
Localised Near Horizon Predictive 

Models of Cellular Load  

Emmett Carolan 

 

A thesis submitted in partial fulfilment 

of the requirements for 

Doctor of Philosophy 

 

Department of Electronic Engineering 

National University of Ireland Maynooth 

Ireland 

 

Head of the Department: Prof. Ronan Farrell 

Research Supervisors: Prof. Ronan Farrell and Dr. Seamus McLoone 

 

 

 



 ii 

Declaration Of Authorship 

 

 

 

I hereby certify that this thesis, which I now submit for assessment on the programme 

of study leading to the award of PhD has not been submitted, in whole or part, to this or 

any other University for any degree and is, except where otherwise stated the original 

work of the author. 

Signed: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Date: 02/08/2017 

 

 

 

 

 

 

 

 

 

 



 iii 

Abstract: 

As mobile technologies continue to mature network providers are experiencing ever 

increasing demands on network resources. This trend will continue for a range of 

reasons, from growing subscriber expectations to the network being viewed as an 

enabling technology for the Internet of Things. However, these changes pose significant 

challenges to network operators at a time when many are facing stagnant or falling 

Average Revenue per User (ARPU). To provide increased services with reduced costs, 

network operators are looking to improvements in technology such as Software Defined 

Networking (SDN) and Self Organising Networks (SON). Several of these techniques will 

become key components of future 5G networks. With growing network complexity and 

reduced revenue to hire staff, many of these advanced management techniques will 

benefit from detailed predictive models of network load to allow for the preallocation of 

network parameters and resources. This thesis uses anonymised Call Detail Records 

(CDR) from Meteor, a mobile network provider in the Republic of Ireland, to model 

network load and investigate how it can be serviced more efficiently.  The Meteor 

network under investigation has over 1 million customers, which represents 

approximately a quarter of the state’s 4.6 million inhabitants.  

The main contributions of this thesis are  

1. A novel methodology to predict near horizon traffic loads in practical spatially 

contiguous coverage regions.  

2. A novel application of near horizon localised prediction models to the problem 

of self-organising green networks.  

3. Empirically created foundational models of how the network experiences load.  
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4. A novel examination of causal influences on network load, spatial relationships, 

communication distances, load predictability, and load usage.  

5. A range of novel algorithms and techniques from novel metrics for measuring 

load prediction performance to novel algorithms for estimating subscriber areas 

of interest, CDR feature extraction, CDR data cleaning, load visualistation etc.  

Results from this thesis show that there is a significant underutilisation of network 

resources. It is demonstrated that sufficiently accurate predictive models of network 

load are attainable at useful levels of spatial aggregation. These models are applied to 

the problem of self-organising green networks and demonstrate that a substantial 

reduction of network resource underutilisation is possible. 
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Chapter 1 Introduction 

Cellular networks have evolved rapidly since their inception a few decades ago. As 

cellular technology has evolved, so too have the expectations placed upon it. This 

growth in expectations does not look set to abate anytime soon. Increasingly capable 

subscriber equipment has opened up whole new uses for cellular networks from on 

demand video streaming to online gaming. Coinciding with the evolution of cellular 

network technology, new industries and businesses are looking to cellular networks as 

an enabling technology for the growing Internet of Things (IoT). Therefore, it is not 

surprising that globally mobile data traffic has grown 18 fold over the past five years and 

is projected to grow sevenfold between 2016 and 2021 [1]. However, these changes 

pose significant challenges to network operators at a time when many are facing 

stagnant or falling Average Revenue per User (ARPU) [2]. Currently, the tuning of many 

network parameters is often carried out by network operators manually, using network 

planning tools or drive tests [3]. From the perspective of network operators, the manual 

configuration of an increasingly complex network incorporating multiple Radio Access 

Technologies (RATs) increases operational expenditure. The autonomous optimisation 

of network parameters which uses a minimum amount of overhead is thus an attractive 

proposition to network operators. Such autonomous configuration techniques are often 

referred to as Self Organisation (SO) methods by the network standardisation bodies [4]. 

SO is subdivided into three main classes: self-configuration, self-optimisation, and self-

healing. These three enable the auto-configuration of basic system parameters, 

resource allocation, and recovery from node failure. A more detailed description of the 

various self-organising modes is provided in [5]; SO techniques have been widely 

studied for other communication networks such as Wireless Sensor Networks (WSNs) 

and ad-hoc networks. SO concepts are relatively new in cellular networks but have 
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already attracted an extensive body of research focusing on their implementation such 

as [6-8].  To provide increased services with reduced costs, network operators are 

looking to the incorporation of SO concepts into cellular networks yielding Self 

Organising Networks (SON) [9]. [10] highlights the need for SONs capable of reducing 

human intervention by showing the growth in complexity of the configuration of a 

typical network node. [10] finds that a typical 2G node has approximately 500 

configurable parameters, a typical 3G node has approximately 1000, and a typical 4G 

node has approximately 1500. [11] projects even greater complexity for 5G networks 

with a typical node having 2000 or more configurable parameters. 

The rollout of SON technologies and the subsequent removal of the need for the manual 

configuration of network parameters opens cellular networks up to new advanced 

management techniques such as: the secondary usage of valuable licenced spectrum 

[12], opportunistic traffic scheduling [13], the dynamic switching on and off of 

underutilised Base Stations (BSs) [14], etc. The need for these new advanced 

management techniques is highlighted by a number of studies which have found large 

scale underutilisation of network resources. [15] found that “10% of base stations carry 

50-60% of the load” which indicated a significant spatial underutilisation of certain parts 

of the network and their servicing BSs. [16] found a dramatic difference between the 

peak and trough hours of load within BSs and wider regions. [16] suggests this 

represents a significant underutilisation of network resources in the temporal domain. 

This problem was found to be particularly acute during the early morning hours when 

the network was vastly overprovisioned for the demand it experienced. The utilisation 

of advanced management techniques to more efficiently use network resources via 

SONs is a key component of future 5G networks as discussed in [11]. 
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The leveraging of techniques and concepts from Artificial Intelligence (AI) is a key 

requirement for the functioning of SONs and the advanced network management 

techniques that rely on them. Broadly speaking, future 5G SONs require AI to perform 

four main groups of tasks: Sensing, Mining, Optimisation, and Prediction [11].  

• Sensing is concerned with the detection of network anomalies/events/states 

from large datasets from hybrid sources. For example, [17] utilises a variety of 

AI techniques to first learn what a functional cell’s Key Performance Indicators 

(KPIs) are, and then use this information to identify aberrant cell behaviour. 

• Mining in future 5G cellular networks is concerned with the classification of 

services according to their required provisioning mechanism (e.g. bandwidth, 

error rate, latency etc.) [11].  For example, [18] proposes the use of contextual 

information which can be mined from the application to optimise mobile 

connectivity for bandwidth-hungry but delay tolerant applications. 

• Optimisation in future cellular networks is primarily concerned with the 

configuration of a series of parameters to maximise a performance metric. For 

example, [19] employs AI techniques to develop methods for finding optimal 

antenna tilt angles in BSs.  

• Prediction in future cellular networks has many uses such as forecasting the 

mobility of User Equipment (UE) or predicting the traffic load ahead of time. For 

example, [20] employs user location information to predict their movement 

patterns and proactively anticipate traffic hotspots. 

All four of the above areas are touched upon to varying degrees in this work. However, 

particular attention is given to prediction in cellular networks, specifically the prediction 

of the traffic load. Load modelling and prediction is a critical element in the 

performance, planning and evaluation of telecommunications networks and has 
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consequently attracted much attention. However, most of this research has focused on 

traditional wired broadband which has many different properties and needs in 

comparison to cellular networks. What work has been carried out on cellular networks is 

mostly focused on older voice-centric networks and datasets [12, 21-23]. Due to the 

increasing capabilities of devices connecting to the cellular network and the 

concomitant rise in data usage, cellular networks have shifted from being voice-centric 

to data centric networks [24, 25]. Other works such as [26] have access to both voice 

and cellular data but unfortunately only provide predictive results for the voice portion. 

Forecasting short term load on the macro cellular network scale is possible with a high 

degree of accuracy [27]. However, it is of limited practical value for many advanced 

management techniques such as green networks (networks with reduced energy 

consumption) [28] and spectrum sharing [12] which, due to cellular network 

subsidiarity, require more localised forecasts. For such applications, groupings with finer 

spatial resolution are required. [26] creates predictive models for voice calls on the 

network but cites the greater variance of cellular data at the individual cell level as 

prohibiting the creation of predictive models of data load. Knowing that accurate 

forecasting of cellular data load is possible at large spatial aggregations [27], raises the 

question of its possibility at lower aggregations. In the field of electricity load 

forecasting [29] the authors presented significant improvements in accuracy at 

relatively modest levels of aggregation. This raises the question, is cellular data load 

predictable on the network at useful levels of spatial aggregation? If predictive models 

of cellular load can be created at sufficiently small aggregation levels, then these models 

can be incorporated into and used to improve advanced network management 

techniques. For example, one such technique that would benefit greatly from the 

inclusion of these predictive models of cell load is cell on-off switching for green 

networking. Much work has gone into algorithms and techniques to dynamically switch 
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on/off cells or BSs [28, 30, 31]. However, most work in the area simply uses historical 

static load profiles or assumes that switching decisions can be made instantaneously. 

