects and for an effect of community 

structure on the residual error term using likelihood ratio tests. When testing a 

variance term against zero, p-values were divided by 2 (Littell et al. 2006, pages 752-

3) to avoid issues associated with hypothesis testing close to a boundary space (Self 
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and Liang 1987). These models were fitted using restricted maximum likelihood 

(see, for example, Pawitan 2001) using the software package SAS 9.3 (SAS Institute 

Inc). For those models that included θ1, θ2 and/or γ, these coefficients were estimated 

using profile likelihood independently of each other. Using the final models, we 

predicted ecosystem function across a range of characteristics for each data set. 

 

Results 

 

The baseline model selected for the Jena grassland data set (Roscher et al. 2004) was 

model 3a, the functional group effect model, with θ1 = 1 (Appendix 3.1.3). Extending 

to the GDIM model 3b provided a significant improvement over model 3a (Table 

3.1.2a, M3a versus M3b, p=0.008). Including a profiled estimate of θ2 did not 

improve the model fit further (��2=0.65, p=0.234, testing for a difference from 1 using 

a likelihood ratio test) and so θ2 was set to 1. Fitting different residual error variances 

to monocultures and mixtures (model 3c) did not improve the model fit further nor 

did allowing the residual error variance to differ across mixtures (model 3d) (Table 

3.1.2a), thus the finally selected model for the Jena data set was the GDIM model 

that included within and between functional group interactions, and included random 

pairwise interactions: 
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where the αk are block effects, ),0(~ 2
2σNd ij

 and ),0(~ 2
1σε N .              (Model 3b) 
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Table 3.1.2. Generalised Diversity-Interactions Mixed (GDIM) model fits and tests for (a) the Jena and (b) the Bell data sets.  

       

  # c  -2LL Comparison Testing LRT p-value 

(a) Jena data set       

Model 3a (for three functional groups) 18 2394.5     

Model 3b (θ1=1, θ2=1) 19 2388.8 M3a vs M3b σ2 = 0 5.7 0.008 

Model 3c 20 2385.3 M3b vs M3c σ1a = σ1b 3.5 0.061 

Model 3d_richness (γ profiled) 21 2383.8 M3c vs M3d_r f(z) for richness 1.5 0.221 

Model 3d_evenness  (γ profiled) 21 2384.1 M3c vs M3d_e f(z) for evenness 1.2 0.273 

       

(b) Bell data set       

Model 2a 75 6464.1     

Model 2b (θ1 profiled, θ2=1) 76 6463.2 M2a vs M2b σ2 = 0 0.9 0.171 

Model 2c 77 6463.1 M2b vs M2c σ1a = σ1b 0.1 0.752 

Model 2d_richness  (γ profiled) 78 6463.2 M2c vs M2d_r f(z) for richness 0 1.000 

Model 2d_evenness  (γ profiled) 78 6463.2 M2c vs M2d_e f(z) for evenness 0 1.000 

Footnote: # c = number of coefficients in model, -2LL = -2 Log likelihood value from REML model fit, LRT=likelihood ratio test value. For the 

Jena data set, the profiled estimate of the γ coefficient for Model 3d_richness was -0.3 and for Model 3d_evenness was -0.6. For the Bell data 

set, the profiled estimate of the θ1 coefficient was 0.79 in models 2b to 2d and the profiled estimate of the γ coefficient for Model 2d_richness 

was 0 and for Model 3d_evenness was 0.025. 

44



 
 

The GDI model 2a with an average pairwise interaction effect and 79.01̂ =θ , 

was selected as the baseline model for the Bell bacterial data set (Appendix 3.1.4) 

The fit of the baseline model was not improved by extending it to any of the GDIM 

models (Table 3.1.2b). A profiled estimate of θ2 was tested in model 2b and the 

value with the smallest likelihood was θ2 = 1, therefore all models 2b-2d had θ2 set 

to 1 (Table 3.1.2b). The final model selected for the Bell data was the GDI model 2a 

which included the average interaction effect and the power coefficient θ1, but no 

random interaction terms: 

εδαβ +++= ∑∑
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)(  , where ),0(~ 2
1σε N , 

thus, there was no evidence that the residual error variance changed across richness 

or community composition. It would not have been possible to fit the full pairwise 

interactions model here (that would require the estimation of 2557 coefficients for 

which there is not enough data). Our result is therefore quite powerful because it 

provides evidence that it was not necessary to fit a full pairwise interactions model 

since all significant variability among the true δij terms was captured by the two 

coefficients δav, and θ1 without the need to actually fit the full δij model.  

Figure 3.1.2 shows ecosystem function predictions with raw data 

superimposed for each dataset. An example of each of the GDIM models fitted to the 

Jena data set (models 3b-d) is given in Appendix 3.1.5, the Jena data set is detailed 

in Appendix 3.1.6 and SAS code to fit each model is in Appendix 3.1.7.  
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Fig. 3.1.2. Predicted ecosystem response (___
�

___) and the raw data (x) versus 

richness for (a) the Jena and (b) the Bell data sets. The predicted mean response is 

averaged across all possible community types at each level of richness. 

 

 

Discussion 

 

The purpose of developing the Generalised Diversity-Interactions Mixed (GDIM) 

model was twofold; the first aim was to create a parsimonious model which could 

potentially replace a large number of fixed coefficients for describing diversity 
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effects with a smaller number of fixed and random coefficients combined. For data 

sets where fitting a full Diversity-Interactions model estimating all species 

interactions is impossible (e.g. the Bell dataset), or not desirable due to the difficulty 

extracting biological information from a large number of coefficients (e.g. the Jena 

dataset), the random coefficients in the GDIM model may facilitate using only a 

small number of fixed coefficients to describe diversity effects but still ensure that 

standard errors include any remaining uncertainty due to individual pairwise 

interactions. The second aim was to provide a lack of fit test for the fixed effects 

models where a reduced number of parameters are used to describe the diversity 

effects. In the event that the random effects are not needed, this lack of fit test can 

validate the inference from the reduced fixed effects model without the need to test 

against the full pairwise Diversity-Interactions model with all interactions fitted as 

fixed coefficients. We also provide a means to test if the residual error variance 

differs across varying community conditions. Specifically, it can be tested whether 

there is a difference between the residual error variances for monocultures and 

mixtures (Model 1c, is 2
1aσ = 2

1bσ ?) and if the residual error variation for mixtures is 

dependent on some community characteristic such as richness or evenness (Model 

1d, is f(z)=1?).  

As with previous models for the BEF relationship (Mulder et al. 2002, 

Mulder et al. 2004, Hooper et al. 2005, Lanta and Lepš 2006, Kirwan et al. 2007), 

the GDIM model allows exploring of the conditions under which ecosystem function 

will be maximised or minimized. Current methods for modelling the BEF 

relationship use many different community characteristics, such as species richness 

(Hooper et al. 2005, Spehn et al. 2005), functional grouping (Mulder et al. 2002, 

Cadotte et al. 2009), evenness (Cardinale et al. 2002, Finn et al. 2013) and the 
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presence / absence of individual species (Bell et al. 2009) to examine the relationship 

between species and ecosystem functioning. The Diversity-Interactions model 

(Kirwan et al. 2007, Kirwan et al. 2009), the Generalised Diversity-Interactions 

model (Connolly et al. 2013) and the GDIM model presented here implicitly test for 

the effects of a range of different community characteristics, such as species identity, 

species initial sown proportions, species interactions, species richness and evenness 

to examine the BEF relationship. Thus, when using our GDIM model to develop a 

more complete understanding of the BEF relationship, the benefits of each of the 

above methods are included, with the added benefit of providing a lack of fit test for 

a small number of coefficients describing diversity effects, and when the random 

effects are significant, ensuring that the extra uncertainty is built into standard errors 

improving inference.   

The GDIM models presented here investigated including random terms for 

species’ interactions. It would also be possible to assume that the identity effects 

follow a random probability distribution (Appendix 3.1.8). This extension could be 

useful in a particularly species-rich ecosystem as there may be difficulty estimating 

all identity effect coefficients (βi) but there may also be biologically motivated fixed 

effects solutions that would also reduce the number of coefficients that need to be 

estimated in a sensible manner. 

The GDIM model offers a modelling approach that is parsimonious, versatile 

and informative. The method has the ability to greatly reduce the number of 

coefficients required to model the effects of species’ interactions on ecosystem 

function, thereby simplifying the description of species-rich systems in particular. 

Our approach also allows us to test various assumptions as to how the residual error 

variance may be related to community structure. Ensuring the correct residual error 
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variance structure, along with the inclusion of random effects to capture variation in 

species interactions additional to the fixed effects, provides improved standard errors 

with which to test fixed effects, thus improving inference.  
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Chapter 4 

 

Modelling the multifunctional biodiversity and ecosystem function 

relationship 

 

Collaborators:  Caroline Brophy, John Connolly, Laura Kirwan, John A. Finn and 

Forest Isbell. 

 

INTRODUCTION 

 

Analysis of a single ecosystem function may not provide a full assessment of the 

biodiversity and ecosystem function (BEF) relationship. Different functions may 

require different species and so, by observing only a single function, we may be 

underestimating the ecosystem requirements and the effects of biodiversity loss. 

Recent research has examined the BEF relationship for multiple ecosystem functions 

(multifunctionality). The focus of this chapter is to discuss current multifunctional 

methods, to highlight potential improvements and to develop a multivariate model 

for analysing the multifunctional BEF relationship. 

Current multifunctional methods focus on reducing the complexity of 

analysing multiple functions, through methods such as multiple separate univariate 

analyses or the use of metrics. In section 4.1 we discuss the current multifunctional 

methods available, how each method is implemented and any potential difficulties. 
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The aim of this section is to highlight areas where we wish to contribute to 

multifunctional BEF research.   

In section 4.2 we aim to address some of the problems we highlighted in 

section 4.1 for the averaging approach, one of the current methods for analysing the 

multifunctional BEF relationship. The averaging approach averages all ecosystem 

functions of interest into a single metric value. Although this simplifies analysis it 

does not account for how the functions within the ecosystem are behaving, i.e. 

whether all functions are performing similarly of whether one or more functions are 

outperforming the others. In section 4.2 we develop a scaled averaging metric that 

penalises ecosystems where the function responses are more variable. This scaled 

metric improves upon the averaging metric and provides greater information about 

the underlying ecosystem functions.  

Many of the current multifunctional methods, including the scaled averaging 

metric developed in section 4.2, suffer loss of information about the ecosystem 

functions. In section 4.3, we develop the multivariate Diversity-Interactions model 

which allows for the analysis of multiple ecosystem functions simultaneously 

without the loss of information about the individual functions. By carrying out a 

multivariate analysis of the ecosystem functions, the model allows us to examine the 

effect of community characteristics on each function, the correlation between 

functions and how the effects of community characteristics change across functions. 
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Section 4.1 

 

Biodiversity and ecosystem multifunctionality: a review of current 

statistical methods. 

 

Introduction 

 

 Ecosystems provide multiple functions simultaneously (multifunctionality) 

which may interrelate and interact with one another. Many current methods for 

modelling the biodiversity and ecosystem function (BEF) relationship analyse a 

single ecosystem function (Tilman & Downing 1994; Cardinale et al. 2002; Hector 

& Bagchi 2007; Fox & Harpole 2008; Hillebrand & Matthiessen 2009; Kirwan et al. 

2009; Hector et al. 2010), such as the aboveground biomass produced in grassland 

experiments. Methods analysing a single ecosystem function may not provide a full 

assessment of the BEF relationship. For example, when analysing a single ecosystem 

function, such as biomass produced, a saturation effect as species richness increases 

has been observed in many cases (Hector et al. 1999; Cardinale et al. 2002), 

implying that additional species contribute less to the ecosystem function as richness 

increases. Although this is often the case when analysing a single function this may 

not be the case when multiple functions are considered simultaneously; different 

functions may require different species, reducing the possibility of observing a 

saturation effect as richness increases. Analysis based on multiple functions is 

important to the understanding of the BEF relationship as it allows for a fuller 

analysis and better estimation of the effect of changing community characteristics on 

the ecosystem, as well as providing us with a better ability to predict ecosystem 
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responses (Bennett et al. 2009). In addition, given that most ecosystems provide 

multiple functions simultaneously and in the face of serious global declines of 

biodiversity, understanding how to maintain the provisioning of multiple functions 

may be critical to human welfare. 

Using multifunctional analysis to examine the biodiversity and ecosystem 

function relationship is a novel area of research in ecology that is gaining much 

interest. Initial work examining the multifunctional BEF relationship has examined 

how the ability of an ecosystem to maintain multiple functions is affected by species 

richness (Hector & Bagchi 2007; Gamfeldt et al. 2008; Mouillot et al. 2011; Maestre 

et al. 2012a; Maestre et al. 2012b; Byrnes et al. 2014) and temporal and spatial 

factors (Zavaleta et al. 2010; Isbell et al. 2011). A number of key methods for 

examining the BEF relationship for multiple functions have been developed, namely: 

1. The threshold method (Gamfeldt et al. 2008; Zavaleta et al. 2010; Byrnes 

et al. 2014). 

2. The overlap method (Hector & Bagchi 2007; Isbell et al. 2011). 

3. The averaging method (Mouillot et al. 2011; Maestre et al. 2012a; 

Maestre et al. 2012b). 

4. Multiple univariate analyses (Allan et al. 2013; Cardinale et al. 2013; 

Orwin et al. 2014). 

Byrnes et al. (2014) provide a discussion of the methods currently in use for 

examining the multifunctional BEF relationship. In this section we aim to briefly 

review the methodological aspects of multifunctionality research to date, discussing 

each of the above methods, how they are implemented and any potential benefits or 

drawbacks the methods may have.  
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The threshold method 

 

 The threshold method was developed by Gamfeldt et al. (2008) to examine 

how species loss affects multiple ecosystem functions. The method was also used by 

Zavaleta et al. (2010) to estimate the number of species required to maintain a 

minimum threshold of functionality across multiple functions in a long-term 

grassland experiment. Byrnes et al. (2014) then extended the method to increase the 

range of thresholds considered during analysis. To implement the threshold method a 

maximum level of functioning is chosen for each ecosystem function, for example 

Gamfeldt et al. (2008) choose their level to be the maximum observed monoculture 

response for each individual function. A threshold of this maximum value is then 

chosen, e.g. to exceed a 50% threshold a community must have an ecosystem 

function value of at least 50% of the maximum level for that function. The 

community is said to be able to maintain the function if the community’s value is at 

the threshold or greater. Gamfeldt et al. (2008) used the threshold method to 

examine multifunctionality and the BEF relationship for five data sets, one 

containing grassland plant data, one containing bacteria data and three containing 

marine plant data. They used the monoculture responses to construct mixture 

communities and, having set a threshold of 50%, they randomly deleted a number of 

species and calculated the probability the ecosystem could sustain the functions 

given the species loss. The probability was calculated by simulating random species 

loss at each combination of species richness and ecosystem function 10,000 times 

and calculating the proportion of these simulations where the ecosystem maintained 

the functions to at least the threshold level. Zavaleta et al. (2010) used the threshold 

method to calculate the proportion of communities which could achieve a given 
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threshold of ecosystem function across a range of thresholds (40%, 50% and 60% of 

the maximum level), number of functions (1 to 8 functions) and species richness (1-

16 species) for three separate years (1998, 2000 and 2002) of a long-term 

biodiversity grassland experiment. They then used these proportions to estimate 

minimum species requirements such that 50% of communities at a given threshold 

and year could maintain a given number of functions. To maintain the multiple 

functions simultaneously both studies required that the ecosystem be able to 

maintain each individual function separately and found that high species richness 

increased the probability an ecosystem could maintain multiple functions. Byrnes et 

al. (2014) developed the multiple threshold approach which involves analysing the 

effect of species diversity on the ability of the system to maintain multiple functions 

across the full range of thresholds (i.e. for 0% to 100% of the maximum value) to 

help reduce the information loss that may occur from analysing the relationship 

based on a single or small number of thresholds. Byrnes et al. (2014) found that by 

using the full range of thresholds they were able to develop a better understanding of 

the changing effect of species diversity on ecosystem multifunctionality as the 

threshold value changed. Gamfeldt et al. (2008) found that there was a higher 

probability that the species rich communities could maintain the multiple functions 

after the simulated species loss whereas Zavaleta et al. (2010) found that as the 

number of functions being maintained increased, the minimum number of species 

required to maintain them also increased. Byrnes et al. (2014) found that the effect of 

species diversity on ecosystem multifunctionality was dependent on the threshold 

chosen. 

The threshold method is a simple method to implement across different types 

of ecosystems, as in Gamfeldt et al. (2008), and different ecosystem variables, as in 
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Zavaleta et al. (2010). It is a very useful method for performing examinations of the 

ability of the ecosystem to maintain multiple functions however the method has 

some disadvantages such as a loss of information. The threshold method converts the 

ecosystem function to a binary response, i.e. is the functioning above or below the 

threshold level; because of this, some information about the ecosystem function is 

lost, for example the threshold method does not provide information about by how 

much the ecosystem function exceeded or failed to reach the threshold. Zavaleta et 

al. (2010) used multiple threshold levels and Byrnes et al. (2014) further extended 

the number of thresholds used to help to compensate for this information loss. Their 

work showed that the choice of threshold can greatly influence the outcome of the 

study.  