However, real world measurement results such as those presented in [16] show that 

switching can take up to 30 minutes due to the heating systems. Thus, predictions of the 

need to perform a switch ahead of time are important. This thesis will use anonymised 

Call Detail Records (CDR) from Meteor, a mobile network provider in the Republic of 

Ireland, to model network load and investigate the practicality of localised near horizon 

predictive models of cellular load on the target network.  The Meteor network under 

investigation has over 1 million customers, which represents approximately a quarter of 

the state’s 4.6 million inhabitants.  

The main contributions of this thesis are:  

1. A novel methodology to predict near horizon traffic loads in practical spatially 

contiguous coverage regions.  

2. A novel application of near horizon localised prediction models to the problem 

of self-organising green networks.  

3. Empirically created foundational models of how the network experiences load.  

4. A novel examination of causal influences on network load, spatial relationships, 

communication distances, load predictability, and load usage.  

5. A range of novel algorithms and techniques from novel metrics for measuring 

load prediction performance to novel algorithms for estimating subscriber areas 

of interest, CDR feature extraction, CDR data cleaning, load visualistation, etc.  

6. A large scale measurement study of a nationwide cellular network. 
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Results from this thesis show that there is a significant underutilisation of network 

resources. It is demonstrated that predictive models of network load are attainable at 

useful levels of spatial aggregation and sufficient accuracy to allow for their practical 

application to advanced management techniques. These models are applied to the 

problem of self-organising green networks and demonstrate that a substantial reduction 

of network resource underutilisation is possible. 

The rest of the thesis is laid out as follows: 

• Chapter 2 provides a technical background to cellular networks and their 

operation. The dataset used in this thesis is also presented and the methods 

used to store and process it at are provided. 

• Chapter 3 provides a large scale nationwide study of a cellular network. Analysis 

focuses on identifying trends and possible opportunities for resource 

rationalization. This chapter then provides empirically created foundational 

models of how the network experiences load i.e. models of arrival rates, 

connection durations and data consumption. These models are provided at a 

fine-grained level broken down by connecting device type and contract type.  

• Chapter 4 focuses on the creation of a spatial representation of the entire 

network to allow for the association of load with defined spatial areas. A novel 

procedure is introduced to clean inaccuracies in the spatial coordinates of BSs. A 

method to visualise how the load is distributed spatially across the network 

both as a whole and across various services is provided. A novel algorithm to 

discover who lives and works within BSs/cells is created and examined. Chapter 

4 also provides a novel exploration of the presence/lack of causal influence that 

exists between neighbouring BSs. 
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• Chapter 5 provides a novel examination of how different levels of load, service 

type, temporal aggregation, and spatial aggregation affect traffic load 

predictability. Chapter 5 then goes on to create and explore the predictability of 

practical real world spatially contiguous aggregations of network coverage 

regions. 

• Chapter 6 defines and implements a novel and practical forecasting method for 

use in advanced management techniques incorporating predictive models. Two 

novel methods for the automatic modelling of large amounts of individual cells 

and their many possible permutations in different spatial aggregations are 

proposed, used and tested.  

• Chapter 7 introduces a regional study of power usage on the study network. The 

use of near horizon predictive models of cellular load is validated via their 

incorporation into a novel and practical energy savings scheme which is tested 

on real world data across multiple regions. 

• Chapter 8 concludes the thesis with a summary of the work completed, 

contributions made to the field and the relevant areas of work which remain to 

be investigated. 
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Chapter 2 Background 

 Introduction 

This work exploits a large dataset provided by the Meteor mobile phone network, which 

is a nationwide network operating in the Republic of Ireland. This chapter has three 

main contributions:  

1) It provides a general introduction to the technologies used on the network on 

which the dataset is generated. 

2) It presents specific information on the network at the time of data collection 

including its topography, subscriber base and data collection 

procedures/format. 

3) It provides an overview of the ETL (Extract, Transform, Load) process carried out 

on the raw data to prepare it for further analysis. 

The rest of this chapter is laid out as follows: sections 2.2, 2.3, 2.4, and 2.5 introduce the 

fundamental technologies/concepts required to understand cellular networks. Section 

2.6 provides specific information on the meteor network at the time of data collection 

and also details how the data was prepared for analysis. Finally, section 2.8 concludes 

the chapter. 

 Cellular Networks 

A cellular network is a spatially distributed radio network which enables voice, text, or 

data communications between two or more devices [32]. Typically, a compatible 

communications device is connected via a wireless connection to a transceiver at a fixed 

location known as a tower. Each tower covers a spatial area which is known as a cell. A 

cell can range from several square kilometres in sparsely populated rural areas down to 
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a scale of hundreds of meters in densely populated urban environments. Each 

communication flow between devices, including intra-cell communications, passes from 

the initiating device through its connected transceiver. The flow is then routed through 

a hierarchical network of elements which facilitate information flow to a destination cell 

which services the spatial area the receiving device is located in. Finally, the destination 

cell communicates the information flow to the connected device via the appropriate 

transceiver as illustrated in Figure 2.1. 

 

Figure 2.1: Overview of a simplified inter device communications flow in a cellular 

network 
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Figure 2.2: Simplified structure of a cellular network 
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Typically, cellular networks consist of a heterogeneous collection of technologies 

including those classed as second, third, and fourth generation wireless telephone 

technology. Figure 2.2 illustrates the simplified hierarchical layout of a heterogeneous 

cellular network. For simplicity, a cellular network may be divided into three primary 

sections: the mobile subscriber layer, the Radio Access Network (RAN), and the core 

network. The mobile subscriber layer consists of the mobile telephony enabled access 

devices or Mobile Stations (MS) which connect to the network. The RAN comprises the 

radio transceivers which are used to transfer data from the MS to the core network. The 

core network is the central part of the cellular network which provides services enabling 

communication, billing, and mobility. The RAN will vary depending on the 

communication standard employed between the 2G, 3G, and 4G versions. A GSM Radio 

Access Network (GRAN) is comprised of Base Transceiver Stations (BTS) and Base Station 

Controllers (BSC). A UMTS Terrestrial Radio Access Network (UTRAN) consists of Node B 

transceivers and Radio Network Controllers (RNC). An evolved UMTS terrestrial Radio 

Access Network is made up of evolved Node B (eNode B) and serving gateways. The 

core network comprises elements of 2G, 3G, and 4G standards including Mobile 

Switching Centres (MSC), Serving GPRS Support Nodes (SGSN), and Mobility 

Management Entitles (MME). For a more detailed exposition of all the above network 

components see [33]. 

 Access Techniques 

Cellular networks enable simultaneous reception and transmission between 

communication devices within a certain amount of radio spectrum. This is carried out by 

a variety of access techniques which are primarily designed to allow transmitters to 

communicate with receivers with minimum interference [34]. Thus, the spectral 

efficiency is increased as more information is successfully transmitted and received over 
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limited spectrum. The access strategies used varies depending on the generational 

standard and are: 

• Frequency Division Multiple Access (FDMA): Individual channels (unique 

frequency bands or spectrum slices as shown in Figure 2.3) are assigned to each 

MS on demand. During this time no other MS may use the channel. 

• Time Division Multiple Access (TDMA): TDMA divides the radio channel up into 

time slots. Similarly to FDMA, each slot is assigned to an MS on demand and is 

allocated to the MS for the entire transmission as illustrated in Figure 2.3. 

• Code Division Multiple Access (CDMA): CDMA is an example of multiple access, 

allowing several transmitters to send information simultaneously over a single 

communication channel. To facilitate multiple access without debilitating 

interference, CDMA employs spread spectrum technology with a coding 

scheme. CDMA multiples the narrowband message signal by a wideband signal 

known as the spreading signal. The spreading signal is a pseudo-noise code 

sequence with a chip rate orders of magnitude greater than the message 

signal’s data rate [33]. Each MS is assigned a spreading code which is orthogonal 

to all other codes, and may transmit simultaneously using the same carrier. To 

recover the originally transmitted information, the receiver must decode the 

spreading code applied to it. Decoding is carried out using a time correlation 

operation with all the other code words appearing as noise due to decorrelation 

[33].  

• Orthogonal Frequency Division Multiple Access (OFDMA): OFDMA uses time 

sharing coupled with dynamically assigned orthogonal subcarriers to provide 

multiple access to MS. MS that require high data rates may be assigned a higher 

number of subcarriers than those with lower data rate requirements.  
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Figure 2.3: FDMA v TDMA v CDMA 

For a more detailed exposition of all the above access techniques see [32-34]. 

 Coverage 

Transmission between RAN elements communicating wirelessly with connected devices 

in the subscriber layer suffer from path loss. Path loss is the energy lost between the 

transmission and reception of a signal. A transmission from an isotropic antenna will 

expand over a spherical wavefront, with the received energy a distance d away being 

inversely proportional to the sphere’s surface area, 4πd2 [32]. The free space path loss is 

given by the Friis Formula: 

 
𝑃𝑟 = 𝑃𝑡

𝜆2𝐺𝑡𝐺𝑟
(4𝜋𝑑)2

 
(2.1) 

where Pr and Pt are the received and transmitted powers respectively, λ is the 

wavelength, Gr  is the receiver gain and Gt is the transmitter gain. 

As a result of the path loss, reliable communication is only possible over a limited 

distance for a defined maximum transmit power. Therefore, transmitters may operate 

using the same frequencies, at the same time if spatially isolated. Thus, the spatial area 

serviced by a cellular network is subdivided into smaller spatial regions. These smaller 

spatial regions are known as cells and contain a single Base Station (BS). To minimise 
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interference between adjacent cells, the transmit power of each transceiver should be 

configured to ensure that the signal strength is just strong enough at the cell 

boundaries. The same frequency channels may be reused in different, spatially isolated 

cells which greatly increases the available bandwidth. Thus, one way to increase the 

available bandwidth is to reduce the cell sizes (via reducing the transmit power) while 

increasing the number of cells. This results in many small densely packed cells in areas 

of high demand such as cities, as discussed further in Chapter 4. In practise, however, it 

is not possible to eliminate interference by selecting a transmit power that leads to 

perfect isolation between proximate cells. Thus, the amount of frequency reuse is 

selected to keep interference between cells below an acceptable threshold [33]. This 

intercell interference is referred to as Other Cell Interference (OCI) and negatively 

impacts performance. A commonly used technique to reduce OCI is to sectorise cells, 

where the sectorisation is carried out via directional antennas [32]. 

A typical cell layout is presented in Figure 2.4; the hexagonal shapes presented on the 

LHS of Figure 2.4 represent the idealised version of cell coverage. However, in practise, 

this does not accurately reflect real cell boundaries. The RHS of Figure 2.4 is a truer 

reflection of a real-world scenario where the geometrically irregular shape leaves some 

areas lacking coverage for a variety of reasons ranging from interference to obstructed 

signal propagation etc. [34]. To further increase the network’s coverage and capacity in 

a region a network operator may also use a hierarchical cell structure as depicted in 

Figure 2.5. In such scenarios, a large macro cell may provide coverage to a spatial area 

as a whole while small cells service demand in smaller areas of particularly high demand 

within the larger area.  
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Figure 2.4: Typical cell layout; LHS shows the idealised version while the RHS shows the 

practical reality. A-G are the frequency channels used by each base station. 

 

Figure 2.5: Simplified hierarchical cell structure 

As each cellular network standard operates on different frequency ranges within the 

radio spectrum, network planners design each standard’s  network coverage 

layout independently. Thus, a BTS, Node-B, and eNode-B may all broadcast from the 

same tower and service overlapping spatial areas. 
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 Mobility Management 

As the network needs to be able to forward incoming communications, the location of 

the subscriber’s device must be known to the network. When a mobile device is 

switched on it registers with the network. Thus, the network is made aware of the 

current location of the device. However, this location can change at any time as the user 

moves through the network’s coverage area. If the subscriber’s device moves into an 

area covered by a different cell, it may need to report this change to the network. To 

reduce the signalling load on the network, several cells are grouped into a larger 

location area. When a mobile device connects to a new cell, the network informs the 

mobile device of a new cell’s ID and the Location Area Code (LAC) [33]. The mobile 

device will then only report its location if the new cell belongs to a different locating 

area from the previous cell (see Figure 2.6). One disadvantage of this method is that the 

network operator is only aware of the current location area of a mobile device and not 

the exact cell. Thus, the network must search for the mobile device in all cells of a 

location area for an incoming call or SMS. This searching procedure is known as paging. 

If the location areas are very large, there will be many mobile devices operating 

simultaneously within the area. This will result in a large amount of paging traffic, as 

every paging request must be broadcast to every BS in the location area. This wastes 

both bandwidth and also power in the mobile device by requiring it to listen to too 

many broadcast messages. However, if the location areas are too small, the mobile 

device must contact the network more frequently for location changes, which can also 

drain the device’s battery. The size of the location area can be configured by the 

network operator and is typically 20-30 cells. 
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Figure 2.6: Cells in different location areas 

For the packet-switched portion of the network, cells are aggregated into Routing Areas 

(RA). An RA is a subset of a location area, however, most network operators only use a 

single RA per location area [33]. A change from one RA to another (known as a “Routing 

Area Update”) is almost identical to the procedure of changing from one location area 

to another. The primary difference is that due to the involvement of packet-switched 

data, the Serving GPRS Support Node (SGSN) is used. For newer networks supporting 

LTE, the equivalent of the location area and RA is the Tracking Area (TA). Again, the 

basic concepts behind the TA are very similar to those of the location area and RA. The 

network element involved in this case is the Mobility Management Entity (MME). 

 Data Source 

The network under investigation in this work is the Meteor mobile phone network, 

which is a nationwide network operating in the Republic of Ireland. The network has 

over one million subscribers, which represents approximately one quarter of the 
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country’s 4.6 million inhabitants. At the time of data collection the network operated 

both 2G and 3G services. The primary data source is Call Detail Records (CDR); CDR are 

primarily used as billing records for telecommunications transactions passing through 

the network. CDR are collected at the MSC and SGSN and contain records of all data 

transfers, voice calls and Short Message Service (SMS). The available dataset consists of 

approximately four months of data collected in 2011. The BS information provided 

includes geo-spatial coordinates in the Irish Grid Coordinate Reference System [35]. This 

coordinate system is the default system used, unless otherwise stated throughout this 

work. This coordinate system uses Easting and Northing projections which are defined in 

meter units from an origin point located at a latitude of 53°30’00 N and longitude 

8°00’00 W. Other information about the BS includes technology type, the RNC or MSC 

serving the BS, and the transmitter azimuth. For more information on the topography of 

the network see section 4.2. The information provided for each subscriber contains their 

anonymised Mobile Station International Subscriber Directory Number (MSISDN), their 

subscription type (prepay/bill), year of birth, place of residence (town level), what their 

previous network was (if any), and how many upgrades they have availed of. 

Records of SMS and voice calls are divided into originating and terminating files with 

data logs provided on cellular data sessions. The originating and terminating log files for 

voice calls provide information on both the caller and callee’s anonymised MSIDSN, the 

time and duration of the call, the sectorised cell of both parties to the call when the call 

starts and also the respective cells when the call terminates. Note, the sectorised cell 

information is only available for Meteor subscribers. Similar information is provided for 

SMS in both the SMS originating and terminating log files. The cellular data log contains 

information on each data connection including: information on the anonymised 

MSIDSN, Access Point Name (APN), session start time, duration, amount of data 
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uploaded and downloaded, connected cell at the start and end of the connection, and 

the servicing SGSN.  

The CDR data is processed via a repository server and three SFTP servers. The data is 

received in raw format as a CSV file from the Meteor server to the repository server. 

The repository server holds all the unprocessed data while the SFTP servers are used for 

data analysis. The data is transferred, pre-processed, and then loaded into MySQL 

databases on the relevant servers where each table is suitably optimised to allow for 

parameter extraction. A database table is a set of data elements (values) using a model 

of vertical columns (identified by name) and horizontal rows, the cell being the unit 

where a row and column intersect. A table has a specified number of columns, but can 

have any number of rows. The data can then be accessed directly on the processing 

server or remotely. An overview of the system architecture and some data examples are 

provided in Figure 2.7, while the table structures are displayed in Figure 2.8-Figure 2.12.  
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Figure 2.7: CDR processing architecture overview with some example table relationships 
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Figure 2.8: CDR call originating table structure 

 

Figure 2.9: CDR SMS originating table structure 
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Figure 2.10: CDR call terminating table structure 

 

Figure 2.11: CDR SMS terminating table structure 
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Figure 2.12: CDR Data Session Table Structure 

 Privacy 

The anonymity of subscribers is addressed by a hashing of the subscribers’ unique 

MSISDN code. A MSISDN is a uniquely identifiable code which links to a person’s 

subscription on a mobile cellular network. This hashing guarantees that a user’s identity 

is not directly observable.  

 Conclusion 

This chapter provided a general introduction to some of the technologies used on the 

network where the dataset was generated. Specific information on the network at the 
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time of data collection was also provided. The steps taken to extract, transform, and 

load the dataset to facilitate analysis were also provided. As in any research endeavour, 

the type and scope of the dataset does impose some restrictions on the type of research 

that it can be effectively applied to. For example, as discussed in section 2.6, the dataset 

provides details on the start and end cell of each communication event. However, it 

does not provide location details of devices/subscribers in-between communication 

events. Therefore, it only provides a sample of a device’s/subscriber’s location with a 

sampling rate determined by how often the device/subscriber communicates. As 

discussed in 2.5, a fuller dataset of a devices/subscribers location while not 

communicating is available to the network operator but unfortunately is difficult to 

obtain from network operators due to lack of incentive for long term storage. In 

contrast, activity based call detail records such as those used in this work are stored for 

longer and with greater care as they are required for legal compliance and billing [36]. 