 

The overlap method 

 

 The overlap method (Hector & Bagchi 2007; Isbell et al. 2011) identifies the 

species which affect each ecosystem function, focusing on the species which have 

desirable effects on the function, i.e. those that increase (decrease) ecosystem 

function where high (low) ecosystem function is desirable. The method initially 

identifies which species have a significant effect on each function, then subsets these 

species lists to only those species which have desirable effects on the ecosystem 

function.  The overlap between functions, i.e. the number of species which desirably 

affect any pair of functions, can then be calculated as 
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where Ei is the number of species which desirably affect the i
th function. Ei, Ej are 

values greater than 0 as functions must be affected by at least one of the species 

present in the ecosystem. The mean overlap between functions is then used to 

calculate the predicted value for the number of species required to maintain a 

number of functions: 
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where SE is the predicted species number, E is the number of ecosystem functions, 

x is the mean number of influential species per function and o  is the mean overlap 

between functions. Hector and Bagchi (2007) found that, as the number of functions 

increased, the number of species required to maintain multifunctionality increased. 

Isbell et al. (2011) extended the overlap method to examine how the species 

affecting the ecosystem functioning change across time, location, environmental 

changes and number of functions being maintained. By examining the ecosystems 

across these four factors Isbell et al. (2011) were able to identify that the species 

maintaining ecosystem functioning did in fact change and so greater species richness 

would be required to consistently maintain ecosystem functioning.  

The overlap method allows for the identification of which species drive 

ecosystem functioning and whether different species are required to maintain 

multiple functions. The method also allows for the calculation of the strength and 

direction (i.e. a positive, neutral or negative effect) of the species effect. A drawback 

of the method however is that for a species to be considered important to two or 

more functions, the direction of the species effect must be the same for all functions 

under consideration. This means that the overlap method cannot currently interpret 

when a species has a positive effect on one function and a negative effect on another.  
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The averaging method 

 

 The averaging method (Mouillot et al. 2011; Maestre et al. 2012a; Maestre et 

al. 2012b) combines a number of standardised functions into a single average value 

which allows for the application of well known univariate methods to explore the 

multifunctionality of the system. Maestre et al. (2012a; 2012b) found that the species 

richness of the ecosystem had a significant positive correlation with the average 

metric, i.e. the average metric increased as the species richness increased, implying 

that the ability of the ecosystem to maintain higher ecosystem function values 

increased with species richness. Wagg et al. (2014) found a similar result, i.e. that 

higher species richness in the soil community corresponded to a higher average 

functional metric value. 

Although the averaging method is simple to calculate it has a number of 

significant drawbacks. The average metric is not easily interpreted in terms of the 

multifunctionality of the ecosystem. A high metric value means high functional 

values for the ecosystem on average. However, since the metric is calculated as the 

average of the ecosystem functions, conclusions cannot be drawn from the metric as 

to how the ecosystem is maintaining each individual function. If only some functions 

are performing very well, taking the average may hide functions for which the 

ecosystem is performing poorly. As it is currently implemented the averaging 

method also does not consider whether high or low functional values are desirable 

for each function, for example, it may be desirable to have high biomass produced 

but low nitrate leaching in a grassland system. 
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Analysis using univariate methods 

 

 The final method most commonly used is a univariate analysis to analyse the 

effect of community characteristics on each function individually and then 

combining the resulting information to compare the effects across functions in a 

qualitative manner. This method has no exact definitive steps to follow as the analyst 

chooses which univariate methods to use and how to collate the resulting 

information. This method for analysing the multifunctional BEF relationship has 

been used for large data sets by Allan et al. (2013) and Cardinale et al. (2013) to 

examine the effect of species richness across large temporal and spatial scales. Both 

studies found that biodiversity had a significant effect on the ability of the ecosystem 

to maintain multiple functions.   

 Although univariate analysis offers a method for highlighting how each 

individual function is affected by community characteristics the method requires 

multiple analyses and does not measure the correlations among functions or allow 

for a quantitative analysis or formal test of the effect of a species across functions.  

 

Final remarks 

 

The four methods presented here offer different approaches to analysing the complex 

problem of multifunctional ecosystems. We have briefly discussed the main benefits 

and drawbacks of each of the current methods, similar to what was presented by 

Byrnes et al. (2014). The purpose of this discussion of current multifunctional 

ecosystem analysis methods was to highlight some areas which we hope to address 

in the sections that follow in this chapter, namely ways to address the information 
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loss which is suffered by most multifunctional methods. Byrnes et al. (2014) have 

attempted to address the information loss for the threshold method by extended the 

method to cover all possible thresholds but other methods, such as the averaging 

method, suffer from a serious loss of information which has yet to be examined. 

Additionally, no method has so far built the correlations among functions into an 

analysis that can test specific species or other effects across multiple functions. 

Multifunctional ecosystem analysis is a new and expanding area of research and, as 

such, has great potential for the development of new concepts. 
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Abstract 

 

Analysing multiple ecosystem functions simultaneously (multifunctionality) has 

become an area of great interest in the ecological community. A number of methods 

have been developed to examine the biodiversity and ecosystem function 

relationship for multiple functions, however, some of these have major conceptual 

issues. Here we critique the averaging method, which analyses multifunctionality by 

averaging multiple ecosystem function responses into a single metric value. The 

issues we highlight include loss of information at the individual function level and 

the possibility of two communities that differ greatly yielding the same average 

metric value. We also introduce the SAM metric, an improvement on the average 

metric that includes information about the variability between ecosystem function 

responses in its calculation. We analyse the average and the SAM metric for data 

from a grassland biodiversity experiment to demonstrate how the SAM metric 

improves on the average metric.  

 

Introduction 

 

Multifunctionality is an emerging area for exploring the biodiversity and 

ecosystem function (BEF) relationship which assesses multiple ecosystem functions 

simultaneously [1-6] as opposed to a single function as has previously been typical 

[7-11]. These recent multifunctionality studies have proposed various new analytical 

methods for examining the multifunctional BEF relationship, e.g. the threshold 

method [4, 6, 12], the averaging method [13, 14] and the overlap method [1]. These 

analytical methods have been reviewed and associated pros and cons have been 
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discussed by Byrnes et al. [12]. The purpose of this paper is to further critique the 

average metric that is used in the averaging method; we will discuss problems with 

how the method is currently implemented and interpreted. We will also develop an 

improved metric, called the Scaled Average Multifunctionality or SAM metric. The 

SAM metric will be illustrated and compared to the average metric using data from 

the Irish site of the grassland BIODEPTH project [15]. 

 

Critique of the averaging method 

 

The averaging method [13, 14, 16, 17] combines a number of standardised 

ecosystem functions into a single average metric which can then be analysed using 

univariate techniques. Reducing the multivariate nature of multiple ecosystem 

function responses to a single dimension reduces the complexity of analysis 

considerably; however, there are a number of drawbacks to this approach, from both 

technical and interpretational aspects, that should be carefully considered before 

using the averaging method in multifunctional BEF analysis. These drawbacks are 

summarised as follows: 

1. Two communities with the same average metric value could have greatly 

different individual ecosystem function responses. Figure 4.2.1 shows a 

hypothetical example of three standardised ecosystem function responses for 

two different communities. For the first community (Figure 4.2.1a) the three 

standardised ecosystem functions are performing similarly whereas in the 

second community (Figure 4.2.1b) function A is performing at a much higher 

rate than either functions B or C. The average metric for both hypothetical 
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communities is 0.4 and thus they are treated as equivalent by the metric 

despite individual values varying greatly.  

 

 

 

Figure 4.2.1. Two sets of hypothetical community measurements for three 

functions (A, B and C). In community (a) the functions each have a similar 

standardised value, while in community (b) function A has a much larger 

standardised value than B and C. The two communities yield the same average 

metric value. 

 

 

2. Removing the multivariate nature of multiple ecosystem function responses 

means that it is not possible to describe the effect of the community 

characteristics on any of the individual functions, merely their effect on the 

average across all functions being considered in the analysis. This results in 

loss of information on how individual functions respond to varying 
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community characteristics. Information is also lost on how the functions 

relate to one another as correlations among them are ignored. 

3. When taking an average of multiple functions, it is assumed that each 

function is equally important, which may not be the case. For example in 

agronomic grasslands the aboveground biomass produced may be considered 

more important than other functions, such as the belowground biomass. The 

averaging method currently calculates the average metric by giving all 

functions equal weight, regardless of the level of interest in the functions.  

4. While it is often desirable to maximise a function, this is not always the case. 

All functions included in the average metric are assumed to be desirable in 

the same direction which limits what functions can or cannot be included 

when calculating it. For example, in a grassland system, high ecosystem 

functioning for functions such as aboveground biomass or plant nitrogen 

content is usually considered desirable whereas with other functions, such as 

nitrate leaching, low ecosystem functioning is usually desirable.  

While the averaging method is easy to implement, these four criticisms of it 

highlight the loss of information that occurs in its practical use and identify how its 

interpretations may be misleading.  

 

Development of the Scaled Average Multifunctionality (SAM) metric, an 

improvement on the average metric 

 

Let (yi1,..., yik) be the observed ecosystem function responses for the ith 

community for the k functions recorded. The responses across communities are then 

transformed to a comparable scale, separately for each function, giving the vector of 
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responses for the ith community (zi1,..., zik). The average metric for the ith community 

is the average of its z values. The process of transformation can take many different 

forms; Maestre et al. [13, 14] transformed the functions by converting each response 

to a percentage of the maximum five percent of responses for the function whereas 

Wagg et al. [17] standardised the responses to have a mean of 0 and standard 

deviation of 1. We transformed functions where higher output was considered 

desirable by expressing each value as a percentage of the average of the top 5% of 

values as in Maestre et al. [13, 14]. For functions where a lower output was 

considered desirable, we transformed the function by computing the maximum value 

minus the current value, then converting each new response value to a percentage of 

its new maximum, as presented by Byrnes et al. [12]. The Scaled Average 

Multifunctionality (SAM) metric was then calculated for the ith community by  

SAM = 
i

i

s
z

  

where si is the standard deviation across the k transformed responses for the ith 

community. This is the reciprocal of the coefficient of variation across functions. For 

communities where the transformed functions are behaving similarly to each other, 

the standard deviation among functions will be low, leading to a higher SAM metric 

value, while communities that have a lot of variability among the k responses will be 

penalised. We assume that the higher the SAM metric value, the higher the 

ecosystem multifunctionality.  

 

Application of the SAM metric and comparison to the average metric 

 

 We computed and analysed the average metric and the SAM metric for data 

from the Irish site of the grassland BIODEPTH (BIODiversity and Ecosystem 
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Processes in Terrestrial Herbaceous systems: experimental manipulations of plant 

communities) project [15]. The experiment consisted of 31 experimental plant 

assemblages (10 monoculture communities and 21 mixture communities) each 

planted in two blocks across a range of species richness (1, 2, 3, 4, or 8 species) and 

functional group richness (1, 2 or 3 groups) levels giving 66 plots in total (one four 

species and one eight species assemblage appeared in four rather than two plots). 

The species pool contained 10 species and the five ecosystem functions, recorded in 

the third year of the experiment, were aboveground plant biomass, belowground 

plant biomass, unconsumed soil nitrogen, aboveground nitrogen pool and cotton 

decomposition.  Although the experiment originally had a 12 species pool, 

communities containing two particular species (Cerastium fontanum and Taraxacum 

officinale) were omitted from the analysis as the species were only in four plots and 

did not appear in monoculture. We assumed aboveground plant biomass, 

belowground plant biomass, aboveground nitrogen pool and cotton decomposition 

were functions where high output was considered desirable and unconsumed soil 

nitrogen was a function where low output was considered desirable. 

We computed the average and the SAM metric for the data as described 

above with one alteration; when computing the standard deviation for each 

community, we used the pooled standard deviation from plots which had the same 

sown composition, i.e. we computed the variance across the five functions for each 

of the two communities with the same sown composition, averaged the two 

variances and computed the square root. The reason for this was to reduce the 

possibility of an extremely low standard deviation value which may occur by chance 

if the five standardised values were very close. An initial examination of the plot of 

the average and SAM metric values for the communities from block 1 (Figure 4.2.2) 
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showed that the SAM metric can be used to distinguish between communities where 

the five functions are behaving similarly and those where the ecosystem function 

responses are more varied. For example community compositions 21 and 24 

(highlighted by a dotted line in Figure 4.2.2); the average values for these 

compositions are almost identical but the SAM metric values differ. 

 

 

Figure 4.2.2. Plot to compare the average metric and SAM metric responses 

across 31 community compositions. The plot shows the average (♦, left y-axis) 

and the SAM (□, right y-axis) metric responses for block 1 of the dataset. The x-

axis represents the composition number of the communities. Species richness 

(SR) is given for each community composition. Plot compositions 21 and 24 are 

highlighted by a dotted line and compositions 2 and 7 are highlighted by a 

dashed line. 
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This is because there is a higher spread of standardised responses for community 21 

(values range from 38 to 81) than for community 24 (values range from 57 to 84) 

(Appendix 4.2.1). The average metric permits trade-offs between functions where we 

consider a trade-off to occur when one or more functions performing strongly 

compensates for other functions performing poorly. The SAM metric does not 

permit trade-offs to the same degree, instead it penalises against variability among 

the individual responses. For example, the average metric response of community 

composition 2 (a grass monoculture) is higher than for community composition 7 

(highlighted by a dashed line in Figure 4.2.2) which is partly attributable to a high 

standardised aboveground plant biomass value in composition 2 compensating for 

low standardised belowground plant biomass, however, when the variability among 

the five responses is taken into consideration, the SAM metric values for these two 

communities are very similar (Figure 4.2.2 and Appendix 4.2.1). 

 We analysed the average metric and the SAM metric using the Diversity-

Interactions model [10, 18] 

εδαβ +++= ∑∑
<
==

s

ji
ji

jiijb

s

i

ii PPPy
1,1

      (1) 

where y is the metric value response, Pi is the sown relative abundance of the ith 

species, αb is the block effect where b=1, 2, ε is an i.i.d. normally distributed error 

term and there is a species pool of s species. βi is the identity effect of the ith species, 

δij is the interaction effect of species i with species j, for j=1, …,s and i<j. The full 

Diversity-Interactions model has s identity parameters and s*(s-1)/2 interaction 

parameters to be estimated but assumptions about the parameters can reduce these 

numbers [18], which can be particularly useful for large s. Some examples of these 

reduced models are the model which assumes no diversity effects (δij=0 for all i,j); 
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the average Diversity-Interactions model, which assumes that each δij is equal to an 

average diversity effect δav; and the functional group Diversity-Interactions model. 

The functional group Diversity-Interactions model assumes that the functional group 

of a species dictates how it interacts with other species. For example, if a system has 

species from two functional groups, the functional group model estimates two 

parameters for interactions within each functional group (δwfg1 and δwfg2) and a third 

parameter for interactions between species from different functional groups (δbfg). 

We fitted a range of Diversity-Interactions models to both the average and 

SAM metrics and the set of models for each metric were compared using F-tests. We 

found that for both the average metric and SAM metric the average Diversity-

Interactions model:  

εδαβ +++= ∑∑
<
==

s

ji
ji

jiavb

s

i

ii PPPy
1,1

      (2) 

provided the best fitting model (see Appendix 4.2.2 for model fitting details). For 

ease of interpretation of the interaction coefficient, we rescaled the sum of the 

pairwise interactions to be E = ∑
−

ji PP
s

s

1

2
 = ∑ ji PP

9

20
, where E lies between 0 

for monocultures and 1 for the centroid community (all 10 species equally present) 

[10]. This gives the model  

εδαβ +++=∑
=

EPy b

s

i

ii

1

       (3) 

where δ is the expected diversity effect for the 10-species centroid community. 

 The estimated parameters for the SAM metric (Table 4.2.1) and the average metric 

(Table 4.2.2) show that all species identity effects and the average diversity effect 

were significant for both metrics. As species evenness (measured here by E) 

increases across communities there is a linear increase in the predicted diversity  
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Table 4.2.1. Table of parameter estimates from model 3 for the SAM metric.  

Parameter Estimate Standard Error 

β1 2.64 0.309 

β2 2.48 0.314 

β3 2.05 0.310 

β4 1.89 0.313 

β5 2.39 0.327 

β6 3.25 0.304 

β7 1.59 0.357 

β8 1.32 0.333 

β9 2.50 0.307 

β10 1.34 0.307 

α1 2.43 1.807 

α2 0.00 - 

δ 2.54 0.397 
Significant parameter values are highlighted in bold. 

 

 

Table 4.2.2. Table of parameter estimates from model 3 for the average metric.  