Research areas which require detailed knowledge of a device’s/subscriber’s location at 

all times, such as modelling the instantaneous signalling load in a specific cell/area, 

while still possible with this dataset may benefit form additional data. This dataset also 

does not provide IP packet headers which could be used to identify the specific 

application/website being used. This precludes research that requires a detailed analysis 

of these features such as in [37] (however, a broader categorisation of application usage 

is possible and introduced in Chapter 3). While bearing these shortcomings in mind, the 

dataset described in this chapter is one of the largest and most complete (an entire 

nationwide network) ever used for a work of this kind. 
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Chapter 3 Analysing Cellular Network 

Load 

 Introduction 

In the past two decades, mobile phones and devices utilising the mobile phone network 

have become ubiquitous in modern society. Mobile phone penetration has approached 

and, in some nations exceeds 100% [38]. Cellular networks are continuing to experience 

a large and sustained increase in demand for network resources [39]. As operators 

move to add capacity, a detailed understanding of the underlying dynamics of resource 

usage is increasingly important. Some previous works have attempted to provide this 

understanding, such as large a scale study of voice calls [12] or the study of user 

dynamics [15]. However, the practical usefulness of these studies is limited by several 

important factors. For example, [12] focuses on voice calls over the network which, as 

will be demonstrated in this chapter, are already a small fraction of network load and 

are projected to diminish further in the coming years [40].  Although [15] focuses on the 

data service, the dataset employed predates the widespread adoption of smartphones 

on the network and, thus, is of limited modern relevance.  

This chapter has three main contributions: 

1) The primary aim of this chapter is to provide empirically created foundational 

models of how the network experiences load i.e. models of arrival rates, 

connection durations and data consumption. These models are provided at a 

fine grained level broken down by connecting device type and contract type. 

The models presented in this work allow an interested third party to create their 
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own models of the most important factors of how the network experiences load 

at a fined grained level.  

2) To provide an empirical measurement of network load and its constituent parts 

both at the network level and the level of the individual base station/cell.  

3) To use quantitative and qualitative analysis of the network including both its 

load and topography to identify trends and possible opportunities for resource 

rationalization.     

The primary novel feature of this chapter is the provision of empirical models of the 

fundamental network usage metrics. The first novel feature of these models is the scope 

and relevance of the dataset used to create these models. The dataset used comprises 

the entirety of a nationwide network and spans several months after the widespread 

adoption of smartphones. This is crucial, as previous work focused on the creation of 

empirical models in the pre-smartphone era [12]. The second novel feature of the 

models provided is the degree to which they are broken down by device type and 

contract type. All necessary parameters are provided to allow an interested party to 

recreate the source distributions. Thus, they will allow for the creation of more accurate 

models of network usage which will respond to changes in the mix of both device and 

contract types. The final novel feature of this chapter is the resolution to which the 

network load is quantified and qualified, both in spatial and temporal terms.  

Section 3.2 provides an empirical examination of the total network load with a 

particular focus on the cellular data load. 3.3 provides an empirical examination of how 

the network load is serviced locally at the level of individual base stations/cells. 3.4 

provides empirically derived models of network usage broken down by device type, 

time of day and contract type. 

 



 27 

 Total Network Load 

3.2.1 Introduction 

This section provides an empirical measurement of the network load and its constituent 

parts at the network level. Section 3.2 is broken down as follows: firstly, subsection 

3.2.2 proposes and defines a metric to allow for the accurate comparisons of data 

volumes and load across disparate services and technologies. Next, 3.2.3 presents and 

discusses the aggregated network wide daily load curve. 3.2.4 discusses how the 

network load breaks down between the three main constituent parts i.e. voice, data and 

SMS. Subsection 3.2.5 implements a classification system to categorise data connections 

into one of several different types. 3.2.6 provides a concluding discussion of total 

network load in keeping with aim 2 presented in the chapter introduction “identify 

trends and possible opportunities for resource rationalization”. 

3.2.2 Total Equivalent Data (TED) 

For the purposes of this work voice and SMS are expressed in terms of equivalent data 

services – as they are treated as such in a pure packet-switched network, for example 

Long Term Evolution (LTE). Voice is encoded in mobile phone networks using adaptive 

multi-rate (AMR) codecs. In GSM and wCDMA, a narrowband AMR scheme is used with 

a typical data rate of 12.2 kbps [41]. A higher quality wideband AMR is used in LTE and 

offers superior quality at a data range of 12.5 kbps [41, 42]. Higher and lower data rates 

are possible, but for this work a rate of 12.5 kbps will be used in converting voice 

channels to an equivalent data session. Text messages will be treated as a 200 byte 

message with 1 second duration. Multimedia messaging has not been included as it is 

negligible since the advent of 3G networks. 
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3.2.3 Total Network Load 

 

Figure 3.1: Total network load expressed as Total Equivalent Data (TED) in bytes over 

the course of one representative week. Note that hour zero is 0:00 on Monday morning.  

Figure 3.1 illustrates the total aggregated network load across the entire network over 

one representative week. The first and most striking feature of note in Figure 3.1 is the 

rhythmic diurnal pattern of the load. Each day the load follows a similar trend with the 

peak occurring during the evening/night-time and the trough falling in the early morning 

hours. The peak network load is consistently an order of magnitude greater each day 

than the minimum load on the network. This highlights the classical peaking problem in 

resource distribution and shows that for much of the day large amounts of resources 

(spectrum, power etc.) are going to waste. 

Interestingly, the peak hour of load shifts as the days of the week progress. On Mondays 

the peak load occurs between 6-7 p.m. and shifts slightly later each successive day until 
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it occurs between 10-11 p.m. on Friday and Saturday before moving to 7-8 p.m. on 

Sunday. Intuitively this would appear to match up with people going to bed early on 

work nights and staying out late when the next day is a day off. This is also seen when 

public holidays are considered. For example the day before a public holiday generally 

resembles a Friday while the public holiday resembles a Sunday (providing the next day 

is a working day). Interestingly, despite the shifting hour of peak load, the temporal 

location of the lowest load remains constant throughout the week, occurring between 6 

and 7 a.m. each day. Historically, load forecasting in the electrical network has received 

more attention than data load and is consequently more advanced [43]. The two fields 

however share some similarities derived from the diurnal pattern of human activity. [27] 

uses a similar approach to electrical load forecasting to model and forecast the 

aggregated network data load for an entire US state. As in electrical load forecasting the 

authors of [27] proposed the use of two separate models, one for weekdays and one for 

weekend days. Examining Figure 3.1, the data suggests that on this network when 

modeling the total aggregated network load a better approach is to individually create a 

Monday-Thursday model, a Friday model, and a weekend model. Further investigation 

suggests that public holidays should be modeled as a weekend day. This will allow for 

greater nuance in the created model to capture different daily patterns.  

3.2.4 Total Network Load by Service Type 

Figure 3.2 (a) shows the number of usage events broken down into the three main 

services provided by the network operator: voice calls, SMS, and mobile data. The 

respective totals are: 63% of communication events on the network are SMS, 20% of 

events are cellular data usage while the remaining 17% are traditional voice calls. Figure 

3.2 (a) clearly shows the predominance of SMS events on the network. However, Figure 

3.2 (b) plots the distribution of load attributed to each service type and gives a very 
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different picture. Figure 3.2 (b) clearly demonstrates that from the perspective of data 

volumes transferred across the network that cellular data is the dominant service type. 

Despite cellular data connections accounting for only 20% of all communication events 

on the network, they are responsible for over 90% of the data volume on the network. 

Conversely SMS accounts for 63% of the connection events on the network but transfers 

less than 1% of the data on the network. This is in keeping with projections such as [44] 

which shows the network moving away from SMS and voice towards a more data 

centric paradigm.  

 

Figure 3.2: (a) The number of usage events broken down by service type over a typical 

day. (b) The total volume of data transferred over the whole network expressed as TED 

broken down by service type. 

As the dataset employed in this work is mainly from 2011 it spans a time when 

smartphones were becoming widespread on the network. The results of this 

investigation will quantify the trend of smartphone users moving away from voice/SMS 

services towards alternative communication methods. This change from a voice/SMS 

centric network to a data centric network is forcing service providers to shift pricing 
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models from being call/SMS centric to data centric [45]. From the service providers 

perspective this can be partially blamed for reduced Average Revenue Per User (ARPU) 

but is good news from a consumer perspective as the price per byte transferred is 

greatly reduced [46]. 

Figure 3.3 shows how the total load on the network varies by service type over the 

course of a typical Monday. As in the aggregated usage mode case presented in Figure 

3.1, the general trend is for traffic to be light during the early morning hours and then 

peak in the 8 p.m. to midnight period. This trend is driven by the predominance of data 

traffic on the network but interestingly masks a difference between voice/SMS and 

data.  The peak hours of the former generally occur earlier than for the network as a 

whole, specifically during the 4 p.m.-8 p.m. slot. However, the call/SMS volume is 

relatively stable in the preceding and succeeding hours. Interestingly, this earlier peak 

hour better matches works such as [12] which relied on older datasets before the 

predominance of data services. 3.2.3 discussed the “peaking problem” in the network 

i.e. how the network is resourced for performance at peak hours of load and is thus 

consequently underutilised during the rest of the day. Figure 3.3 suggests that this 

problem is exacerbated further by the move towards cellular data.  For example, for 

mobile data the ratio between usage during the midday-4 p.m. period and the 8 p.m.-

midnight period is 1:1.55 while for voice it is almost 1:1. Thus, as the network becomes 

ever more data centric it is reasonable to assume that the peaking problem and the 

commensurate underutilisation of resources will become more acute. This is in keeping 

with findings produced in [40] which suggest the peaking problem is being exacerbated 

in both  fixed line and mobile contexts due to the growth of data usage, particularly 

video applications. As will be demonstrated in 3.2.5, 63% of mobile data usage on this 

network is related to video applications. Tackling this problem will require more 
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advanced models of load and more active/automatic network management practices, 

many of which are developed in later chapters. 

 

Figure 3.3: The total load on the network for a typical Monday broken down by traffic 

type and four hour period. 

3.2.5 Qualifying and Quantifying Cellular Data Usage 

Subsection 3.2.4 demonstrated the crucial role of cellular data usage when examining 

the total load present on the network. This subsection introduces a method to qualify 

cellular data usage into its constituent parts and then proceeds to quantify the 

contribution of each part. The dataset employed in this work is limited to CDR as 

discussed in Chapter 2 and, thus, does not directly contain information on what the 

purpose of each data session was. If packet header information was available, such as in 

[15], the purpose of each data session would be clearer. To overcome this limitation in 

the available data a classification step is required to classify the data usage into broad 

constituent parts. Figure 3.4 displays the clustering of activities according to: data 

volume, duration, and download to upload ratio. The plot suggests that there are a 
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number of clusters representing usage modes. From Figure 3.4 the following categories 

of usage can be identified: 

• Short rapid communications (Apps): These activities correspond to small 

quantities of data used over short durations, generally less than 10 kB and for 

less than 60 seconds. This is representative of GPS updates, app interactions, 

advertising updates etc.   

• Long duration, large volumes, mostly downloads (traditional): This consist of 

connections where large quantities of data are transferred asymmetrically 

(several Mbytes with large download to upload ratio) over an extended period 

of time. This is the traditional asymmetric usage mode of downloading 

webpages and other media consumption. 

• Similar download/upload ratios, significant data volumes, less than 20 minutes 

(P2P Video/Voice): This suggests 1:1 communication with roughly equal data 

upload and downloaded. The average data rate for this category is 120 kbps.  

Alternatively, it could be file sharing, however, in that case the download to 

upload ratio would normally favour downloads. 

• Fast, high data rates, mostly download, medium duration (Video): These 

sessions are classified by short bursts of high speed data usage with a large 

download to upload ratio. 

• Long-time connections, low data volumes, similar upload/download ratios 

(Instant Messaging (IM)): In these sessions, the download to upload relationship 

is more symmetric with the connection not regularly timing out. This is 

indicative of two users communicating with one another but with insufficient 

data rates for voice or video which suggests text based instant messaging. 
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The bulk of the mobile data used can be broadly separated into the five categories 

which are quantified in Table 3.1. The categories outlined above and in Table 3.1 

represent 84% of data connection events (Figure 3.5) and 89% of data volumes (Figure 

3.6). 

 

Figure 3.4: Plot of the data usage characteristics for one day (sampled 1:1000). 

Table 3.1: Data usage categories 

 Time D/U Ratio Volume 

Apps < 120 s --- < 256kB 

Traditional > 300 s >5 > 1 MB 

Peer2Peer <1200 s >0.5, <1.5 > 256 kB 

Video < 300 s >5 > 4 MB 

Instant Messaging (IM) > 600 s < 2 < 256 kB 
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Figure 3.5  shows that the majority of connections to the network are still SMS, followed 

by data connections and then voice. However, as shown in [47] SMS is projected to 

shrink while data connections grow in importance. The data portion of the connections 

is further broken down into the categories listed in Table 3.1. Interestingly, app 

connections account for a plurality of data connection events, followed by video, IM and 

traditional browsing. Figure 3.6 displays the breakdown of cellular data usage volume 

into the categories presented in Table 3.1. Figure 3.6 clearly shows the predominance of 

video on network load; video accounts for the majority of data used on the network at 

63%. Interestingly, despite accounting for a majority of data volumes video only 

represents 17% of data connections. When one considers not just mobile data 

connections but connections regardless of service type (only 20% of which are mobile 

data (Figure 3.2 (a))), videos proportion of all connections falls to 3.4%. From the 

perspective of total network load, including all service types, video accounts for 63% of 

the 90% that is mobile data (Figure 3.2 (b)). Thus video accounts for 56.7% of total 

network load regardless of service type while only being 3.4% of connections. This 

compares to a global average of 53% reported by [39] in 2013.  Video clearly places a 

largely disproportionate load on network resources and managing it is a key task for 

network operators.  Upgrading the network to newer technology such as LTE is one step 

although, as discussed in the following sections, when users get more capable devices 

they tend to consume more. Other options to curtail demand are available to operators 

such as pay per MB, usage caps, fair usage policies, etc. These features are already 

common on networks and all are employed on the network studied in this work. 

Tweaking these pricing instruments to balance quality of service while remaining 

competitive is key to an operator’s viability. Another possible option for network 

operators is differential pricing bands for highly demanding video applications, receiving 

fees from preferred video content providers, throttling certain services, etc. However, 
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net neutrality regulations would currently prevent many of these options from being 

implemented [48]. 

Comparing Figure 3.5 and Figure 3.6 one sees that although app connections account 

for a plurality of data connections on the network (45%), they account for less than 1% 

of the total data volume. An established connection between the User Equipment (UE) 

and the network consumes a larger amount of energy in the UE than when the UE is not 

connected while also consuming network resources. Thus, after a period of inactivity 

from the UE the network ends a connection; this amount of time is usually a few 

seconds and is specified by the network’s inactivity timer [33]. From the network 

operator’s perspective, each change between connected and disconnected states 

causes a signalling load in the network. This load, if great enough, can cause network 

disruptions as discussed in [49].  These app connections disproportionately affect the 

signalling load on the network by constantly sending keep-alive messages, polling for 

data, etc. As discussed in [49] network operators can alter network parameters to 

ameliorate the deleterious effect of these repeated app connections. Of course a 

balance must be found between managing the signalling load on the network and a 

possible resultant deterioration in user experience [49].  App creators could also help by 

being mindful of the implications of their design decisions on the wireless network 

resource. For example, in 2013 Facebook released a software update to its Android and 

iOS app which single-handedly drove up signalling load and airtime consumption on 

some networks by 5-10% [50]. Better app design would benefit network operators 

through lower capital expenditure, users through better battery life, the environment 

through lower energy consumption from both the UE and network equipment and the 

app designer by making their apps more attractive to end users [49]. 
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Figure 3.5: The pie chart on the left shows the total proportion of usage events by 

service type on a typical day. The pie chart on the right shows the breakdown of the 

cellular data segment into its constituent parts. 

 

Figure 3.6: The pie chart on the left shows the total volume of data transferred over the 

whole network expressed as TED broken down by usage mode on a typical day. The pie 

chart on the right shows the breakdown of the cellular data segment into its constituent 

parts. 
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3.2.6 Conclusion 

This section provided an empirical measurement of the network load and its constituent 

parts at the network level. Subsection 3.2.2 proposed and defined a novel metric to 

allow for the accurate comparisons of data volumes and load across disparate services 

and technologies. Subsection 3.2.3 presented and discussed the aggregated network 

wide daily load curve. Subsection 3.2.4 discussed how the network load breaks down 

between the three main constituent parts i.e. voice, data and SMS. Subsection 3.2.5 

implemented a classification system to categorise data connections into one of several 

different types. 

This section also identified and quantified some of the main trends and opportunities 

related to overall network load. For example, 3.2.3 identified and quantified the peaking 

problem on this network which is the source of much of the networks underutilisation 

of resources. Subsection 3.2.4 identified the trend that the problem is likely to be 

further exacerbated by more data usage in the future. 3.2.5 identified the 

predominance of video data on the network and some of the challenges it poses. 

Subsection 3.2.5 also identified the vastly disproportionate signaling load placed on the 

network by apps and discussed some ways to ameliorate this problem.  