Parameter Estimate Standard Error 

β1 57.23 4.726 

β2 60.52 4.802 

β3 56.26 4.741 

β4 66.17 4.780 

β5 63.51 4.992 

β6 67.40 4.650 

β7 51.91 5.430 

β8 59.45 5.080 

β9 63.36 4.690 

β10 52.73 4.699 

α1 -5.62 1.966 

α2 0.00 - 

δ 30.54 5.937 
Significant parameter values are highlighted in bold. 
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effect for the SAM metric (Figure 4.2.3, ■). The observed diversity effects (Figure 

4.2.3, ○) were calculated as the difference between the observed SAM metric value 

for each plot and the expected SAM metric value based on combined monoculture 

effects. There was no evidence that a quadratic term for evenness was needed for 

either response metric. 

 

 

 

Figure 4.2.3. Plot of the predicted diversity effect (■) and the observed diversity 

effects (○) for the SAM metric across species evenness. The observed diversity 

effects were calculated as the difference between the observed SAM metric 

value for each plot and the expected SAM metric value based on combined 

monoculture effects. 
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The averaging method [13, 14, 16] is a method which simplifies the 

complexity caused by analysing multiple functions simultaneously into a simple, 

single metric value which can then be analysed using univariate methods. Care must 

be taken however, when deciding to implement the averaging method in practice 

because there are numerous issues that arise with its interpretation. In this paper we 

highlighted a number of disadvantages of the method and addressed some with an 

extension to the Scaled Average Multifunctionality (SAM) metric. 

The SAM metric was developed to address the drawback that communities 

with very different individual ecosystem function responses could have the same 

average metric value (Figure 4.2.1) which is seen in the case of the observed metric 

responses for community compositions 21 and 24 in block one of our data (Figure 

4.2.2). Here we have two communities where the average metric is approximately 

equal but where the individual functions are performing differently. In community 

24 the individual functions are each performing more similarly to one another 

whereas in community 21 the individual responses are more varied (Appendix 4.2.1). 

The SAM metric allows for this variability among the functions by dividing the 

average by the standard deviation between the ecosystem function values, thus the 

SAM metric penalises against communities where individual ecosystem functions 

are more varied compared to a more stable performance across functions.  

Another drawback of the averaging method is that the averaging metric does 

not currently account for the individual function desirability. Calculating a metric 

value from functions where some have positive desirability and some have negative 

desirability does not make logical sense. For the work presented by Maestre et al. 

[13, 14] all functions examined were assumed to be functions where higher 

functioning is considered favourable. Byrnes et al. [12] addressed the problem by 
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incorporating the ecosystem function desirability when scaling the functions to 

create scaled functions with positive desirability for each function. The method 

presented by Byrnes et al. [12] was used in the calculation of the SAM metric to 

transform the unconsumed soil nitrogen content response. Higher values of 

unconsumed soil nitrogen content were deemed to be less desirable than lower 

values as high values can lead to higher nitrate leaching from the system. A second 

possible method to incorporate the response desirability is to split the functions by 

desirability and then analyse the functions with positive and negative desirability 

separately. This method allows for the desirability but yields two metric values 

instead of one. Care should be taken, however, as the desirability of an ecosystem 

function is subjective to the stakeholder’s opinion and therefore may change between 

stakeholders. 

The SAM metric does not currently address two of the four problems we 

identified with the averaging metric. Firstly, by combining the multiple ecosystem 

function responses into a single metric measurement we lose the ability to examine 

the effect of community characteristics on any individual function, thus reducing the 

amount of information we can gain about the multifunctional BEF relationship. 

Secondly, each ecosystem function used to calculate the SAM metric is assumed to 

be equally important. One possible way to incorporate the relative importance of the 

ecosystem functions into the SAM metric is to introduce a weighting for each 

function within the metric so that functions which are considered more important are 

given a heavier weight than the less important functions. This would allow the metric 

to focus more on the important functions whilst still allowing for the other functions 

being analysed. However, again, the importance of functions is dependent on each 

stakeholder’s views and, as such, any proposed weighting system would be highly 
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subjective. Hill [19] discusses a number of indices which allow for different 

weighting among the components of the index for species richness. These ideas 

could be extended to consider multiple functions rather than species. 

 Although the SAM metric is an improvement on the averaging method care 

must be taken when implementing this method as it still carries a number of the 

drawbacks of the averaging method and requires additional care when using the 

standard deviation between the functions. A high SAM metric value could be caused 

by high ecosystem function values or by ecosystem functions performing similarly to 

one another. Functions performing similarly to one another will yield a small 

standard deviation which in turn will increase the SAM metric value. A strong 

assumption of the method is that it is desirable to have all functions functioning at a 

similar level, thus the metric penalises communities when functions have widely 

varying values. The SAM metric is designed to improve on the averaging method 

and should only be used in appropriate situations, i.e. when interested in examining 

the average response to changing community characteristics of a system where it is 

required that all functions are performing similarly. The SAM metric does not allow 

for trade-offs, i.e. one or more function which is performing well compensating for 

other functions performing poorly. Community composition 2 (Figure 4.2.2) showed 

that, by taking the variability between the functions into account, the SAM metric 

negated the trade-off between a high biomass yield and poorer performing functions 

such as root biomass. 

In cases where we wish to examine the multifunctional BEF relationship 

without such a loss of information, other multifunctional methods [1-6, 20-22] are 

currently available. However, none of these methods fully deal with the multivariate 

nature of multifunctional BEF data. The use of a multivariate analysis would allow 
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for a more complete examination of the relationship between multiple ecosystem 

functions and changing community characteristics. Such a method is developed in 

the final section of this chapter. 
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ABSTRACT  

 

Most ecosystems provide multiple services, thus the impact of biodiversity losses on 

ecosystem functions may be considerably underestimated by studies that only address 

single functions. We propose a multivariate modelling framework for quantifying the 

relationship between biodiversity and multiple ecosystem functions (multifunctionality). 

Our framework consolidates the strengths of previous approaches to analysing 

ecosystem multifunctionality and contributes several advances. It simultaneously 

assesses the drivers of multifunctionality, such as species relative abundances, richness, 

evenness, and other manipulated treatments. It also tests the relative importance of these 

drivers across functions, incorporates correlations among functions and identifies 

conditions where all functions perform well and where trade-offs occur among 

functions. We illustrate our framework using data from three ecosystem functions (sown 

biomass, weed suppression and nitrogen yield) in a four-species grassland experiment. 

We found high variability in performance across the functions in monocultures, but as 

community diversity increased, performance increased and variability across functions 

decreased.  
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INTRODUCTION 

 

The biodiversity and ecosystem function (BEF) relationship has been widely researched 

over the past few decades and ecosystem functions such as biomass production or 

resistance to weed invasion are generally reduced as biodiversity is lost (Hector et al. 

1999; Cardinale et al. 2011; Finn et al. 2013). Since most investigations of the BEF 

relationship have focused on a single ecosystem function, the impact of biodiversity 

losses on the delivery of ecosystem services may be underestimated, however, several 

recent studies have explored the BEF relationship for multiple ecosystem functions 

(multifunctionality) (Hector & Bagchi 2007; Gamfeldt et al. 2008; Mouillot et al. 2011; 

Allan et al. 2013; Byrnes et al. 2014a). These studies have generally shown that the 

number of species required to maintain multifunctionality increases with the number of 

functions being considered, partly because different sets of species control different 

ecosystem functions (Hector & Bagchi 2007; Isbell et al. 2011).  

Statistical methods for analysing the multifunctional BEF relationship include (1) 

qualitatively combining univariate models for each function (Allan et al. 2013), (2) the 

averaging approach (Mouillot et al. 2011), (3) the overlap method (Hector & Bagchi 

2007) (4) the single threshold method (Gamfeldt et al. 2008) and (5) the multiple 

threshold method (Byrnes et al. 2014a). These methods are summarised in Appendix 

4.3.1 and have been reviewed and critiqued in Byrnes et al. (2014a). Although these 

previous methods provide useful insights, each suffers from loss of information through 

simplifying the multivariate nature of the data (see Box 1). This information loss 

includes: reduced information on individual functions, correlations among functions 
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Box 1 Summary of the information loss associated with previous multifunctionality approaches (each described in Appendix 4.3.1) 

and description of the consolidation of the strengths of those approaches and the added benefits that the Multivariate Diversity-

Interactions modelling framework provides. 

Approach Issues and information loss  

Strengths that are 
included in the 
Multivariate Diversity-
Interactions framework 

Additional value of the Multivariate Diversity-
Interactions framework 

(1) Combining 
univariate 
models 

• No information on correlations among 

functions.  

• Only qualitative information on 

multifunctionality. 

• Understanding the 

drivers of each 

individual function. 

• Tests the relative importance of the drivers 

across functions.  

• Quantitative information on single functions and 

on multifunctionality. 

• Incorporates correlations among functions into 

the assessment of drivers of multifunctionality. 

  

(2) The 
averaging 
approach 

• Loss of information at the individual 

ecosystem function level.  

• Two communities with very different 

ecosystem functions can yield the same 

average metric value (e.g., with two 

functions, the two functions could be 

equal or one function could be very high 

and the other very low, but the two 

communities yield the same average) 

therefore it is an incomplete description 

of the underlying multivariate 

distribution. 

 • Tests the drivers of individual functions.  

• Tests the relative importance of the drivers 

across functions.  

• Utilises correlations among functions in 

inference.  
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Approach Issues and information loss  

Strengths that are 
included in the 
Multivariate Diversity-
Interactions framework 

Additional value of the Multivariate Diversity-
Interactions framework 

(3) The overlap 
method  

• Ignores how sets of species that 

positively influence some ecosystem 

functions might reduce other functions. 

• Quantifies the species 

that positively 

influence pairs of 

ecosystem functions. 

• Tests how all species and pairwise interactions 

positively or negatively affect all functions (not 

just pairs of functions), i.e. identifies conditions 

under which multiple functions all perform well, 

but will also identify trade-offs among functions.  

 

(4) The single 
threshold 
method  

• Converts quantitative measurements to 

categorical thus there is loss of 

information on the amount by which a 

function exceeds or falls below a 

threshold.  

• Subjective to the choice of threshold. 

• Ignores effects of correlations among 

functions. 

 

• Identifies 

combinations of 

species that will 

achieve, for example, 

70% of the maximum 

performance. 

 

• Quantitative predictions on how each function 

performs under varying diversity characteristics.  

• Identifies the combinations of species and their 

relative abundances that will attain, for example, 

70% of the maximum. 

(5) The multiple 
threshold 
method  

• Requires carrying out the same tests 

repeatedly (at each threshold) but 

provides no statistical adjustment for 

the multiple comparisons. 

• Ignores effects of correlations among 

functions. 

• Identifies 

combinations of 

species that will 

achieve a certain 

threshold of the 

maximum 

performance. 

• Quantitative predictions on how each function 

performs under varying diversity characteristics.  

• Provides the combinations of species and their 

relative abundances that will attain a certain 

percentage of the maximum.  

• Provides an adjustment for the multiple tests of 

comparison that are needed in any 

multifunctionality analysis giving statistical 

reassurance on the reliability of conclusions. 
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not being measured and being ignored in analysis, species abundance being summarized 

as a binary variable (presence or absence) and continuous information being converted 

to categorical thresholds. While reducing the multivariate nature of data can sometimes 

be useful, it may lead to misconceptions at the individual ecosystem function level 

particularly when functions differ markedly in their responses to changing diversity 

(Bradford et al. 2014a, b; Byrnes et al. 2014b). These previous methods also focus 

strongly on species richness as the main driver of multifunctionality, ignoring other 

potentially highly influential aspects of diversity, such as the relative abundances of 

species or the ability of pairs of species to interact (Wilsey & Potvin 2000; Wilsey & 

Polley 2004; Kirwan et al. 2007; Finn et al. 2013).  

The Diversity-Interactions approach (Kirwan et al. 2009; Connolly et al. 2013) 

models the BEF relationship for a single ecosystem function as a function of species 

identities and interactions among pairs of species. Here we develop the Multivariate 

Diversity-Interactions model to analyse the multifunctional BEF relationship by 

extending the univariate Diversity-Interactions approach to a multivariate framework. In 

this framework, comparisons of the model components across ecosystem functions allow 

testing of the relative performance of each function across diversity characteristics such 

as species identities, species interactions, evenness, richness and manipulated treatments 

or environmental variables, and it automatically allows for correlations among functions. 

Thus, we can identify conditions (if they exist) where all functions perform well relative 

to each other or identify where trade-offs occur among functions. We illustrate our 

Multivariate Diversity-Interactions framework with data for three ecosystem functions 
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from a four-species grassland biodiversity experiment. We investigate the following 

aspects of ecosystem multifunctionality: 

(1) What diversity characteristics (e.g., species abundances, species identities, 

species interactions, composition and evenness) affect each individual ecosystem 

function? 

(2) How should correlations among ecosystem functions be incorporated in 

assessing drivers of multifunctionality? 

(3) What is the relative importance of the various aspects of diversity and 

environment (species identities, species interactions and treatments) across 

ecosystem functions?  

(4) Are there conditions under which all ecosystem functions perform well? Are 

there trade-offs occurring among ecosystem functions?  

 

MATERIALS AND METHODS 

 

The Multivariate Diversity-Interactions framework 

 

The Diversity-Interactions model (Kirwan et al. 2009) is:   

εδαβ +++= ∑∑
<
==

s

ji
ji

jiij

s

i
ii PPAPy

1,1

       (1) 

where y is a single ecosystem function, Pi (Pj) is the initial relative abundance of the ith 

(jth) species with i, j=1,...,s and A can include a measure of community abundance and/or 

block and/or treatment effects and so α may be a vector including several coefficients. 
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The coefficient βi is the expected performance of the ith species in monoculture and is 

called the species identity effect, δij is the interaction effect between species i and j, and 

ε ~ N(0,σ2). Further interpretations are in Kirwan et al. (2009). Additional interactions 

can be tested among the model terms, including those between interaction (δij) and 

treatment (α) coefficients. Model (1) addresses a single ecosystem function and here we 

extend it to a multivariate framework to simultaneously model the relationship between 

biodiversity and ecosystem multifunctionality. 

For the Multivariate Diversity-Interactions model of k functions, the equation for 

the kth function is of the form: 

k

s
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ji

jiijkk

s

i
iikk PPAPy εδαβ +++= ∑∑

<
== 1,1

      (2) 

where βik is the identity effect for species i for ecosystem function k, and δijk is the 

species interaction effect between species i and j for ecosystem function k. In matrix 

notation, the Multivariate Diversity-Interactions model is 
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   (3) 

Y  represents the observed matrix of ecosystem functions, X represents the matrix of 

explanatory variables which includes all terms shown in equation (2) for the kth function, 

β  represents the matrix of model coefficients, MVN stands for multivariate normal and 

0 is a matrix of zeros corresponding in size to the matrix Y . The variance-covariance 
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matrix Σ  is a block diagonal matrix with a k x k block for each plot; within each block, 

the diagonal entries are the ecosystem function variances and off diagonal entries are the 

covariances between the errors of each pair of ecosystem functions. There are ks identity 

effects and ks(s-1)/2 interaction effects to be estimated. This number can be reduced by 

making biologically meaningful assumptions about the patterns among the δijk 

interaction coefficients (for each k) using the techniques outlined in Kirwan et al. 

(2009). For example, it might be assumed that all species interact in the same way (δijk = 

δavk for all i, j) or that all species from a particular functional group interact in the same 

way (for two functional groups, δijk = δwfg1k if i, j are both from functional group 1, δijk = 

δwfg2k if i, j are both from functional group 2, δijk = δbfgk if i, j are from different 

functional groups, where wfg represents ‘within functional group’ and bfg represents 

‘between functional group’).  

 

The data set 

 

A four-species grassland biodiversity field experiment was established in 2002 at 

Merelbeke in Belgium as part of a larger agro-diversity experiment (Kirwan et al. 2007; 

Finn et al. 2013) and the data is publicly available as ‘site 1’ in Kirwan et al. (2014). 

The species sown were two grasses (Lolium perenne, denoted G1, and Phleum pratense, 

G2) and two legumes (Trifolium pratense, L1 and Trifolium repens, L2). Both G1 and 

L1 were fast-establishing species while G2 and L2 were temporally-persistent species. 

Thus there were two possible functional group classifications among the four species: 

grass / legume and fast-establishing / temporally-persistent. A monoculture for each 
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species and 11 four-species mixture communities were established at two (high and low) 

seed density levels giving a total of 30 plots each 8.4m2 in size. The relative abundances 

in the mixture communities were systematically varied at sowing; at each seed density 

level, there were four monocultures, a community where the four species were sown in 

equal abundance (0.25, 0.25, 0.25, 0.25), four communities which were each dominated 

by one of the species (e.g., (0.7, 0.1, 0.1, 0.1)) and six communities which were co-

dominated by two species (e.g., (0.4, 0.4, 0.1, 0.1)). Each community can be described 

using an evenness metric (Kirwan et al. 2007): 

E=(2s/(s-1))*Σi<jPiPj=(8/3)*Σi<jPiPj.  