 Local Load Distribution 

3.3.1 Introduction 

A list of three main contributions was provided in this chapter’s introduction, the 

second of which was “provide an empirical measurement of network load and its 

constituent parts both at the network level and the level of the individual base 

station/cell”. This section completes this objective (which was started in 3.2) by 
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providing an empirical measurement of the network load and its constituent parts at 

the level of individual base stations/cell. This chapter’s third main contribution “To use 

quantitative and qualitative analysis of the network including both its load and 

topography to identify trends and possible opportunities for resource rationalization” is 

also completed in this section by identifying and quantifying some of the main trends 

and opportunities related to the topography of the network and localized load 

demands.  

3.3.2 Local Load Distribution 

Figure 3.7 (a) shows the distribution of daily loads (TED) serviced by base stations across 

the network broken down by day while Figure 3.7 (c) presents the same information 

broken down by base station sector (cell). The amount of load serviced varies by several 

orders of magnitude from a few megabytes up to tens of gigabytes. The key parameters 

of the distributions are presented in Table 3.2. These highlight the great variability in 

load serviced by different portions of the network; the busiest base station handles 

2000 times the load of the least used base station. Comparing the base station loads 

presented in Figure 3.7 (a) with the data presented in [15] highlights the massive growth 

in data usage in the intervening years (the dataset in [15] is from 2007, predating the 

widespread adaption of smartphones). The median load on a base station in the 

network presented in [15] is approximately 15MB or one hundred times less than the 

median base station load of 1.5 GB as outlined in Table 3.2. The distribution of load has 

a positive skew of 2.25 at the base station level and 2.9 at the individual cell level. Skew 

is defined as the difference of a distributions mean and median divided by the 

distribution’s standard devation. A positive skew means that the right tail of the 

distribution is longer i.e. there are more base stations/cells with below average loads 

and a smaller amount with much larger loads. This is a common feature of cellular 
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networks and a natural consequence of the network topography. Smaller cells (capacity 

cells) cover densely populated urban regions with high data demands while larger cells 

(coverage cells) provide mainly call and SMS coverage in sparsely populated rural areas 

(see Chapter 4 for a more detailed discussion).  The individual cell level has a higher 

skew value than the base station level with a higher coefficient of variation cv. The 

coefficient of variation is defined as: 

 
𝑐𝑣 =

𝜎

𝜇
 

 
(3.1) 

where σ is that standard deviation of base station/cell load and μ is the mean base 

station/cell load. Working out cv for the base stations gives cvBS = 2.8/2.5 = 1.12, while 

the equivalent value for cells cvCells is cvCells = 1.2/0.85 = 1.41. Thus the cells have a higher 

variability relative to their mean than base stations. This makes their load harder to 

predict and will be discussed in further detail in Chapter 5. 

 

Table 3.2: Descriptive statistics of BS and sectorised cell load for typical weekday. 

 Min 

 

Max Median 

(�̃�) 

Mean 

(μ) 

SD 

 (σ) 

Skewness 

(γ) 

Base Stations 14 MB 29 GB 1.5 GB 2.5 GB 2.8 GB 2.25 

Cells 0.5 KB 14 GB 400 MB 850 MB 1.2 GB 2.9 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 3.7: (a) CDF of the daily traffic (both uplink and downlink incl. cellular data, SMS 

and voice calls) per base station broken down by day of the week. (b) Zoomed in version 

of (a). (c) CDF of the daily traffic per cell broken down by day of the week. (d) Zoomed in 

version of (c). Note the similarity between Mon-Thur on all figures 

Figure 3.7 (a) and Figure 3.7 (c) show the large variation in the daily traffic load serviced 

by individual base stations and individual cells on the network. Figure 3.8 & Figure 3.9 

further demonstrate this by presenting the percentage of total network load serviced by 

a given percentage of the base stations/cells. Figure 3.8 shows that the most heavily 

loaded 1% of base stations service 12% of all network load. This is less than the 

equivalent figure of 20% from a 2007 dataset reported in [15] but larger than projected 

values in the future [51]. It appears that as total network load increases the load on the 
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network begins to spread between base stations and cells more evenly. This makes 

intuitive sense – due to economic factors, as the network grows the more densely 

populated areas receive the newest and most capable technology first. The less 

profitable areas are left with older less capable technology, discouraging or stifling use 

(e.g. areas with only GPRS/EDGE for data as opposed to HSDPA/LTE etc.). In time 

however, the networks capability to handle data spreads more evenly and the disparity 

begins to reduce. The imbalance is more acute at the level of specific sectorised cells as 

seen when comparing Figure 3.8 and Figure 3.9. For example 20% of network traffic is 

serviced by 1% of cells while at the base station level the top 1% of base stations service 

only 12% of the network load. Examining the usage patterns of individual subscribers 

reveals that a relatively small number of subscribers are responsible for a 

disproportionately large portion of the overall network traffic.  In Chapter 4 the home 

and work locations of these subscribers are derived from a novel analysis of the data 

set. Doing so reveals that the presence of these heavy users in certain cells is an 

important factor in the disparity of cell loads. 

 

Figure 3.8: The percentage of total network traffic (TED) serviced by a given percentage 

of base stations 
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.  

Figure 3.9: The percentage of total network traffic (TED) serviced by a given percentage 

of cells. 

 

Figure 3.10: The load broken down by traffic type for three groups of BS as a percentage 

of overall traffic volume TED. 
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Figure 3.10 shows the load broken down by traffic type for: the top 10% of heavily 

loaded base stations, the bottom 10% of base stations by load and finally the load on 

the mean base stations. Figure 3.10 clearly shows that the highly loaded cells are almost 

exclusively loaded with cellular data while in the least loaded cells voice calls 

predominate. This is in keeping with the distinction between coverage and capacity cells 

as discussed previously. 

3.3.3 Conclusion 

This section provided an empirical measurement of the network load and its constituent 

parts at the level of individual base stations/cells. This section also identified and 

quantified some of the main trends and opportunities related to the topography of the 

network and localized load demands.  A great disparity in network load was identified at 

the individual base station and cell level. For example, the base station with the heaviest 

load handles approximately two thousand times the traffic of the base station with the 

lowest load.  On the network level 12% of the network’s traffic is serviced by just 1% of 

the base stations. This result is even more extreme at the level of individual cells where 

1% service 20% of the total network load. This disparity between cells coupled with the 

temporal peaking problem identified in 3.2 make clear the potential for greater 

resource rationalisation. Several methods of achieving this are possible, ranging from 

dynamic spectrum access, where valuable spectrum is shared between licensed primary 

and unlicensed secondary users [12], to the dynamic switching off of equipment to 

conserve energy as will be discussed in Chapter 7. 
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 Models of Network Load 

3.4.1 Introduction 

Given the importance to overall network load of data sessions (Figure 3.2) this section 

provides empirically created models for the three most important aspects of data 

sessions: 

1. Interarrival times of data sessions 

2. Data session durations 

3. Mean data session throughputs. 

With these empirically created models the data usage on this network can be modelled 

by interested parties. This section also provides a novel breakdown of the models both 

by access device class and contract type. Voice and SMS have been modelled in previous 

works and the results produced on this network are similar, so to save space and avoid 

replication they are omitted. For empirical models of voice and SMS usage see [12]. 

3.4.2 Modelling Interarrival Time 

Models of the interarrival times/arrival rates are important for creating accurate usage 

scenarios of how subscribers request network resources. The arrival rate is the number 

of arrivals per unit of time while the interarrival time is the time between each arrival 

into the system and the next. When modelling time series data an important 

consideration is the timescale over which the data to be modelled is stationary i.e. the 

timescale over which the model parameters such as mean and variance do not change. 

However, when modelling one also wishes to aggregate over timescales that are as 

large as possible to reduce the standard error (this becomes more of a problem when 

examining individual base stations with low arrival rates). To aid in the choice of an 

aggregation timescale Figure 3.11 shows how the network wide normalised average 
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data session arrival rate varies over four days, two representative weekdays and two 

representative weekend days. 

Figure 3.11 demonstrates some key aspects of the network’s arrival rate. 

1. There are two distinct periods which approximate day and night times. The 

daytime period has high arrival rates in comparison to the night time period. 

2. The greatest change in arrival rates occur during the latenight/early morning 

hours and the late morning hours. These intervals coincide with the transition 

from the day to night period and vice versa. 

3. Apart from the transitional periods, the mean arrival rates appear (relatively) 

stationary over the course of 30 minutes.   

4. Weekdays and weekends appear to show different trends in arrival rates over 

the course of the day. This is to be expected due to the change in many 

subscribers’ schedules between weekdays and weekends as discussed in 3.2.3.  