The evenness values for the experiment are E=0 for monocultures, E=0.64 for one 

species dominant, E=0.88 for two species dominant and E=1 for all species equally 

present. Inorganic nitrogen fertilizer was applied to all plots at a rate of 150 kg N ha-1 

annum-1. Further details are available in Kirwan et al. (2014). Three ecosystem functions 

were recorded: (1) aboveground biomass of sown species (sown biomass) (t DM ha-1) 

(2) aboveground biomass of weed species (weed biomass) (t DM ha-1), and (3) the total 

annual yield of nitrogen in harvested aboveground biomass (N yield) (t DM ha-1) for 

each plot and each harvest in 2003, the first year of the experiment following 

establishment. There were four harvests during the year and the annual values for each 

plot were computed by summing the four values for each ecosystem function. The 

experiment continued for a further two years, but only results from the first year are 

considered here to illustrate the new methodological developments. 

 

Analysis 

95



 
 

 

The three ecosystem functions were linearly transformed to a comparable scale allowing 

direct comparisons of the relative effects of the model terms (species relative 

abundances, species interactions and seed density effects) across the functions. High 

values of the functions sown biomass and N yield, and low values of weed biomass are 

preferred in agronomic practice; to align the direction of desirability for all functions 

(i.e. make higher positive values for all functions desirable), we first multiplied each 

weed biomass value by -1 and added the maximum (on the original scale) weed biomass 

value (Byrnes et al. 2014a) and called this new variable weed suppression. To linearly 

transform the data to a common scale, each ecosystem function (sown biomass, weed 

suppression and N yield) was then converted to a percentage of the average of the 

highest three values (top 10% of values from 30 plots) for that function (Appendix 

4.3.2). From here on, these transformed variables are referred to as sown biomass, weed 

suppression and N yield. We did not apply any weighting to quantify differences in 

importance, which implicitly assumes that each function has equal importance 

(Appendix 4.3.2).  

A range of Multivariate Diversity-Interactions models were fitted to the three 

transformed ecosystem functions, sown biomass, weed suppression and N yield, to 

explore reductions in the dimensionality of the diversity effect explanation. The data 

rescaling ensured that model predictions for each ecosystem function were on the same 

scale, which enabled us to test specific predictions across functions to identify 

conditions (if they existed) under which all functions performed relatively well (e.g., 

when all ecosystem functions performed above an a priori specified level) and to 
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determine if trade-offs occurred among functions under other conditions (e.g., when one 

or more functions performed above a specified level but others fell below). These 

comparisons were made using t-tests.  

All models were estimated with either maximum likelihood (ML) or restricted 

maximum likelihood (REML) using SAS software version 9.3 (SAS Institute Inc., Cary, 

NC, USA); model comparisons for testing fixed effects were made using likelihood ratio 

tests where the models were fitted using ML, while final models were estimated and 

comparisons among coefficients and predictions were performed using REML. 

Multivariate normality of the residuals from the final model was tested using Mardia’s 

multivariate normality test in the MVN package (Korkmaz et al. 2014) in the software R 

version 2.15.1 (R Core Team 2014). When testing model terms across functions (for 

example the comparisons among the coefficients β11, β12 and β13), there were three 

pairwise t-tests of comparison (one comparison for each pair of ecosystem functions), 

thus a Bonferroni correction was applied to each set of three tests to avoid the issues 

associated with multiple comparisons, giving the adjusted α*=0.05/3=0.017. Note that 

the Multivariate Diversity-Interactions model could be fitted to the raw data and 

inference would be unchanged since only a linear transformation has been applied. 

However, the benefit of modelling the transformed ecosystem functions is the 

comparative ability across functions which would be meaningless with raw data 

modelling. Model predictions could be back-transformed to the original scale of each 

ecosystem function without affecting inference should this be desired. Note also that the 

ecosystem function that requires the most complex interaction structure may dictate the 

form of the final model since the same covariates are included for each ecosystem 
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function; this is the case with any multivariate regression model. Further information on 

fitting and interpreting multivariate regression models is available (for example) in 

Johnson and Wichern (2007). Appendices 4.3.3, 4.3.4 and 4.3.5 provide the data, SAS 

and R code, and some interpretations of output to assist readers wishing to fit the 

framework themselves. 

 

RESULTS 

 

Fitting the Multivariate Diversity-Interactions models 

 

Summary statistics for the three ecosystem functions are given in Appendix 4.3.6. After 

model comparisons (Appendix 4.3.7), the final parsimonious model selected for the kth 

transformed function was 

( ) kLGLGLGLGbfgkLLkwfg

GGkwfgkLkLLkLGkGGkGk

PPPPPPPPPP

PPPPPPy

εδδ

δαββββ

++++++

+++++=

22122111212

21122112211 Dens
 (4) 

where PG1, PG2, PL1 and PL2 are the sown proportions of G1, G2, L1 and L2 respectively, 

Dens is coded -1 and 1 for low and high seed density. The βG1k coefficient (for example) 

is the expected performance of G1 in monoculture for ecosystem function k at average 

density.  The coefficients δwfg1k and δwfg2k are the pairwise interaction coefficients for the 

kth function for the pair of grasses and pair of legumes respectively (wfg: within 

functional group). The interaction coefficient between any grass and any legume is δbfgk 

for the kth function and all such interactions are assumed equal (bfg: between functional 
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group). The model residuals showed no evidence of a deviation from the multivariate 

normal distribution based on the Mardia’s multivariate normality test.  

Figure 4.3.1 and Table 4.3.1a show how positive species interactions both within 

and between functional groups were strong drivers of positive diversity effects for each 

individual ecosystem function (addressing question (1) as laid out in the introduction). 

There were no significant seed density effects for any function (Table 4.3.1a). There was 

a positive correlation among the residuals from sown biomass with the other two 

functions (Table 4.3.1b) and no evidence of a correlation among the residuals from 

nitrogen yield with weed suppression. The estimated covariances feed directly into the 

tests of comparison and allow for correct inference when comparing effects across 

functions (addressing question (2)).  

 

Comparisons of multifunctionality across monocultures and multispecies 

communities 

 

No one species in monoculture performed best across the three ecosystem functions 

(Fig. 4.3.2, the first set of clusters of bars). There was also no monoculture for which all 

three ecosystem functions performed poorly, rather there was considerable variability in 

performance across the functions for each monoculture. Comparisons of the estimated 

monoculture performances across ecosystem functions (Table 4.3.1a, comparison of 

each β coefficient across functions) showed that the performance of Lolium perenne 

(G1) was better for sown biomass and weed suppression than for N yield, and the 

performance of Phleum pratense (G2) was better for weed suppression than both sown  
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Figure 4.3.1 Predicted (a) sown biomass, (b) weed suppression and (c) N yield at 

average seed density for each community structure, monoculture (E=0), one dominant 

species (E=0.64), two dominant species (E=0.88) and all species equally abundant 

(E=1). The multiple points at each value of evenness represent the varying community 

types in the experimental design. Linear trendlines are added to indicate patterns as 

evenness increases and monocultures are labelled to indicate Lolium perenne (G1), 

Phleum pratense (G2), Trifolium pratense (L1) and Trifolium repens (L2). 
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Table 4.3.1 Estimated model terms for the transformed ecosystem functions, (a) fixed 

coefficients (b) the variance covariance matrix (left) and correlations (right). 

Significant (α < 0.05) coefficients in (a) are highlighted in bold. Within each row 

(i.e. across ecosystem functions), coefficients that are not significantly different 

have a letter in common, where the level of significance determined by the 

Bonferroni correction is α*=0.05/3=0.017. 

  

  Ecosystem function 

(a)  

Sown biomass 

(%)   

Weed 

suppression (%)    N yield (%)   

Term Coefficient Est SE   Est SE   Est SE   

G1 βG1k  66.48 4.50 a 80.29 8.47 a 45.02 4.60 b 

G2 βG2k 47.95 4.50 a 91.57 8.47 b 29.08 4.60 c 

L1 βL1k 77.22 4.50 a 49.75 8.47 b 97.43 4.60 c 

L2 βL2k 51.88 4.50 a 33.67 8.47 a 76.26 4.60 b 

Dens αk 1.15 1.31 a 0.50 2.47 a -0.63 1.34 a 

G1*G2 δwfg1k  105.37 41.94 a -31.99 78.92 a 150.46 42.82 a 

L1*L2 δwfg2k  64.64 41.94 a 159.97 78.92 ab -5.32 42.82 b 

ΣG*L (bfg) δbfgk  87.24 18.81 a 92.95 35.39 a 65.24 19.21 a 

 

(b)  Variances and covariances  Correlations 

  

Sown 

biomass 

Weed 

suppression N yield   

Weed 

suppression N yield 

 Sown biomass 51.6    0.51 0.82 

 

Weed 

suppression 49.1 182.7    0.07 

  N yield 43.1 6.6 53.8       
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Figure 4.3.2 Predicted response for ecosystem functions sown biomass, weed suppression and N yield for each design community 

type (monocultures, one species dominant, two species co-dominant and all species equally abundant) at average seed density. Bars 
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within a cluster that share a letter do not differ significantly. The level of significance for all tests of comparison is determined by the 

Bonferroni correction, α*=0.05/3=0.017. Note that, e.g., G1 mono is a grass 1 monoculture, G1 dom is (0.7,0.1,0.1,0.1), G1G2 dom is 

(0.4,0.4,0.1,0.1) and the centroid is (0.25,0.25,0.25,0.25). The species are Lolium perenne (G1), Phleum pratense (G2), Trifolium 

pratense (L1) and Trifolium repens (L2). A horizontal line is included at y = 70% to aid comparisons.
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biomass and N yield. Not surprisingly, given their nitrogen fixing abilities, the 

performances of Trifolium pratense and Trifolium repens (L1 and L2) in 

monoculture were far better for N yield than for either sown biomass or weed 

suppression (addressing question (3)). The tests displayed in Fig. 4.3.2 show that 

choosing either of the grass monocultures (over other monocultures) to optimise 

weed suppression results in relatively poorer performances of sown biomass (G2 

only) and N yield (both G1 and G2) while choosing either of the legume 

monocultures to optimise N yield results in lower relative performances of sown 

biomass and weed suppression (addressing question (4)). The details of the tests 

illustrated in Fig. 4.3.2 are shown in Appendix 4.3.8. 

The predicted performance of ecosystem functions in community types with 

evenness equal to 0.64 (one species dominant) varied depending on which species 

was dominant (Fig. 4.3.2, the second set of clustered bars); the performance of N 

yield was better relative to the other two functions when Trifolium pratense (L1) was 

dominant, while the performance of weed suppression was better relative to the two 

other functions when Phleum pratense (G2) was dominant. At evenness levels 0.88 

(two species co-dominant) and 1 (centroid), each function performed at a high level; 

predictions for each ecosystem function and all community types at E=0.88 or 1 

were higher than 70% (p<0.05 for each test). Note that 70% has been chosen 

arbitrarily for illustration here but should be chosen a priori in a practical 

application. There were still some small (but significant) differences within each 

cluster at the higher levels of evenness with sown biomass generally outperforming 

N yield (Fig. 4.3.2).  

Despite there being significant differences among the three responses for 

each of the 15 community types presented in Fig. 4.3.2, the magnitude of the 
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differences decreased as evenness increased. For example, the estimated difference 

between sown biomass and N yield was 21% for Lolium perenne (G1) monoculture 

(E=0), 14% for a four-species community dominated by G1 (E=0.64), 9% for a four-

species community co-dominated by G1 and G2 (E=0.88) and 6% for the centroid 

community (E=1), a significant difference in each case but the effect size (i.e. the 

differences) decreased as evenness increased. On average, performance across the 

three functions was higher and more stable in the communities with evenness equal 

to 0.88 or 1 when compared to the lower and more variable responses in 

monoculture and at E=0.64. Thus we show that the ecosystem functions in this 

experiment strongly trade-off against one another at low levels of evenness but all 

exhibited desired levels of performance (>70%) at higher levels of evenness 

(addressing question (4)).  

 

DISCUSSION 

 

The Multivariate Diversity-Interactions framework developed here provides 

quantitative tools to enhance our understanding of ecosystem multifunctionality. Our 

framework can test how multiple ecosystem functions are simultaneously driven by 

species abundances, species identities, species interactions, composition, richness 

and evenness. It can also test the relative importance of those drivers and identify 

key species and influential pairwise species interactions across multiple ecosystem 

functions. The framework provides quantitative information on individual as well as 

multiple functions and can aid decision-making to support the management of 

ecosystems in which the high performance of several functions is desired, such as in 

the agronomic communities in our example.  
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Our framework integrates the analytical outputs and insights formerly 

obtained from several separate multifunctionality approaches, including species-level 

information provided by the overlap approach and community-level information 

provided by the averaging and multiple threshold approaches. By combining these 

types of information, our framework is uniquely able to identify combinations of 

species and relative abundances that produce desirable levels of multiple ecosystem 

functions. For example, we found that four-species mixtures that were co-dominated 

by Lolium perenne (G1) and Trifolium pratense (L1) provided nearly maximal levels 

of all three ecosystem functions (Fig. 4.3.2). As manipulated evenness increased, we 

also showed that ecosystem functions were higher on average and that the variability 

among the three ecosystem functions decreased (Fig. 4.3.2). Other studies have 

examined ecosystem multifunctionality over time (Isbell et al. 2011; Cardinale et al. 

2013; Pasari et al. 2013), trophic levels and ecosystem types (Lefcheck et al. 2015) 

but not variability among the levels of multiple functions across a manipulated 

treatment. Our agronomic example provides further evidence of the benefits of 

increased diversity on ecosystem multifunctionality.  

A key strength of the Multivariate Diversity-Interactions framework is its 

comparative ability whereby the model coefficients and predictions from the model 

under varying diversity conditions can be tested for differences across functions. 

This ability is directly enabled by the estimation of the variance covariance matrix 

(Table 4.3.1b). Had three separate univariate Diversity-Interactions models been 

fitted instead of a multivariate model, the coefficient estimates and their standard 

errors (Table 4.3.1a) would be no different, but the univariate approach would not 

have estimated the variance covariance matrix (Table 4.3.1b) and thus it would not 

have been possible to correctly make comparisons across functions. For example, the 
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t-test statistic for comparing βG11 and βG13 (the expected Lolium perenne (G1) 

monoculture performance for sown biomass and N yield respectively) was 7.83 with 

p-value <0.0001. This test and its inference are valid since the covariance between 

the two functions contributes to the test statistic calculation. If, however, a zero 

covariance between the estimates had been assumed, the test statistic would be 

calculated (incorrectly) as 3.33 with p-value=0.002 resulting in approximately a 

halving of the test statistic and any inference from this incorrect test would not be 

valid. This comparative ability of the Multivariate Diversity-Interactions framework 

allows (1) the identification of compositions and relative abundances where all 

ecosystem functions perform well or, (2) the identification of how functions may 

trade off against one another and (3) understanding of how optimisation of one 

function impacts other functions. In our example, the G2 monoculture attained 92% 

in weed suppression but only 48% and 29% in sown biomass and N yield 

respectively, illustrating trade-offs among functions in this monoculture (and others). 

There were no significant differences among the ecosystem functions for the 

community co-dominated by L1 and L2 and each function was higher than 70%, 

illustrating conditions where all functions had similarly high levels of performance 

(Fig. 4.3.2). 

The Multivariate Diversity-Interactions framework includes the benefits and 

addressees the losses of information that are inherent in other methods for analysing 

multifunctionality. Our framework estimates the relationship between individual 

ecosystem functions and manipulated diversity or treatment variables (as in the 

univariate approach in Allan et al. (2013)), quantifies which species positively 

influence ecosystem function (as in the overlap method, Hector & Bagchi (2007)) 

and can identify what combination of species will yield a certain percentage of the 
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maximum of ecosystem function performance (as in the single and multiple 

threshold methods in Gamfeldt et al. (2008) and Byrnes et al. (2014a)). In addition, 

our framework also measures correlations among functions, provides a means for 

statistical tests of comparisons across multiple functions, provides quantitative 

estimates on multifunctionality across varying compositions and relative 

abundances, and identifies important species and species interactions for individual 

functions and tests their relative importance across functions, which other 

approaches cannot do. Analysing each ecosystem function individually allows only 

for qualitative inference on multifunctionality (Byrnes et al. 2014a), while dimension 

reducing indices which quantify multifunctionality may omit important information 

at the individual ecosystem function level (Bradford et al. 2014a, b; Byrnes et al. 

2014b); the ability of our framework to assess individual ecosystem functions in 

conjunction with multifunctionality is therefore highly desirable. We thus present 

our framework as a consolidation of the strengths of previous approaches that also 

provides several additional advances in the quantification of ecosystem 

multifunctionality (Box 1).  