Taking the aforementioned points into consideration an aggregation of 30 minutes 

approximates the stationary behaviour desired. 
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Figure 3.11: Normalised arrival rate by time of day 

 

Figure 3.12: CDF of interarrival time over whole day 

Figure 3.12 shows the empirical CDF of data session interarrival times on the network 

for an entire day. The CDF of a real-valued stochastic variable X is the function given by: 
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 𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥), (3.2) 
 

where the right hand side gives the probability that the stochastic variable X has a value 

less than or equal to x. The empirical CDF Fn for n independent identically distributed 

(iid) observations Xi is defined as: 

 
 𝐹𝑛(𝑥) =

1

𝑛
∑𝐼𝑋𝑖≤𝑥

𝑛

𝑖=1

 
(3.3) 

 

 

where IXi≤x is the indicator function which equals 1 if Xi ≤ x or 0 if Xi > x 

The Interarrival time in cellular networks has traditionally been modelled as an 

exponential distribution [12] such as:  

 𝐹𝑥(𝑥) = 1 − 𝑒
−𝛷𝑥 (3.4) 

 

where x is the inter arrival time and Φ  is the adjustable weight parameter. However, 

these models were primarily for calls and SMS, predating the widespread adoption of 

smartphones and the move to a more data centric network [24]. Figure 3.13 plots the 

interarrival time for two different periods of the day with their respective exponential 

fits (via non-linear least squares) of the form given in (3.4). There is a large difference in 

the interarrival time distributions between these distinct periods as would be expected 

given their differing arrival rates as plotted in Figure 3.11. Visually the fits are quite 

accurate with low respective RMSE as shown in Table 3.3, suggesting that the 

interarrival process for data can be modelled in a similar fashion to calls and SMS. These 

empirically crated models of the interarrival times are important for creating accurate 

usage scenarios of how subscribers request network resources. They will allow the 

interested reader to recreate the data connection request process without access to the 

original dataset.  
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Figure 3.13: CDF of interarrival time for a period of low usage (06:00-06:30) and a period 

of high usage (18:00-18:30) with their respective exponential fits of the form given in 

(3.4) and with the parameters provided in Table 3.3. 

Table 3.3: Interarrival time fit parameters by time period 

Time Period Φ RMSE 

00:00-00:30 72.49 .0060 

06:00-06:30 22.35 .0099 

12:00-12:30 75.99 .0051 

18:00-18:30 90.23 .0047 
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3.4.3 Modelling Connection Duration 

This subsection examines the distribution of data session durations and how they can be 

modelled. Initially results are presented for a general model, then, more detailed 

models broken down by the device/contract type are provided. 

 

Figure 3.14: Histogram of data session durations. Each bin represents one minute, 

except for the final bin representing all durations ≥ one hour. 

Figure 3.14 plots the histogram of data session durations with each bin representing one 

minute (except for the final bin which represents all times greater than one hour). 

Figure 3.14 illustrates that short duration data sessions (≤ 3 minutes) dominate 

accounting for approximately 50% of all connections. The predominance of these short 

connections is no surprise given that short app connections form a plurality of data 

connections as demonstrated in Figure 3.5. Longer durations are much scarcer with only 

approximately 20% of data sessions lasting one hour or more. 
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These values are broken down further in Figure 3.15 which shows how the CDF of 

duration varies by the connecting device type. For example, Figure 3.15 shows that a 

disproportionate amount of the connection durations over 60 minutes long are from 

mobile internet USB dongles. Conversely Figure 3.15 reveals that a disproportionate 

number of the short connections come from feature phones. 

Comparing smartphones with feature phones shows that feature phones connect to the 

network for much shorter periods. Their median connection time (160s) is less than half 

that of prepay smartphones (350s) and under a third of bill pay smartphones (550s). 

Interestingly at the time of data collection feature phones were much more likely to be 

on prepay price plans than smartphones. This coupled with a poorer interface and 

experience could partially explain the difference.  

 

Figure 3.15: CDF of data session durations broken down by connecting device type. 

As seen in Figure 3.1 there appears to be approximately two distinct periods of usage 

during the day – a early morning period and a daytime/night-time period. Also [12] 
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reported that there are two distinct call duration distributions, one for the night time 

and one for the daytime. To investigate if this is also the case for the durations of data 

sessions, the variation in the empirical CDF of the hour-wise durations is compared to 

the overall daily empirical CDF as was suggested for call durations in [12]. To do this the 

Kolmogorov-Smirnov statistic [52] is computed. This is the maximum difference 

between the overall empirical CDF and the hourly empirical CDF. The Kolmogorov-

Smirnov statistic for two samples is defined as: 

 𝐷𝑛,𝑛′ = Max|𝐹1,𝑛(𝑥) − 𝐹2,𝑛′(𝑥)|       (3.5) 
 

where F1,n and F2,n’ are the empirical CDFs (see equation(3.3)) of the first and second 

samples respectively while sup is the supremum function.  

However, on repeating the methodology of [12] and comparing the variation in the 

empirical CDF of the hour-wise durations to the overall daily empirical CDF no significant 

distinct daily periods of data session durations were found. Thus, it appears that unlike 

call durations, the distribution of data durations is not broken into distinct daily periods. 

Figure 3.16 shows the empirical CDF of data session duration distribution. Note that the 

duration value for a particular session is assigned to the time period in which it was 

initiated. The duration distributions resemble a lognormal distribution and are modelled 

as such in Figure 3.16. The Probability Density Function (PDF) of the lognormal 

distribution of the data session durations can be reproduced via: 

 
𝑓𝑥(𝑥) =

1

𝑥𝜎√2𝜋
𝑒
−
(ln (𝑥)− 𝜇)2

2𝜎2  (3.6) 
 

where x is the data session durations, μ are the data sessions’ mean duration and σ is 

the standard deviation of the data sessions durations [54]. The fit applied to the data 

session durations in Figure 3.16 can be reproduced from the PDF described in equation 

(3.6) using the input parameters in Table 3.4 and the method of CDF calculation used in 
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(3.2) and (3.3). Visual inspection of the goodness of fit in Figure 3.16 coupled with the 

small RMSE reported in Table 3.4 supports the efficacy of log normal fits for cellular data 

session durations.  

 

Figure 3.16: Data session duration distribution and lognormal fit. 

Table 3.4: Parameters for lognormal model of data session duration distributions. 

Distribution µ σ RMSE 

Data Session Durations 6.01894 2.49531 .0396 

 

Figure 3.15 demonstrated that the distribution of connection durations is highly 

dependent on the type of device connecting to the network and to a lesser extent the 

type of contract the user has with the network (bill pay v prepay). Thus, Figure 3.17 

illustrates some of the results for modelling the distribution of data session durations 

broken down by connection type and contract type. The complete list of parameters 

used to produce fitted models similar to those in Figure 3.17 for all the distinct 

device/contract type identified in Figure 3.15 are presented in Table 3.5. 
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Figure 3.17: Data session duration distributions for: (left) bill pay smartphone 

connections and their lognormal fits, (right) prepay smartphone connections and their 

lognormal fits 

Table 3.5: Parameters for lognormal models of data session duration distributions. 

Distribution µ σ RMSE 

Bill Pay Smartphone 6.17992 2.65923 .0451 

Prepay Smartphone 5.87245 2.30635 .0236 

Feature Phone 5.19 2.39028 .0373 

USB Dongle 6.64844 2.44977 .0874 
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3.4.4 Modelling Mean Throughput 

 

Figure 3.18: Empirical Mean Throughput per session (bit/s) & lognormal fit 

Figure 3.18 shows the empirical CDF of the throughput per session distribution; the 

throughput distribution resembles a lognormal distribution and is modelled as such in 

Figure 3.18 in a similar fashion to the models in 3.4.3. The distributions may be 

reproduced as lognormal distributions with the following input parameters: 

Table 3.6: Parameters for lognormal model of mean throughput per data session 

Distribution µ σ RMSE 

Daytime/Night-time 6.92205 4.19348 .0034 

 

Figure 3.15 illustrated that device type played an important role in determining the 

mean duration of a data session connection. A natural follow-on from this is to explore 

the role played by device type in the mean throughput. Figure 3.19 demonstrates the 

great disparity that exists in mean throughput between the different connecting 
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devices. USB dongles have a much larger mean throughput than the other devices 

connecting to the network with a median value of 75kbps versus just 10bps for prepay 

smartphones. Interestingly, the mean throughput of feature phones is on par with bill 

pay smartphones and greater than that of prepay smartphones. It is worth reiterating 

here that this refers to mean throughput for each session and not instantaneous 

throughput.  This gives users who stay connected for a long period (while functionally 

inactive or passively consuming tiny amounts of data through small app updates etc.) a 

greatly diminished mean throughput. The large disparity between mean throughput for 

bill pay and prepay is also a striking feature of the results with bill pay users having a 

median throughput ten times greater than their prepay counterparts. One possible 

explanation for this disparity in mean throughput is that bill pay customers may be more 

likely to use data intensive applications such as video streaming given they have a set 

amount of cellular data allocation each month. Prepay customers on the other hand pay 

per byte and thus may be more likely to restrict data intensive high usage applications 

such as video streaming or offload this to WIFI networks. This disparity underlines the 

importance of also considering contract type when producing models of usage. The 

parameters of the lognormal fits by device type and contract type are provided in Table 