The rich information available from using our framework goes beyond what 

is achievable with other approaches used to analyse the biodiversity and ecosystem 

multifunctionality relationship. In our experiment, the four-dimensional simplex 

design space was well represented, therefore we can use our model to predict each 

ecosystem function for any set of relative abundances and compositions of these four 

species. For example, we can estimate each ecosystem function for the community 

compositions (0.5 0.5, 0, 0) and (0.8, 0.1, 0.05, 0.05), even though these are not 

represented by any specific design point; this predictive power reflects an important 

added advantage of the approach. Generally, when a traditional linear regression 
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model with log(richness) as a covariate is fitted, the model can predict at each level 

of richness but cannot distinguish between communities with differing relative 

abundances at the same level of richness; for example, the two markedly different 

communities (0.25 0.25, 0.25, 0.25) and (0.85, 0.05, 0.05, 0.05) would yield the 

same prediction in the traditional model but our framework would provide unique 

predictions. This distinctive trait is exclusive to our approach and is not provided by 

other ecosystem multifunctionality approaches. Our framework can still test richness 

effects by predicting each ecosystem function for equi-proportional communities at 

each level of richness and comparing across functions within each level. We can also 

use the Multivariate Diversity-Interactions framework to identify zones in the 

simplex space when all or most functions perform well or at close to their maximum 

value. 

We found that the most parsimonious model was one of intermediate 

complexity, which included functional group interactions, rather than unique 

interactions between all pairs of species (Appendix 4.3.7). The between grass-

legume functional group interaction coefficients were strong and positive for each 

function highlighting the benefits of mixing these functional groups for 

multifunctionality in grassland systems (Table 4.3.1). This benefit is well 

documented for individual functions (Ledgard & Steele 1992; Spehn et al. 2002; 

Nyfeler et al. 2011) but is shown here for the first time for ecosystem 

multifunctionality. The two grasses also interacted strongly and positively for both 

sown biomass and N yield perhaps reflecting the fast-establishing and temporally-

persistent traits of G1 and G2 respectively. 

 The intricacies involved in ecosystem multifunctionality research questions 

are compounded when the ecosystem is more complex. It is therefore not surprising 
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that difficulties can arise with our multivariate approach when the numbers of 

species and / or ecosystem functions increase. These difficulties are a natural 

consequence of the increasing complexity of the system that can be handled by our 

framework. We summarise the complexities and outline solutions in the following 

three points.  

1. When the number of species (s) increases, the number of coefficients per 

ecosystem function also increases. Kirwan et al. (2009) suggested constraints 

among interaction coefficients to alleviate this problem and here we 

constrained interaction coefficients according to functional groupings. 

Kirwan et al. (2009), Connolly et al. (2011; 2013) each provide alternative 

solutions to reduce the dimensionality of the diversity effect description 

which readily apply to our multivariate setting. In our experience with single 

ecosystem functions, it is frequently possible to model the diversity effect 

using a small number of coefficients even with high species richness, for 

example a 10-species grassland system (Connolly et al. 2011) and a 72-

species bacterial system in (Connolly et al. 2013) were both modelled with 

just two diversity coefficients. It is also possible to test for biologically 

meaningful patterns among the identity effect (βi) coefficients.  

2. When the number of ecosystem functions increases, so too do the overall 

number of coefficients. Our method maintains individual function 

information and if this is desirable then there is no option but to increase the 

number of equations and hence number of coefficients used to describe the 

system. If individual function information is not required, then alternative 

multifunctionality approaches (Appendix 4.3.1) may be more useful and we 

encourage their usage.  
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3. We used a Bonferroni correction to adjust for multiple comparisons but if the 

number of ecosystem functions were to increase so too would the number of 

comparisons resulting in the criterion for a significant result becoming 

stricter and Bonferroni adjustments would likely be unduly conservative 

(Gotelli & Ellison 2004). This issue of multiple comparisons arises in other 

approaches developed for analysing multifunctionality (e.g., Hector & 

Bagchi 2007; Gamfeldt et al. 2008; Isbell et al. 2011; Byrnes et al. 2014a) 

but has not been dealt with in any of those methods. Here we show that 

adjusting for multiple comparisons can be relatively straight-forward, at least 

for a small number of functions. For a larger number of functions, alternative 

more powerful large scale methods for adjusting for multiple comparisons to 

the Bonferroni correction should be used (e.g. Donoghue 2004; Verhoeven et 

al. 2005). 

The Multivariate Diversity-Interactions framework is applicable to data from 

many types of designed experiments although sometimes it is not appropriate. For 

example, it is not recommended to fit a Diversity-Interactions model to an 

experiment with monocultures of each species and replicates of only one mixture 

type containing all species in equal relative abundances (e.g. Griffin et al. 2009). 

This is because there is inadequate coverage of the simplex space in this design and 

all mixtures are equal in respect of diversity manipulations therefore it is not possible 

to estimate pairwise interactions. Many biodiversity experiments have equi-

proportional mixtures across a manipulated gradient of richness (e.g. Hector et al. 

1999; Roscher et al. 2004) and a smaller number of studies manipulated evenness at 

a single level of richness (e.g. Wilsey & Potvin 2000; Finn et al. 2013). Our 

framework is fully suited to the analysis of such data as has been shown in previous 
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work in the univariate setting (e.g. Connolly et al. 2011) for richness manipulations 

and in our example here for evenness manipulations. A design with both evenness 

and richness manipulations combined with our modelling approach would provide 

even further predictive power but both manipulations are not a requirement. Note 

that the estimation of pairwise interaction terms does not specifically require two-

species mixtures in the design. It is also possible to apply the Multivariate Diversity-

Interactions framework to observational data although reliability would highly 

depend on the data in question as the usual regression models caveats would apply; 

these include ensuring there is sufficient representation in the design space and that 

caution is exercised in inferring causation from observed correlations.  

The Multivariate Diversity-Interactions framework is flexible and can be 

extended in several directions, four of which we highlight here. (1) The model can 

analyse multiple ecosystem functions across a range of treatments or environments. 

Here we presented data with two sown seed densities; however, other treatments, 

such as different levels of applied nitrogen, can easily be incorporated into the model 

(e.g., see Kirwan et al. 2009). (2) The framework can be extended for the analysis of 

multiple functions across temporal and spatial variables (Isbell et al. 2011), as has 

already been done for the univariate Diversity-Interactions modelling approach 

(Kirwan et al. 2007; Finn et al. 2013). (3) It would be possible to allow for non-

linearity in the relationship between the ecosystem functions and the species 

interactions (see the Generalised Diversity-Interactions approach by Connolly et al. 

2013). (4) The model here assumes a constant variance across plots for each 

ecosystem function but could easily be adjusted if this were not the case, for 

example, the variance for an ecosystem function could differ between monocultures 

and mixture communities (Schmid et al. 2008). These potential extensions further 
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illustrate the benefits of our framework. Structural equation models have been used 

to assess the biodiversity and ecosystem function relationship for single functions 

(e.g. Grace et al. 2007; Bowker et al. 2010). These models may also have a useful 

role in understanding ecosystem multifunctionality, however, initial attempts to do 

so may not be valid due to the questionable model selection process used (see 

comments on Mouillot et al. 2011).  

The Multivariate Diversity-Interactions framework examines the 

multifunctional BEF relationship through a multivariate model fit that does not 

suffer from the loss of information inherent in other approaches. The framework 

consolidates the strengths and improves on the weaknesses of previous approaches 

for analysing ecosystem multifunctionality. It can identify the drivers of multiple 

ecosystem functions and test the relative performances across functions. The 

Multivariate Diversity-Interactions framework can be adapted to suit varying 

experimental conditions and is a valuable tool to improve understanding of 

ecosystem multifunctionality.  
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Chapter 5 

 

Conclusion 

 

The aim of my research was to extend the current knowledge and modelling 

techniques used for examining the biodiversity and ecosystem function (BEF) 

relationship. My thesis has primarily focused on two difficulties faced when 

modelling the BEF relationship, namely how to model ecosystems which contain 

large amounts of species and how to model multiple ecosystem functions 

simultaneously. I approached these challenges with four main goals to achieve (as 

laid out in the thesis introduction): 

1. To explore the use of community phylogenetic diversity information to 

help improve models for the BEF relationship for species rich 

communities. 

2. To develop a random effects Diversity-Interactions model to increase the 

understanding of the BEF relationship for a single function. 

3. To review and improve upon current multifunctionality metrics focusing 

on the averaging metric. 

4. To develop a multivariate Diversity-Interactions model to analyse the 

multifunctional BEF relationship. 

In each of the previous chapters I have addressed one or more of these goals; goal 1 

was achieved by chapter 2, goal 2 by chapter 3, and goals 3 and 4 by chapter 4. 
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Chapter 2  

 

The work in chapter 2 focused on the first goal of my research. The work in 

Connolly et al. (2011) identified that a measure of community phylogenetic diversity 

was a useful predictor of ecosystem function in two datasets and that communities 

with more phylogenetic diversity had higher diversity effects. Testing this result 

across multiple different grassland ecosystems (section 2.1), showed that the 

community phylogenetic diversity significantly added to the model for the 

ecosystem response in two out of eight grassland datasets. For these two datasets the 

results agreed with Connolly et al. (2011), i.e. that communities with more 

phylogenetic diversity had higher diversity effects. The reason that the other datasets 

tested did not show a significant effect of community phylogenetic diversity could be 

due to the fact that these datasets were not established to be phylogenetically diverse; 

the two datasets which showed a significant community phylogenetic effect were 

among the most phylogenetically diverse experiments. This implies that a reasonably 

wide range of phylogenetic diversity is needed for community phylogenetic diversity 

effects to be detected. Using this trait measure to explain changes in ecosystem 

function could prove particularly useful in species rich ecosystems where estimating 

large numbers of pairwise interactions among species may be difficult. 

 

Chapter 3 

 

In chapter 3, I focused on the second goal by incorporating random effects 

into the Generalised Diversity-Interactions model (Kirwan et al. 2007; Kirwan et al. 

2009; Connolly et al. 2013). For species rich ecosystems, assumptions are often 
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made (or tested) to reduce the number of fixed model parameters needed to describe 

diversity effects (Kirwan et al. 2009). While this can often be useful, it can also lead 

to a loss of information, compared to modelling all pairwise interactions. Assuming 

a random variance component for pairwise interactions in conjunction with a small 

number of fixed effect coefficients may provide better explanatory power than using 

fixed effect solutions alone. The developed Generalised Diversity-Interactions 

Mixed (GDIM) models can also be used to examine whether there is evidence of 

lack of fit for models where assumptions have been made to reduce the number of 

fixed parameters needed. The various GDIM models allow us to test multiple 

hypotheses about the residual error variance across community characteristics 

without having to complete a separate variance analysis (such as in Tilman et al. 

1996; Hooper 1998; Ives & Carpenter 2007). The GDIM modelling approach 

provides a parsimonious solution to modelling species rich ecosystems and can be 

used to make improved inference about the biodiversity ecosystem function 

relationship. It provides information about the mean ecosystem function, the residual 

error variance structure and it improves the standard errors associated with the fixed 

effects tests by capturing variation in species interactions additional to the fixed 

effects model used.  

 

Chapter 4 

 

 The work in chapter 4 focused on the last two goals of my research. 

Analysing multiple ecosystem functions simultaneously (multifunctionality) is an 

emerging research area in ecology (e.g. Hector & Bagchi 2007; Gamfeldt et al. 2008; 

Zavaleta et al. 2010; Maestre et al. 2012a; Byrnes et al. 2014) as ecosystems 
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typically provide multiple functions which interact and affect one another. Section 

4.1 reviewed the current methods for analysing multifunctional data and highlighted 

a number of key issues, namely the loss of information that often occurs with current 

multifunctional methods. In section 4.2, I aimed to build an improved metric for 

combining the multiple ecosystem functions into a single metric. The Scaled 

Average Multifunctional (SAM) metric was developed as an extension of the current 

averaging metric (Mouillot et al. 2011; Maestre et al. 2012a; Maestre et al. 2012b) 

by taking the variability among the ecosystem functions into account in the scaling 

of the average of the functions. By adjusting for the variability between the 

functions, the SAM metric addressed the potential difficulty of two systems with 

different functioning levels yielding similar average functional values.  

The SAM metric, however, still suffers from loss of information. By 

combining multiple functions into a single metric value we still lose information 

about how the individual functions are affected by community characteristics. Also 

the metric is dependent on the stakeholders’ interest in the functions. Different 

stakeholders may have differing opinions of the importance and desirability of each 

function and so analysis using the SAM metric should only be done when 

appropriate, i.e. when interested in examining the average response to changing 

community characteristics of a system where it is required that all functions are 

performing similarly. 

 A more universally appropriate method for analysing multifunctional data is 

to use the Multivariate Diversity-Interactions framework developed in section 4.3. 

The Multivariate Diversity-Interactions framework extended the Diversity-

Interactions model to a multivariate framework to allow for the simultaneous 

modelling of multiple functions using the community characteristics of the 

123



 

 

ecosystem. The Multivariate Diversity-Interactions framework maintains the 

flexibility of the Diversity-Interactions model whilst not suffering from the loss of 

information that other multifunctional methods suffer from. The framework can 

examine the relationship between the functions and identify compositions and 

relative species abundances where all ecosystems functions are performing well.  

 

Future work 

 

 The aim for my research work in the future is to continue extending the 

current understanding of the BEF relationship. I intend to do this by improving upon 

existing models for analysing single ecosystem functions and continuing the 

development of multifunctional techniques. 

There are still some remaining questions as to how robust the use of the 

phylogenetic diversity is in modelling ecosystem function. Out of the eight datasets 

tested in section 2.1 the full Diversity-Interactions model could only be fit to one. If 

a relationship between the phylogenetic diversity and the species interactions could 

be established, this would prove useful for systems where estimation of the full 

pairwise interactions Diversity-Interactions model is impossible to fit but the 

phylogenetic information for the system is available. I would like to establish an 

experiment or work with data where phylogenetic diversity was built into the 

experimental design to examine the relationship between phylogenetic diversity and 

species pairwise interactions more thoroughly. 

Most of the Diversity-Interactions models presented in my thesis were fitted 

to grassland datasets (excluding the bacterial Bell dataset in chapter 3). In addition, 

the models presented primarily focused on single locations and single time points. I 
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am interested in continuing to explore the interpretations of the models I have 

developed (the Generalised Diversity-Interactions Mixed model and the Multivariate 

Diversity-Interactions model) across different ecosystem types, and across temporal 

and spatial effects.   

The main area I intend to continue working in is in the modelling of the 

multifunctional BEF relationship. Initially I would like to examine additional 

properties of the Multivariate Diversity-Interactions model, for example by exploring 

the variance covariance structure more thoroughly. The model as fitted in my thesis 

assumes the same variance covariance matrix across sown density and proportion. 

To test the assumptions I would create a simulation study with replicate data across 

sown density and proportion to allow for the testing of different structures. The 

Multivariate Diversity-Interactions framework was tested on a dataset that had four 

species and three ecosystem functions at a single location and single growing season 

(section 4.3). I would like to test the model using data for higher numbers of species 

and higher numbers of ecosystem functions. Particular challenges that remain here 

are in the understanding of a higher number of effects, and in summarising and 

visualising the results. I also wish to examine the extension of the Multivariate 

Diversity-Interactions model to allow for a non-linear relationship (as in the 

Generalised Diversity-Interactions approach by Connolly et al. (2013)) between the 

ecosystem functions and the interactions between the species across a number of 

different datasets.  
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Appendices 

 

Appendix 2.1.1  
 

Details of the experiments 

 

The descriptions below are from the full experiments conducted. In some cases, only 

a subset of data was analysed because some plots did not establish and phylogenetic 

information was not available for all plots.  

 

Dataset 1 

 

Reference 

Dimitrakopoulos, P. & Schmid, B. (2004). Biodiversity effects increase linearly with 

biotope space. Ecology Letters, 7, 574-583.  

 

Species 

The ten species sown were Achillea millefolium, Arrhenatherum elatius, Dactylis 

glomerata, Festuca rubra, Holcus lanatus, Leucanthemum vulgare, Lotus 

corniculatus, Lychnis flos-cuculi, Plantago lanceolata and Trifolium pratense. 

 

Experimental design 

There were 90 greenhouse pots used in the experiment; 30 were sown at each of 

three soil depths (5, 10, 15cm). At each depth the 30 pots were filled with 10 
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monocultures, 10 samples of 3 species communities and 10 samples of 6 species 

communities. 

 

Dataset 2  

 

Reference 

Fridley, J. (2002). Resource availability dominates and alters the relationship 

between species diversity and ecosystem productivity in experimental plant 

communities. Oecologia, 132, 271-277. 

 

Species  

The nine species sown were Achillea millefolium, Amaranthus hypochondriacus, 

Avena sativa, Borago officinalis, Calendula officinalis, Fagopyrum esculentum, 

Hypericum perforatum , Linum usitatissimum and Satureja hortensis. 

 

Experimental design 

There were 360 grassland plots used in the experiment; 120 were sown at each of 

three levels of soil fertility (low, ambient and high fertility). At each soil fertility 

level 6 replicates of the 10 monocultures (60 plots), three replicates of ten 2-species 

communities (30 plots) and three replicates of ten 8-species communities were sown 

(30 plots). 

 

Dataset 3 

 

Reference 
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Fridley, J. (2003). Diversity effects on production in different light and fertility 

environments: an experiment with communities of annual plants. Journal of Ecology, 

91, 396-406. 

 

Species  

The seven species sown were Amaranthus hypochondriacus, Achillea millefolium, 

Borago officinalis, Calendula officinalis, Fagopyrum esculentum, Linum 

usitatissimum and Satureja hortensis. 

 

Experimental design 

There were 252 grassland plots used in the experiment; 63 were sown across four 

treatment levels (low and high fertility soil crossed with a low and high shade light 

treatment). At each treatment level three replicates of seven monoculture, seven 2-

species and seven 6-species communities were sown. 

 

Dataset 4 

 

Reference 

Lanta, V. & Leps, J. (2006). Effect of functional group richness and species richness 

in manipulated productivity-diversity studies: a glasshouse pot experiment. Acta 

Oecologica, 29, 85-96. 

 

Species 

The sixteen species sown were Festuca rubra, Trisetum flavescens, Alopecurus 

pratensis, Holcus lanatus, Lychnis flos-cuculi, Hypochaeris radicata, Plantago 
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media, Leontodon autumnalis, Veronica offıcinalis, Glechoma hederacea, Fragaria 

vesca, Prunella vulgaris, Lotus corniculatus, Anthyllis vulneraria, Trifolium pratense 

and Lathyrus pratensis. 

 

Experimental design 

There were 200 greenhouse pots sown in the experiment. At each of two soil fertility 

levels (low and high) 100 pots were sown. At each treatment level two replicates of 

each of the 16 monocultures, 16 2-species communities, 24 4-species communities, 

20 8-species communities and eight replicates of the 16-species communities were 

sown. Six pots were lost during the experiment. 

 

Dataset 5 

 

Reference 

Naeem, S., Tjossem, S., Byers, D., Bristow, C. & Li, S. 1999. Plant neighborhood 

diversity and production. Ecoscience, 6, 355-365. 

 

Species  

The six species sown were Vicia Villosa, Astragalus Canadenius, Panicum 

Virgatum, Bouteloua Gracilis, Rudbeckia Hirta and Achillea Millefolium. 

 

Experimental design 

There were 360 greenhouse pots used in the experiment. Five replicates of the six 

monocultures, 34 2-species communities, 12 3-species communities and 20 4-species 

communities were sown. No additional treatments were applied to the pots. 
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Dataset 6 

 

Reference 

Naeem, S., Hakansson, K., Lawton, J., Crawley, M. & Thompson, L. 1996. 

Biodiversity and plant productivity in a model assemblage of plant species. Oikos, 

76, 259-264. 

 

Species  

The 16 species sown were Aphanes arvensis Rosaceae, Arabidopsis thaliana 

Cruciferae, Capsella bursa-pastoris Cruciferae, Cardamine hirsuta Cruciferae, 

Chenopodium album Chenopodiacae, Conyza canadensis Compositae, Lamium 

purpureum Labiatae, Poa annua Graminae, Senecio vulgaris Compositae, Sinapis 

arvensis Cruciferae, Sonchus oleraceus Compositae, Spergula arvensis 

Caryophyllaceae, Stellaria media Caryophyllaceae, Tripleurospermum inodorum 

Compositae, Veronica arvensis Scrophulariaceae and Veronica persica. 

 

Experimental design 

There were 164 grassland plots sown in the experiment. Four replicates of each of 

the 16 monoculture, 20 2-species communities, 30 4-species communities, 40 8-

species communities and 10 replicates of the 16-species community were sown. No 

additional treatments were applied to the plots. 

 

Dataset 7 
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Reference 

Craine, J., Reich, P., Tilman, G., Ellsworth, D., Fargione, J., Knops, J. & Naeem, S. 

2003. The role of plant species in biomass production and response to elevated CO2 

and N. Ecology Letters, 6, 623-630. 

 

Species  

The 16 species sown were Andropogon gerardii, Bouteloua gracilis, Schizachyrium 

scoparium, Sorghastrum nutans, Agropyron repens, Bromus inermis, Koeleria 

cristata, Poa pratensis, Amorpha canescens, Lespedeza capitata, Lupinus perennis, 

Petalostemum villosum, Achillea millefolium, Anemone cylindrica, Asclepias 

tuberosa and Solidago rigida. 

 

Experimental design 

There were 232 grassland plots sown across four treatment levels (low and high 

applied CO2 treatment crossed with a low and high shade light treatment). At each 

treatment level monocultures, 4-species, 9-species and 16-species grassland 

communities were sown. 

 

Dataset 8 

 

Reference 

Tilman, D. 1997. Community invasibility, recruitment limitation, and grassland 

biodiversity. Ecology, 78, 81-92. 

 

Species 
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The 21 species sown were Achillea millefolium, Agropyron smithii, Amorpha 

canescens, Andropogon gerardi, Asclepias tuberosa, Elymus canadensis, Koeleria 

cristata, Lespedeza capitata, Liatris aspera, Lupinus perennis, Monarda fistulosa, 

Panicum virgatum, Petalostemum candidum, Petalostemum purpureum, 

Petalostemum villosum, Poa pratensis, Quercus ellipsoidalis, Quercus macrocarpa, 

Schizachyrium scoparium, Solidago rigida and Sorghastrum nutans.   

 

Experimental design 

There were 150 grassland plots sown for the experiment. Thirty monoculture, 30 2-

species, 30 4-species, 30 8-species and 30 16-species grassland communities were 

sown. Two plots were lost during the experiment.  
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Appendix 2.1.2  
 

Residual diagnostics plots of model 3 for dataset 1 

 

Fig A2.1.2-1: Residual diagnostics plots for dataset 1. The plots are (a) the residuals 

versus the predicted values; (b) the observed versus the predicted values and (c) the 

normal QQ plot of the residuals.  
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Appendix 2.1.3  
 

Residual diagnostics plots of model 3 for dataset 2 

 

Fig A2.1.3-1: Residual diagnostics plots for dataset 2. The plots are (a) the residuals 

versus the predicted values; (b) the observed versus the predicted values and (c) the 

normal QQ plot of the residuals. 
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Appendix 2.1.4  
 

Residual diagnostics plots of model 3 for dataset 3 

 

Fig A2.1.4-1: Residual diagnostics plots for dataset 3. The plots are (a) the residuals 

versus the predicted values; (b) the observed versus the predicted values and (c) the 

normal QQ plot of the residuals. 
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Appendix 2.1.5  
 

Residual diagnostics plots of model 3 for dataset 4 

 

Fig A2.1.5-1: Residual diagnostics plots for dataset 4. The plots are (a) the residuals 

versus the predicted values; (b) the observed versus the predicted values and (c) the 

normal QQ plot of the residuals. 
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Appendix 2.1.6  
 

Residual diagnostics plots of model 3 for dataset 5 

 

Fig A2.1.6-1: Residual diagnostics plots for dataset 5. The plots are (a) the residuals 

versus the predicted values; (b) the observed versus the predicted value and (c) the 

normal QQ plot of the residuals. 
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Appendix 2.1.7  
 

Residual diagnostics plots of model 3 for dataset 6 

 

Fig A2.1.7-1: Residual diagnostics plots for dataset 6. The plots are (a) the residuals 

versus the predicted values; (b) the observed versus the predicted value and (c) the 

normal QQ plot of the residuals. 
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Appendix 2.1.8 
 

Residual diagnostics plots of model 3 for dataset 7 

 

Fig A2.1.8-1: Residual diagnostics plots for dataset 7. The plots are (a) the residuals 

versus the predicted values; (b) the observed versus the predicted value and (c) the 

normal QQ plot of the residuals. 
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Appendix 2.1.9  
 

Residual diagnostics plots of model 3 for dataset 8 

 

Fig A2.1.9-1: Residual diagnostics plots for dataset 8. The plots are (a) the residuals 

versus the predicted values; (b) the observed versus the predicted value and (c) the 

normal QQ plot of the residuals. 
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Appendix 2.1.10 

 

The range of community-level phylogenetic diversities (CD) for the 

eight datasets 

 

  Phylogenetic diversity CD  

Dataset Reference Min Max Range  

1 Dimitrakopoulos  

& Schmid (2004) 

-0.137 0.089 0.226  

2 Fridley  (2002) -0.018 0.063 0.081  

3 Fridley (2003) -0.016 0.024 0.040  

4 Lanta & Leps (2006) -0.498 0.079 0.577  

5 Naeem (1999) -0.283 0.084 0.367  

6 Naeem et al. (1996)  -0.334 0.111 0.445  

7 Craine et al. (2003) -0.080 0.103 0.183  

8 Tilman (1997) -0.248 0.083 0.331  
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Appendix 3.1.1  

 

Algebraic specification of some Generalised Diversity-Interactions 

Mixed (GDIM) models. 

 

Pi is the initial relative abundance of the ith species and A is a treatment term. 
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Model 1b and 2b 
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Model 1c and 2c 
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Model 1d and 2d 
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),0(~ 2
1aN σε  for monocultures, )*)(,0(~ 2

1bzfN σε  for mixtures, z is a 

community characteristic (e.g. richness) and f(z) is a function of z.  

 

Assuming two functional groups of species, with species 1,...,t in group 1 and species 

t+1,...,s in group 2. 
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Model 3b 
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Model 3c 
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Model 3d 

ε

δδδαβ

θ

θθθ

++

++++=

∑

∑ ∑∑∑

<
=

<
+=

+∈
∈

<
==

s

ji
ji

jiij

s

ji
tji

stj
ti

jibfgjiwfg

t

ji
ji

jiwfg

s

i

ii

PPd

PPPPPPAPy

1,

1,
),..,1(

),..,1(

2

1,

1

1

2

111

)(

)()()(

 

where ),0(~
2

2σNd ij
, ),0(~ 2

1aN σε  for monocultures and )*)(,0(~ 2
1bzfN σε  for 

mixtures. 
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Appendix 3.1.2  

 

Additional information on the experiments for the two data sets. 

 

Jena data set 

 

There were 206 communities, each with one of six levels of species richness (1, 2, 3, 

4, 6 and 9), established. The species pool for the Jena experiment data set consisted 

of nine species from three functional groups; five grasses (Dactylis glomerata, 

Phleum pratense, Alopecurus pratensis, Poa trivialis, Arrhenatherum elatius), two 

non-legume herbs (Geranium pratense and Anthriscus sylvestris), and two legumes 

(Trifolium repens and Trifolium pratense). At each species-richness level, each 

species appeared the same number of times and all possible 2-species combinations 

were present with the same frequency. Each community was replicated twice. The 

experimental area was partitioned into four blocks following a gradient of soil 

characteristics. In all communities, species present were equally represented at 

sowing. All plots were weeded regularly. The ecosystem function was yield (total 

aboveground biomass (g m-2)) in the year following establishment. 

 

Bell data set 

 

The bacterial ecosystems used were from semi-permanent rainpools that form in 

bark-lined depressions near the base of large European beech trees (Fagus sylvatica). 

These natural microcosms house an array of heterotrophic organisms, the energy for 

which is derived principally from beech leaf litter. Microcosms consisting of sterile 
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beech leaf disks and 10 ml of liquid (phosphate buffer) were inoculated with random 

combinations of 72 bacterial species isolated from these ecosystems. A total of 1,374 

microcosms were constructed at richness levels of r = 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36 

and 72 species. For a given richness level (r) the 72 species were assigned to 72/r 

communities, each with r species, by randomly sampling without replacement from 

the 72 species, e.g. for r = 4 the 72 species are randomly partitioned into 18 

communities of 4 species. This process was repeated five times and each selected 

composition was replicated twice. The daily respiration rate of the bacterial 

community in each microcosm was measured over three time intervals (days 0–7, 7–

14 and 14–28) and the ecosystem function analyses here was the average over the 

three time intervals.
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Appendix 3.1.3 

 

Baseline model fitting for the Jena data set 

 

(a) residual mean square error and residual degrees of freedom for each model and 

(b) model comparisons. Model 4 was used as the denominator for the F-tests. 

(a)    

Model  RMS df 

Model 0 εβα ++= ∑
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 17437 188 

Model 4 ελα ++= cky  15710 103 

Footnote: αk are the terms for the block effects (k=1,..,4), Pi is the sown proportion of 

species i and λc is a term for each unique community composition. 

 

(b)  

Model comparison F p-value 

Model 0 vs. 2a 138.74 <0.001 

Model 2a vs. 1a 2.36 <0.001 
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Model 2a vs. 3a  5.45 <0.001 

Model 3a vs. 1a  1.85 0.012 

Footnote: Model 3a was also fitted with θ1 estimated using profile likelihood. The 

estimate was 0.96 which did not differ significantly from 1 (p=0.294, tested using a 

likelihood ratio test). Although the full pairwise interaction model 1a was a better fit 

than the functional group model (M3a vs 1a, p=0.012), in practice it will frequently 

not be possible to fit the full pairwise interaction model and so we chose the 

functional group model 3a (with θ1=1) as the baseline model for comparison to the 

Generalised Diversity-Interactions Mixed (GDIM) models. 
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Appendix 3.1.4 

 

Baseline model fitting for the Bell data set 

 

(a) residual mean square error and residual degrees of freedom for each model and 

(b) model comparisons. Model 4 was used as the denominator for the F-test. 

(a)  

Model  RMS df 

Model 0 εβ +=∑
=
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1i

ii Py  8.72 1302 

Model 2a  

(θ̂ 1 = 0.79) 
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7.55 1300 

Model 4 ελ += cy  7.46 691 

Footnote: Pi is the initial proportion of bacteria i and λc is a term for each unique 

community composition. 

(b)   

Model comparison F p-value 

Model 0 vs. 2a 103.1 <0.001 

Footnote: In model 2a, θ1 was estimated to be 0.79 using profile likelihood and this 

provided a significant improvement over the model with θ1 set to 1 (p<0.001, tested 

using a likelihood ratio test) therefore this model was chosen as the baseline model. 
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Appendix 3.1.5  

 

Example of each of the Generalised Diversity-Interactions Mixed 

(GDIM) models (with θ1 = 1 and θ2 =1) fitted to the Jena data set. 

 

The Jena data set is detailed in Appendix 3.1.6 and the SAS code to fit the models 

illustrated in this appendix are in Appendix 3.1.7.  

 

Model 3b 

 

The model is 
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where ),0(~ 2

2σNd ij  and ),0(~ 2
1σε N and where αk are the terms for the block 

effect (k=1,..,4) and Pi is the sown proportion of species i, (i=1,..,9). The βi are the 

identity effects for each species, δwfg1, δwfg2 and δwfg3 are the within functional group 

interaction coefficients for the functional groups grasses, non-legume herbs and 

legume respectively and δbfg12, δbfg13 and δbfg23 are the between functional group 

coefficient. The model coefficient estimates are presented in Table A3.1.5-1.  

  

153



Table A3.1.5-1. Coefficient estimates and standard errors (SE) for fixed estimates 

for model 3b fitted to the Jena data set. Variance estimates are also shown.  

Fixed coefficients  Variance estimates 

Coefficient Estimate SE  Coefficient Estimate 

α1 168.69 72.298  
σ1

2 15311 

α2 278.91 74.059  
σ22 90101 

α3 253.91 75.206    

α4 216.56 74.085    

β1 313.92 98.756    

β2 268.13 99.576    

β3 97.80 98.956    

β4 1.28 98.688    

β5 536.20 98.972    

β6 -184.22 103.430    

β7 -234.74 103.670    

β8 97.20 85.063    

β9 0.00 .    

δwfg1 621.75 165.180    

δwfg2 605.54 460.100    

δwfg3 936.38 457.860    

δbfg12 1328.34 158.890    

δbfg13 913.01 159.330    

δbfg23 789.30 240.980       
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A community sown with 50:50 proportions of species 3 and 4 in block 2 has a 

predicted response 

89.483
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Model 3c 

 

The model is 
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where ),0(~ 2

2σNd ij , ),0(~ 2

1aN σε for monocultures and ),0(~ 2
1bN σε  for 

mixtures. The model coefficient estimates are in Table A3.1.5-2.  

 

 

 

  

155



Table A3.1.5-2. Parameter estimates with standard errors (SE) for fixed estimates for 

model 3c fitted to the Jena data set. Variance estimates are also shown.   

Fixed coefficients  Variance estimates 

Coefficient Estimate SE  Coefficient Estimate 

α1 166.61 50.029  
σ1a

2 5746 

α2 279.52 51.193  
σ1b

2 15850 

α3 258.44 53.439  
σ22 103918 

α4 215.35 52.663    

β1 308.40 69.104    

β2 306.43 69.679    

β3 125.19 69.729    

β4 5.39 68.407    

β5 492.96 69.745    

β6 -152.07 70.271    

β7 -229.19 70.483    

β8 109.81 64.885    

β9 0.00 .    

δwfg1 607.80 147.360    

δwfg2 547.82 454.530    

δwfg3 916.98 452.480    

δbfg12 1291.05 144.460    

δbfg13 900.74 145.330    

δbfg23 744.00 229.170       
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Model 3d_richness  

 

The model is 
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where ),0(~ 2

2σNd ij , ),0(~ 2
1aN σε  for monocultures and )*)(,0(~ 2

1bzfN σε  for 

mixtures. Here  f(z)=richnessγ where γ was estimated by profile likelihood as 

3.0ˆ −=γ . The model coefficient estimates are in Table A3.1.5-3.  
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Table A3.1.5-3. Parameter estimates and standard errors (SE) for fixed estimates for 

model 3d_richness fitted to the Jena data set. Variance estimates are also 

shown. 

Fixed coefficients  Variance estimates 

Coefficient Estimate SE  Coefficient Estimate 

α1 167.93 49.949  
σ1a

2 5758 

α2 277.86 51.138  
σ1b

2 10989 

α3 255.92 53.283  
σ22 109778 

α4 214.28 52.516    

β1 312.60 68.999    

β2 308.07 69.582    

β3 127.20 69.583    

β4 6.93 68.324    

β5 492.38 69.588    

β6 -151.32 70.185    

β7 -227.14 70.402    

β8 109.54 64.694    

β9 0.00 .    

δwfg1 600.07 148.620    

δwfg2 512.63 450.760    

δwfg3 922.18 449.180    

δbfg12 1285.73 145.570    

δbfg13 904.28 146.080    

δbfg23 730.08 228.500       
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Model 3d_evenness  

 

The model is 
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Where ),0(~ 2

2σNd ij , ),0(~ 2
1aN σε  for monocultures and )*)(,0(~ 2

1bzfN σε  for 

mixtures. Here  f(z)=evennessγ where γ was estimated by profile likelihood as 

6.0ˆ −=γ  and evenness = (2s/(s-1))*Σi<jPiPj. The model coefficient estimates are in 

Table A3.1.5-4. 
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Table A3.1.5-4. Parameter estimates and standard errors (SE) for fixed estimates for 

model 3d_evenness fitted to the Jena data set. Variance estimates are also 

shown. 

Fixed coefficients  Variance estimates 

Coefficient Estimate SE  Coefficient Estimate 

α1 168.06 49.949  
σ1a

2 5763 

α2 277.70 51.141  
σ1b

2 18908 

α3 255.85 53.292  
σ22 109541 

α4 213.67 52.524    

β1 313.12 69.007    

β2 307.89 69.591    

β3 127.31 69.589    

β4 6.92 68.329    

β5 492.51 69.594    

β6 -151.60 70.196    

β7 -227.10 70.411    

β8 109.57 64.680    

β9 0.00 .    

δwfg1 600.50 148.590    

δwfg2 515.99 450.460    

δwfg3 928.15 448.950    

δbfg12 1289.06 145.560    

δbfg13 905.12 146.040    

δbfg23 728.16 228.420       
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Appendix 3.1.6 

 

Jena dataset 

 

The Jena dataset has been given in the zipped folder ecy1872-sup-0007-DataS1.zip at 

http://onlinelibrary.wiley.com/doi/10.1002/ecy.1872/suppinfo 

 

Variable descriptions 

Community : community number (each community is sown at least twice) 

Block : soil gradient blocking B1-B4 

Richness : sown richness  

Biomass : total aboveground biomass (g m-2) for the plot 

p1 - p9 : Sown proportions for species 1 to 9 

monomix : 1 if the plot is a sown monoculture, 0 otherwise 

int1 - int36 : pairwise species interaction (PiPj) 

PPsum : sum of int1-int36 

wfg1 – wfg3 : within functional group, ∑
<
=

s

ji
ji

ji PP
1,

where i,j are both from one  

functional group   

bfg12 - bfg23 : between functional group, ∑
<
=

s

ji
ji

ji PP
1,

where i,j are from different  

functional groups   
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The following variables need to be added manually to the dataset: 

E : Evenness = (2s/(s-1))*ΣPiPj, where s = 9 

z_richness : Richness-0.3 

z_evenness : E-0.6 
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Appendix 3.1.7 

 

SAS code to fit the Generalised Diversity-Interactions Mixed models 

3b, 3c and 3d to the Jena data set. 

 

/*********************************************************/ 

/* READING IN THE DATA SET TO BE USED IN ANALYSIS */ 

PROC IMPORT OUT= jena 

 DATAFILE= "C:\...\ Appendix316_Jena.csv" 

 DBMS=CSV REPLACE; 

    GETNAMES=YES; 

RUN; 

/* CREATING A DATASET NEEDED FOR THE RANDOM EFFECTS SPECIFICATION*/ 

data Jena_pairwise; 

 do i=1 to 36; 

  parm=1; 

  row=i; 

  col=i; 

  value=1; 

  output; 

 end; 

 drop i; 

run; 

/*********************************************************/ 

/*********************************************************/ 
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/*********************************************************/ 

/*********************************************************/ 

/* FITTING THE RANGE OF GDIM MODELS */ 

*MODEL 3B WITH THETA1=1 AND THETA2=1; 

proc mixed data= jena method=reml; 

 class block; 

 model Biomass=block p1-p9 wfg1 wfg2 wfg3 bfg12 bfg13 bfg23/ noint 

s; 

 random int1-int36/ type=lin(1) ldata=Jena_pairwise; 

run; 

/* MODEL 3C WITH THETA1=1 AND THETA2=1 */ 

proc mixed data= jena method=reml; 

 class block monomix; 

 model Biomass=block p1-p9 wfg1 wfg2 wfg3 bfg12 bfg13 bfg23/ noint 

s; 

 random int1-int36/ type=lin(1) ldata=Jena_pairwise; 

 repeated /group=monomix;    

run; 

/* MODEL 3D RICHNESS WITH THETA1=1 AND THETA2=1 */ 

/* GAMMA WAS ESTIMATED USING PROFILE LIKELIHOOD AS -0.3, GIVING 

Z_RICHNESS = RICHNESS^-0.3 */ 

proc mixed data= jena method=reml; 

 class block monomix; 

 model Biomass=block p1-p9 wfg1 wfg2 wfg3 bfg12 bfg13 bfg23/ noint 

s; 

 random int1-int36/ type=lin(1) ldata=Jena_pairwise; 

 repeated /group=monomix; 

 weight z_richness; 

run; 
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/* MODEL 3D EVENNESS WITH THETA1=1 AND THETA2=1 */ 

/* GAMMA WAS ESTIMATED USING PROFILE LIKELIHOOD AS -0.6, GIVING 

Z_EVENNESS = EVENNESS^-0.6 */ 

proc mixed data=jena method=reml; 

 class block monomix; 

 model Biomass=block p1-p9 wfg1 wfg2 wfg3 bfg12 bfg13 bfg23/ noint 

s; 

 random int1-int36/ type=lin(1) ldata=Jena_pairwise; 

 repeated /group=monomix; 

 weight z_evenness; 

run; 

 

/*********************************************************/ 

/*********************************************************/ 
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Appendix 3.1.8  

 

The Generalised Diversity-Interactions Mixed model with identity 

effects as random. 

 

Additional to the assumptions in models 1b to 1d, it is possible to assume that the 

species identity effect coefficients vary randomly around the average species identity 

effect. This assumption may be useful in cases where the individual species identity 

effects are not the main interest of the study or where the high number of species make it 

difficult or impossible to estimate the individual species identity effects. Including this 

assumption in model 1c gives  

 εδαβ θθ +++++= ∑∑∑
<
=

<
==

21 )()(
1,1,1

s

ji
ji

jiij

s

ji
ji

jiav
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for mixtures.  
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Appendix 4.2.1 

 

Raw and standardised ecosystem function values for compositions 

2,7,21 and 24 in block 1 that are highlighted in Figure 4.2.2.  

 Raw values  

Comp  
 

Biomass 
Root  

biomass 
  

N pool  
  

Soil N 
Cotton  

Decomp 

2 1374.4 204.91 937.2 7.18 0.52 

7 654.6 359.69 505.4 8.10 0.67 
21 1075.20 623.09 877.20 7.13 0.53 

24 880.20 961.69 619.00 5.29 0.59 

 

 Standardised values  

Comp  Yield Root Nveg Nsoil Decomp 

2 98.80 12.62 86.14 71.77 73.42 
7 47.05 22.15 46.45 67.06 95.27 

21 77.29 38.37 80.62 72.03 75.96 

24 63.27 59.22 56.89 81.45 84.46 

 

    

Comp  Average metric  Pooled std. dev  SAM metric 

2 68.55 30.389 2.26 

7 55.60 24.460 2.27 

21 68.85 21.969 3.13 

24 69.06 17.439 3.96 

 

Footnote: Comp=Composition number. The five functions are: Aboveground biomass 

(Biomass), Root biomass (Root biomass), Aboveground nitrogen pool (N pool), 

Unconsumed soil nitrogen (Soil N) and Cotton decomposition (Cotton Decomp). Pooled 

standard deviations were computed using the data from each pair of communities with 

the same composition as described in text.  
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Appendix 4.2.2 

 

Model fitting for the SAM and average metrics 

 

(a) Specification of the models fitted, (b) model fitting for the SAM metric and (c) model 

fitting for the average metric.  

 

(a) Models fitted 

Model # Details 

 

1 

 

Identity effects Diversity-Interaction model with block effect 

εαβ ++=∑
=

b

s

i

iiPy
1

 

2 Average diversity effects Diversity-Interaction model 
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EPy b

s

i
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3 Functional group diversity effects Diversity-Interaction model 
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4 Average quadratic diversity effects Diversity-Interaction model 
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 (b) 

Comparison Terms tested F p 

Model 2 vs. 1 δ 40.84 <0.001 

Model 3 vs. 2 δwfg1, δwfg2, δwfg3, δbfg1, δbfg2, δbfg3 0.83 0.533 

Model 4 vs. 2 δquad 0.17 0.679 

(c)  

Comparison Terms tested F p 

Model 2 vs. 1 δ 26.46 <0.001 

Model 3 vs. 2 δwfg1, δwfg2, δwfg3, δbfg1, δbfg2, δbfg3 2.36 0.054 

Model 4 vs. 2 δquad 3.00 0.089 

 

Significant F tests in parts (b) and (c) are highlighted in bold. 
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Appendix 4.3.1  

 

A brief description of multifunctionality methods previously used and 

the results that have been found in their applications. 

 

(1) The approach that combines univariate models for each function (Allan et al. 

2013; Cardinale et al. 2013; Orwin et al. 2014) maintains quantitative 

information at the individual ecosystem function level and qualitatively discusses 

ecosystem multifunctionality. Studies have shown that levels of biodiversity had 

a significant effect on the ability of the ecosystem to maintain multiple functions 

in grassland (Allan et al. 2013; Cardinale et al. 2013; Orwin et al. 2014) and 

freshwater algae (Cardinale et al. 2013) ecosystems.   

(2) The averaging approach (Mouillot et al. 2011; Maestre et al. 2012a; Maestre et 

al. 2012b) standardises all ecosystem functions, computes the average metric 

(i.e. the average of all ecosystem functions for each community) and uses 

univariate techniques to analyse it. It has shown that species loss tends to reduce 

the average levels of multiple ecosystem functions in grassland (Mouillot et al. 

2011), dryland (Maestre et al. 2012b) and lichen (Maestre et al. 2012a) 

ecosystems.  

(3) The overlap method (Hector & Bagchi 2007; Isbell et al. 2011) identifies a set of 

species that affect each individual ecosystem function and then quantifies the 

overlap between sets of species influencing pairs of ecosystem functions. It has 
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shown that different sets of species can affect different ecosystem functions in 

grassland ecosystems.  

(4) The single threshold method (Gamfeldt et al. 2008; Zavaleta et al. 2010) 

examines whether multiple ecosystem functions surpass a threshold at each level 

of diversity. It has shown that higher richness levels are necessary to achieve 

high values of multiple ecosystem functions in grassland (Gamfeldt et al. 2008; 

Zavaleta et al. 2010), bacterial (Gamfeldt et al. 2008) and algae (Gamfeldt et al. 

2008) ecosystems.  

(5) The multiple threshold method is an extension of the single threshold approach 

that systematically explores all possible thresholds, rather than an arbitrary 

subset of thresholds (Byrnes et al. 2014). It has shown the thresholds at which 

diversity yields high or medium values of multiple ecosystem functions in 

grassland ecosystems. 
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Appendix 4.3.2  

 

Issues associated with transforming ecosystem functions.  

 

We transformed our raw data on ecosystem function variables by computing 

current value*100 / average of maximum three values (top 10%) for each response. We 

note that despite the averaging of the top 10% of values, this transformation could still 

be strongly influenced by outlier values which could have knock on consequences for 

model estimation and interpretation. In our case outlier values were not an issue but this 

should be considered when using this type of transformation. Our re-scaling implicitly 

assumes that each function has equal importance which in practice may not be true. 

Various ecosystem functions could easily be weighted by relative importance, when 

known, for particular applications (Alsterberg et al. 2014). One way to do this is to 

compute the average of a different percentile (lower than the top 10th) of the data for a 

function that was deemed to be less important, with the choice of what percentile 

decided by how much ‘less important’ the function was considered to be. Subsequent 

graphical bar chart presentations (e.g., as in Fig. 4.3.2 in the main text) could be adjusted 

so that the less important function did not have an artificially higher response by 

widening its bar while still maintaining the appropriate area for the bar. 

An alternative transformation is to standardise each function to have the same 

mean and standard deviation but this option still contains the issues associated with 

weighting as discussed above. It also forces all functions to have the same variability 

which may not be desirable to carry out true comparisons. 
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Our choice to firstly invert weed biomass but not sown biomass or N yield was 

subjective as the favoured direction of any given ecosystem function could vary 

depending on the stakeholder’s interest. Generally from an agronomic perspective, weed 

biomass suppression but high values of sown biomass and N yield are desirable hence 

why we choice to invert weed biomass prior to transformation.  

 

Reference (for Appendix 4.3.2) 

 

1. 

Alsterberg, C., Sundbäck, K. & Gamfeldt, L. (2014). Multiple stressors and 

multifunctionality: limited effects on an illuminated benthic system. Biology 

Letters, 10. 
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Appendix 4.3.3  

 

Belgium dataset 

 

The Belgium data set has been given in ele12504-sup-0002-AppendixS3.txt at 

http://onlinelibrary.wiley.com/doi/10.1111/ele.12504/full 

Variable descriptions 

Plot: unique plot identification 

G1: sown proportion of G1  

G2: sown proportion of G2 

L1: sown proportion of L1 

L2: sown proportion of L2 

E: sown evenness  

Density: -1 for low, +1 for high 

G1G2: product of G1 and G2  

(Similar for the product of each pair of species) 

PiPj_sum = G1G2+G1L1+G1L2+G2L1+G2L2+L1L2 

Wfg1 = G1G2 

Wfg2 = L1L2 

Bfg = G1L1+G1L2+G2L1+G2L2  

Var: factor indicating ecosystem function type, Sown, Weed and N 

Var_num: 1=Sown, 2=Weed, 3=N 

Y: ecosystem function value (%)  
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Appendix 4.3.4  

 

SAS and R code for fitting the framework. 

 

SAS code 

 
/**********************************************************************
/ 
/* READING IN THE DATA */  
proc import out = BelData 
 Datafile= "C:\Appendix433_Beldata.txt" 
 Dbms=dlm replace; 
    Delimiter='09'x; 
    Datarow=2; 
run; 
/**********************************************************************
/ 

 

 
/**********************************************************************
/ 
/* FULL PAIRWISE INTERACTIONS MULTIVARIATE DIVERSITY-INTERACTIONS MODEL  
FITTED USING ML*/ 
proc mixed data=BelData method=ml; 
 class Var; 
 model Y = Var*G1 Var*G2 Var*L1 Var*L2 Var*Density  
   Var*G1G2 Var*G1L1 Var*G1L2 Var*G2L1 Var*G2L2 Var*L1L2  
   / noint solution; 
 repeated Var / subject=Plot type=un r; 
run; 
/**********************************************************************
/ 

 

 
/**********************************************************************
/ 
/* FUNCTIONAL GROUP INTERACTIONS MULTIVARIATE DIVERSITY-INTERACTIONS 
MODEL  
FITTED USING ML*/ 
proc mixed data=BelData method=ml; 
 class Var; 
 model Y = Var*G1 Var*G2 Var*L1 Var*L2 Var*Density  
   Var*Wfg1 Var*Wfg2 Var*Bfg 
   / noint solution; 
 repeated Var / subject=Plot type=un r; 
run; 
/**********************************************************************
/ 
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/**********************************************************************
/ 
/* FUNCTIONAL GROUP INTERACTIONS MULTIVARIATE DIVERSITY-INTERACTIONS 
MODEL  
FITTED USING REML */ 
proc mixed data=BelData method=reml; 
 class Var; 
 model Y = Var*G1 Var*G2 Var*L1 Var*L2 Var*density  
  Var*wfg1 Var*wfg2 Var*bfg /noint solution; 
 repeated Var/subject=Plot type=un r; 
 
 /* Testing for differences between each pair of ecosystem 
functions  
 in the Beta_1 coefficient of G1*/ 
 estimate 'G1 Sown vs Weed' Var*G1 0 1 -1; 
 estimate 'G1 Sown vs N ' Var*G1 -1 1 0; 
 estimate 'G1 Weed vs N ' Var*G1 -1 0 1; 
 
 /* Predicting each ecosystem function at the centroid community*/ 
 estimate 'Pred y at centroid Sown' 
 Var*G1 0 0.25 0 Var*G2 0 0.25 0 Var*L1 0 0.25 0 Var*L2 0 0.25 0 
 Var*wfg1 0 0.0625 0 Var*wfg2  0 0.0625 0 Var*bfg 0 0.25 0; 
 estimate 'Pred y at centroid Weed'  
 Var*G1 0 0 0.25 Var*G2 0 0 0.25 Var*L1 0 0 0.25 Var*L2 0 0 0.25 
 Var*wfg1 0 0 0.0625 Var*wfg2  0 0 0.0625 Var*bfg 0 0 0.25; 
 estimate 'Pred y at centroid N '  
 Var*G1 0.25 0 0 Var*G2 0.25 0 0 Var*L1 0.25 0 0 Var*L2 0.25 0 0 
 Var*wfg1 0.0625 0 0 Var*wfg2  0.0625 0 0 Var*bfg 0.25 0 0; 
 
 /* Testing for a difference between each pair of ecosystem 
functions  
 in the predicted response at the centroid community  

(0.25, 0.25, 0.25, 0.25) */ 
 estimate 'Pred y at centroid Sown vs Weed' 
 Var*G1 0 0.25 -0.25 Var*G2 0 0.25 -0.25  
 Var*L1 0 0.25 -0.25 Var*L2 0 0.25 -0.25 
 Var*wfg1 0 0.0625 -0.0625  
 Var*wfg2  0 0.0625 -0.0625  
 Var*bfg 0 0.25 -0.25; 
 estimate 'Pred y at centroid Sown vs N '  
 Var*G1 -0.25 0.25 0 Var*G2 -0.25 0.25 0  
 Var*L1 -0.25 0.25 0 Var*L2 -0.25 0.25 0 
 Var*wfg1 -0.0625 0.0625 0  
 Var*wfg2  -0.0625 0.0625 0  
 Var*bfg -0.25 0.25 0; 
 estimate 'Pred y at centroid Weed vs N '  
 Var*G1 -0.25 0 0.25 Var*G2 -0.25 0 0.25  
 Var*L1 -0.25 0 0.25 Var*L2 -0.25 0 0.25 
 Var*wfg1 -0.0625 0 0.0625 Var*wfg2  -0.0625 0 0.0625  
 Var*bfg -0.25 0 0.25; 
run; 
/**********************************************************************
/   
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R code 

 

################################################################ 

####PACKAGES TO LOAD 

library(nlme) 

################################################################ 

 

 

################################################################ 

#### READING IN THE DATA 

BelData<-read.table("C:/Appendix433_Beldata.txt", header=TRUE) 

summary(BelData) 

################################################################ 

 

 

################################################################ 

####FULL PAIRWISE INTERACTIONS MULTIVARIATE DIVERSITY- 

####INTERACTIONS MODEL  

####FITTED USING ML  

FULL <- gls(Y ~ G1:Var+G2:Var+L1:Var+L2:Var+Density:Var+G1G2:Var+ 

  G1L1:Var+G1L2:Var+G2L1:Var+G2L2:Var+L1L2:Var-1,  

  data=BelData, 

  correlation  = corSymm(form = ~ -1| Plot), 

  weights = varIdent(form = ~ -1 | VarNum), method="ML") 

summary(FULL) 

logLik(FULL) 

-2*logLik(FULL) 

################################################################ 

 

  

################################################################ 

####FITTING OF THE FUNCTIONAL GROUP MULTIVARIATE DIVERSITY- 

####INTERACTIONS MODEL  

####FITTED USING ML 

FG <- gls(Y ~ G1:Var+G2:Var+L1:Var+L2:Var+Density:Var+ 

  Wfg1:Var+Wfg2:Var+Bfg:Var-1,  

  data=BelData, 

  correlation  = corSymm(form = ~ -1| Plot), 

  weights = varIdent(form = ~ -1 | VarNum), method="ML") 

summary(FG) 

logLik(FG) 

-2*logLik(FG) 

################################################################ 

 

################################################################ 
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####FUNCTIONAL GROUP INTERACTIONS MULTIVARIATE DIVERSITY- 

####INTERACTIONS MODEL  

####FITTED USING REML 

FG_REML <- gls(Y ~ G1:Var+G2:Var+L1:Var+L2:Var+Density:Var+ 

  Wfg1:Var+Wfg2:Var+Bfg:Var-1,  

  data=BelData, 

  correlation  = corSymm(form = ~ -1| Plot), 

  weights = varIdent(form = ~ -1 | VarNum), method="REML") 

summary(FG_REML) 

getVarCov(FG_REML) 

################################################################ 
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Appendix 4.3.5  

 

Interpretation of selected output from Appendix 4.3.4 

 

Here we provide some examples to illustrate the fitting procedure and aid the 

interpretation of the final model and associated tests of comparison. 

 

Model selection using likelihood ratio tests 

 

The comparison of the full pairwise interaction Multivariate Diversity-Interactions 

(FULL) model with the functional group Multivariate Diversity-Interactions (FG) model 

(Appendix 4.3.7, Model 4 versus Model 6) is provided as an example to illustrate the 

model fitting procedure used in selecting the final model.  

 

The FULL model fitted using maximum likelihood gives: -2 Log Likelihood = 548.5  

The FG model fitted using maximum likelihood gives: -2 Log Likelihood = 559.2 

The likelihood ratio test statistic is constructed as: LRT = 559.2 - 548.5 = 10.7. 

 

There were 3 x 6 = 18 interactions terms in the FULL model and 3 x 3 = 9 interactions 

terms in the FG model giving a difference of 9 df between the two models. Under the H0 

that the FG model is the correct model, the LRT comes from an approximate ��
� 

distribution and the corresponding p-value is P(��
� > 10.7) = 0.297. The null hypothesis 

is not rejected and it is concluded that there is no evidence that FULL model is required.  
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Interpretation of the final FG model fitted using restricted maximum likelihood 

(REML)  

 

This is output from SAS. 
 

 

Solution for Fixed Effects 

 

                                    Standard 

Effect         Var     Estimate       Error      DF    t Value    Pr > |t| 

 

G1*Var         N        45.0164      4.5987      30       9.79      <.0001 

G1*Var         Sown     66.4769      4.5035      30      14.76      <.0001 

G1*Var         Weed     80.2891      8.4750      30       9.47      <.0001 

 

G2*Var         N        29.0759      4.5987      30       6.32      <.0001 

G2*Var         Sown     47.9474      4.5035      30      10.65      <.0001 

G2*Var         Weed     91.5714      8.4750      30      10.80      <.0001 

 

L1*Var         N        97.4344      4.5987      30      21.19      <.0001 

L1*Var         Sown     77.2160      4.5035      30      17.15      <.0001 

L1*Var         Weed     49.7543      8.4750      30       5.87      <.0001 

 

L2*Var         N        76.2554      4.5987      30      16.58      <.0001 

L2*Var         Sown     51.8816      4.5035      30      11.52      <.0001 

L2*Var         Weed     33.6734      8.4750      30       3.97      0.0004 

 

Density*Var    N        -0.6304      1.3390      30      -0.47      0.6412 

Density*Var    Sown      1.1450      1.3113      30       0.87      0.3895 

Density*Var    Weed      0.4956      2.4676      30       0.20      0.8422 

 

Wfg1*Var       N         150.46     42.8224      30       3.51      0.0014 

Wfg1*Var       Sown      105.37     41.9361      30       2.51      0.0176 

Wfg1*Var       Weed    -31.9931     78.9184      30      -0.41      0.6881 

 

Wfg2*Var       N        -5.3187     42.8224      30      -0.12      0.9020 

Wfg2*Var       Sown     64.6390     41.9361      30       1.54      0.1337 

Wfg2*Var       Weed      159.97     78.9184      30       2.03      0.0516 

 

Bfg*Var        N        65.2422     19.2051      30       3.40      0.0019 

Bfg*Var        Sown     87.2396     18.8076      30       4.64      <.0001 

Bfg*Var        Weed     92.9492     35.3935      30       2.63      0.0135 

 

 

In Figure 4.3.2 in the main text, the three bars for G1 stand at 66.5%, 80.3% and 45.0% 

for sown biomass, weed suppression and N yield respectively.  These are the estimated 

coefficients for G1*Var highlighted by a box above and are the predicted performances 

of the ecosystem functions in a G1 monoculture. The first twelve rows of the above 
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output estimate monoculture performances for each species and ecosystem function and 

these values are graphed in the first twelve bars in Figure 4.3.2 in the main text. Shown 

also are the estimated density and functional group interaction coefficients for each 

ecosystem function. This output is displayed in Table 4.3.1 in the main text. 

 

Interpretation of some predictions and tests of comparison among the estimated 

coefficients of the final FG model 

 

This is output from SAS. 
 

 

Estimates 

 

                                                Standard 

Label                              Estimate       Error      DF    t Value    Pr > |t| 

 

G1 Sown vs Weed                    -13.8122      7.3159      30      -1.89      0.0687 

G1 Sown vs N                        21.4605      2.7414      30       7.83      <.0001 

G1 Weed vs N                        35.2727      9.3681      30       3.77      0.0007 

 

Pred y at centroid Sown             93.3161      1.9533      30      47.77      <.0001 

Pred y at centroid Weed             95.0580      3.6759      30      25.86      <.0001 

Pred y at centroid N                87.3275      1.9946      30      43.78      <.0001 

 

Pred y at centroid Sown vs Weed     -1.7419      3.1732      30      -0.55      0.5871 

Pred y at centroid Sown vs N         5.9887      1.1891      30       5.04      <.0001 

Pred y at centroid Weed vs N         7.7305      4.0633      30       1.90      0.0667 

 

The letters on top of the first cluster of three bars in Figure 4.3.2 (in the main text) are 

based on whether or not significant differences were identified among the estimated G1 

monoculture performances for each ecosystem function and the associated tests for this 

are highlighted by a solid black box above. Significant differences in the relative 

performances in G1 monoculture (p<0.017 according to the the Bonferroni adjusted 

alpha level) were found between sown biomass and N yield and between weed 

suppression and N yield but not between sown yield and weed suppression. For 
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example, the predicted performance of sown yield in G1 monoculture is 66.5%, the 

predicted performance of weed suppression in G1 monoculture is 80.3% and the 

difference between the two performances is -13.8% but this difference is non-significant 

with p=0.0687. 

 

The predicted performances shown in Figure 4.3.2 (in the main text) at the centroid 

community (all species equally present) were 93.3%, 95.1% and 87.3% for sown 

biomass, weed suppression and N yield respectively. These are highlighted by the dotted 

line box above while the tests of differences between each pair of these three predictions 

are highlighted by a dashed line box. For example, the predicted performance of sown 

yield in the centroid community is 93.3%, the predicted performance of weed 

suppression in the centroid community is 95.1% and the difference between the two 

performances is -1.7% but this difference is non-significant with p=0.5871. Further tests 

of comparison are shown in Appendix 4.3.8. 
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Appendix 4.3.6 

 

Average monoculture and mixture performance with standard deviations for each 

ecosystem function for (a) the raw data and (b) the transformed data. 

              

(a) Raw data means 

Sown biomass           

(t DM ha-1) 

Weed biomass      

(t DM ha-1) 

N yield  

(t DM ha-1) 

 Mean St dev Mean St dev Mean St dev 

Monoculture (8 plots) 10.7 2.48 0.92 0.674 0.28 0.138 

Mixture (22 plots)  15.8 1.31 0.33 0.187 0.39 0.042 

       

(b) Transformed data means 

Sown biomass           

(%) 

Weed 

suppression (%) 
N yield (%) 

 Mean St dev Mean St dev Mean St dev 

Monoculture (8 plots) 59.2 13.75 61.9 31.52 60.3 29.59 

Mixture (22 plots)  87.6 7.29 89.6 8.77 82.9 8.93 
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Appendix 4.3.7 

 

Model comparisons 

 

                

# (Description of diversity effects) Model terms 

# DE co-

efficients  -2LL Comp LRT df P-value 

1 (No diversity effects) PG1 PG2 PL1 PL2 Dens 0 625.1     

2 (Average pairwise interactions) PG1 PG2 PL1 PL2 Dens ΣPiPj 3 577.5 1 vs 2 47.6 3 <.001 

3 
(Average pairwise interactions squared) PG1 PG2 PL1 PL2 Dens ΣPiPj 

ΣPiPj*ΣPiPj 
3 566.8 2 vs 3 10.7 3 0.013 

4 
(Grass - legume functional group interactions) PG1 PG2 PL1 PL2 Dens PPWfg1 

PPWfg2 PPBfg 
9 559.2 2 vs 4 18.3 6 0.006 
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5 
(Fast establishing - temporally persistent functional group interactions) 

PG1 PG2 PL1 PL2 Dens PPWfg1_F PPWfg2_P PPBfg_FP 
9 575.6 2 vs 5 1.9 6 0.929 

6 
(All pairwise interactions) PG1 PG2 PL1 PL2 Dens PG1PG2  PG1PL1  PG1PL2  PG2PL1  

PG2PL2  PL1PL2   
18 548.5 4 vs. 6 10.7 9 0.297 

Footnote: DE= diversity effect, -2LL = -2 Log Likelihood, Comp = model comparison, LRT = Likelihood ratio test, df=degrees of freedom, PG1, 

PG2, PL1, PL2 are the sown proportions of species G1, G2, L1 and L2 respectively, ΣPiPj = sum over the product of each pair of sown 

proportions (i.e., its coefficient is the expected average interaction), PPWfg1 = PG1PG2, PPWfg2 = PL1PL2, PPBfg = PG1PL1 + PG1PL2 + PG2PL1 + 

PG2PL2, PPWfg1_F = PG1PL1, PPWfg2_P = PG2PL2, PPBfg_FP = PG1PG2 + PG1PL2 + PG2PL1 + PL1PL2. All model terms were crossed with 

ecosystem function and all models here were fitted using maximum likelihood. The finally selected model was model 4. The two grass 

species and the two legumes species in model 4 were additionally tested for functional redundancy (see Kirwan et al. 2009 for details of 

this test) but neither pair of species were found to functionally redundant (P < 0.001 in each test).  

  

187



 

 

Appendix 4.3.8 

 

Estimates, standard errors, t-values and p-values for each test illustrated in Fig. 4.3.2. Degrees of freedom are 30 in each test. The level of 

significance for each test is determined by the Bonferroni corrected α*=0.017. 

 

Sown biomass vs. Weed supp Sown biomass vs. N yield Weed suppression vs N yield 

Community Est Std Err t-value P-value Est Std Err t-value P-value Est Std Err t-value P-value 

G1 mono -13.8 7.32 -1.89 0.0687 21.5 2.74 7.83 <.0001 35.3 9.37 3.77 0.0007 

G2 mono -43.6 7.32 -5.96 <.0001 18.9 2.74 6.88 <.0001 62.5 9.37 6.67 <.0001 

L1 mono  27.5 7.32 3.75 0.0007 -20.2 2.74 -7.37 <.0001 -47.7 9.37 -5.09 <.0001 

L2 mono 18.2 7.32 2.49 0.0186 -24.4 2.74 -8.89 <.0001 -42.6 9.37 -4.55 <.0001 

             
G1 dom -1.7 4.23 -0.41 0.6877 13.5 1.58 8.53 <.0001 15.2 5.41 2.81 0.0085 

G2 dom -19.6 4.23 -4.64 <.0001 12.0 1.58 7.55 <.0001 31.6 5.41 5.83 <.0001 

L1 dom 9.1 4.23 2.15 0.0397 -4.6 1.58 -2.90 0.0069 -13.7 5.41 -2.53 0.0170 

L2 dom 3.5 4.23 0.84 0.4094 -7.1 1.58 -4.47 0.0001 -10.6 5.41 -1.96 0.0590 
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G1G2 dom 1.7 7.52 0.23 0.8222 8.7 2.82 3.08 0.0044 7.0 9.63 0.72 0.4744 

L1L2 dom -2.3 7.52 -0.30 0.7649 0.5 2.82 0.16 0.8719 2.7 9.63 0.28 0.7789 

G1L1 dom  3.2 4.12 0.77 0.4471 6.4 1.54 4.17 0.0002 3.3 5.27 0.62 0.5400 

G1L2 dom  0.4 4.12 0.10 0.9240 5.2 1.54 3.37 0.0021 4.8 5.27 0.91 0.3701 

G2L1 dom  -5.8 4.12 -1.40 0.1713 5.7 1.54 3.67 0.0009 11.4 5.27 2.17 0.0382 

G2L2 dom  -8.5 4.12 -2.08 0.0466 4.4 1.54 2.86 0.0076 13.0 5.27 2.46 0.0199 

             
Centroid -1.7 3.17 -0.55 0.5871 6.0 1.19 5.04 <.0001 7.7 4.06 1.90 0.0667 
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