3.7 allowing the interested reader to reproduce the distributions. 
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Figure 3.19: Mean throughput per data session broken down by device 

Table 3.7: Parameters for lognormal models of mean throughput per session 

Distribution µ σ RMSE 

Bill Pay Smartphone 4.32686 2.8086 .0027 

Prepay Smartphone 2.43485 2.69727 .0053 

Feature Phone 4.33676 3.48404 .0089 

USB Dongle 10.5527 2.06099 .0269 

 

3.4.5 Models of Network Load Conclusion 

This section provided foundational, empirically created models of how the network 

experiences load. The three fundamental aspects of data sessions from a network 

operator perspective were modelled: 

1. Interarrival times of data sessions. 

2. Data session durations 
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3. Mean data session throughputs 

These empirically created models of data usage on this network will allow other 

interested parties to recreate these models for their own use.  This subsection also 

provided a novel breakdown of the models both by access device class and contract 

type. It was shown that short connections (<3 minutes) predominate on the network 

accounting for approximately 50% of all connections (primarily comprised of app 

interactions as discussed in 3.2.5). A difference in median connection time was 

discovered between smartphones depending on the nature of the contract with the 

median prepay smartphone connection lasting approx. 400 seconds compared to 

approx. 500 seconds for bill pay smartphones. However, the longest connections by far 

came from USB dongles with a median connection time of approx. 1500 seconds. Unlike 

call durations, the time of day was not found to have an impact on data session 

durations. Empirically created models were provided for all possible permutations of 

connecting device type and contract type. Finally, the mean throughput of all data 

connections was modelled and then this was further broken down by connecting device 

type and contract type. Interestingly, contract type was found to be of crucial 

importance when considering mean throughput with bill pay smartphone connections 

having a median mean throughput ten times greater than prepay smartphone 

connections. These empirically created models will allow for the accurate recreation and 

modelling of these key network features, not only at the general level but crucially at 

the device and contract specific level. 

 Conclusion 

The introduction of this chapter identified its three main contributions - each of these 

aims was accomplished in the succeeding sections. For example, the primary aim of this 

chapter was to provide empirically created foundational models of how the network 



 59 

experiences load i.e. models of arrival rates, connection durations, and data 

consumption. These models were to be provided at a fine-grained level broken down by 

connection time, connecting device type and, finally, contract type. 3.4 achieved this 

objective by providing empirically created models for the three most important aspects 

of data sessions: (i) Interarrival times of data sessions, (ii) data session durations and (iii) 

mean data session throughputs. This section also provided a novel breakdown of the 

models by access device class and contract type. These empirically created models will 

allow for the accurate recreation and modelling of these key network features, not only 

at the general level but crucially at the device type and contract specific level. 

The second contribution of this chapter was “To provide an empirical measurement of 

network load and its constituent parts both at the network level and the level of the 

individual base station/cell”. This was achieved at the network level in 3.2 and at the 

level of the individual base stations/cell in 3.3. 3.2 provided a network wide examination 

of network load and introduced a classification system for CDR to allow for a detailed 

breakdown of data usage. 3.3 provided a more fine-grained approach to examining 

network load and focused on the local disparities between individual base stations/cells.  

The final contribution of this chapter was “To use quantitative and qualitative analysis 

of the network including both its load and topography to identify trends and possible 

opportunities for resource rationalisation”. Firstly, a metric for comparing load across 

service type was introduced. Then the peaking problem on the network was introduced 

and discussed. This is where peak time loads are an order of magnitude higher than 

trough time loads. This peaking problem was found to be getting relatively worse as 

more and more mobile data was being used on the network. When the mobile data 

connections were further analysed and classified it was found that the primary driver of 

mobile data usage on this network was video streaming.  However, despite the 
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importance of video to the total volume of data transferred, when considering signalling 

overhead app connections were found to be having a vastly disproportionate impact. 

Some of the problems caused by this and possible solutions to this were discussed and 

identified. 3.3 identified the great disparity in load at the local level with the most highly 

loaded base stations having a load two thousand times greater than the least loaded 

base stations. On the network level 12% of the network’s traffic is serviced by just 1% of 

the base stations. This result is even more extreme at the level of individual cells where 

1% service 20% of the total network load. This disparity between cells coupled with the 

temporal peaking problem identified in 3.2 make clear the potential for greater 

resource rationalisation. Several methods of achieving this are possible, ranging from 

for example dynamic spectrum access where valuable spectrum is shared between 

licensed primary and unlicensed secondary users [12] to the dynamic switching off of 

equipment to conserve energy as discussed in Chapter 7.  
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Chapter 4 Spatial Usage in Cellular 

Networks 

 Introduction 

The preceding chapter explored the network’s load dynamics from a network wide 

perspective. Although that exploration was important and useful, it did not examine the 

highly localised nature of cellular networks; any examination of cellular networks is not 

complete without reference to their defining characteristic, spatial subsidiarity. For this 

thesis to complete its task of providing and examining practical Near Horizon Localised 

Load Forecasting models for cellular networks then a strong understanding of network 

spatiality is crucial. To that end this chapter focuses on the spatial properties and causal 

relationships present in the network. The primary contributions of this chapter are: 

1. The creation of a spatial representation of the entire network to allow for the 

association of load with defined spatial areas. These defined coverage areas for 

both base stations and sectorised cells are the spatial building blocks of the 

network. In later chapters they will be modelled and their load predicted both 

individually and in larger spatial amalgamations.  

2. A novel procedure is introduced to clean inaccuracies in the spatial coordinates 

of cell towers. Due to the importance of the spatial locations of base stations 

and sectorised cells in the following chapters, it is imperative that every effort is 

made to identify and exclude inaccuracies. 

3. A method to visualise how the load is distributed spatially across the network 

both as a whole and across various services. This provides an important network 
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wide view of the load distribution which is a crucial element in understanding 

how the load varies spatially. 

4. The provision of a novel method to discover who lives and works within the 

defined spatial coverage areas introduced in point 1 and how they interact with 

other network users spatially. It is axiomatic that the number of subscribers in 

an area will influence the load of that area. It is therefore useful from a network 

operator’s perspective to understand how their subscribers are distributed 

throughout the network. However, cell phones are also known as mobile 

phones for a reason, and thus it is not enough to simply know where subscribers 

live. It is also important to understand where they spend large amounts of their 

time such as where they work. 

5. An examination of the degree, or lack thereof of spatial correlation in load 

across the network. The previous chapter already highlighted that there is a 

large disparity in load across the network at the level of the individual base 

station/cell. Using the coverage regions introduced in this chapter the degree or 

lack thereof spatial correlation in load across these coverage regions is 

explored. 

6. A novel exploration of the presence/lack of causal influence between 

neighbouring cells within the network i.e. an examination of whether a cell’s 

load has any influence on neighbouring cells. The causality present in the 

network can be used to aid localised prediction of load, the identification of key 

cells/base stations whose failure would be particularly deleterious to user 

experience, travel mode discovery (paths taken by subscribers as they move 

throughout the network) etc. 

The above contributions are valuable to network providers and relevant to many 

advanced network management techniques. They are particularly important to those 
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techniques which rely on a strong spatial understanding such as dynamic spectrum 

allocation [12], reduced sampling techniques [55], fault detection, and spatially 

influenced power saving schemes [56] such as the one presented in Chapter 7. The 

remainder of this chapter is laid out as follows: 

• 4.2 examines the spatial representation of the network. 4.2.2  explains how the 

dataset presented in Chapter 2 can be represented by spatial coverage regions. 

4.2.3 provides a novel algorithm to identify out-dated spatial information in the 

dataset and exclude it from further study. 4.2.4 presents a method of network 

wide load visualisation based on the spatial regions presented in the preceding 

sections. 

• 4.3 provides an examination of how users communicate over spatial distance. 

4.3.2 introduces a novel algorithm to calculate the home and work populations 

of each cell in the network. 4.3.3, 4.3.4, and 4.3.5 respectively introduce, 

implement, and test one possible model of spatial communication distance.  

• 4.4 examines the spatial relationships and dependencies present within the 

network structure. 4.4.2 explores the spatial correlations present in the 

network’s load. 4.4.3 - 4.4.7 explores the causal structure of the network’s load. 

• 4.5 provides a concluding discussion of the chapter’s results. 

 Spatial Representation of the Network 

4.2.1 Introduction 

This section focuses on the creation of spatial representations of the network firstly at 

the localised base station and sectorised cell coverage level, then the aggregated 

network level. The spatial coverage region representations introduced in 4.2.2 are the 

foundational step in beginning to examine the network spatially. Much of the later work 
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and many of the techniques introduced later require the use of these spatial coverage 

regions. Given their importance 4.2.3 introduces a novel method to identify and remove 

errors in their positioning. 4.2.4 provides a method to visualise the spatial distribution of 

cellular load across the network. The techniques employed in 4.2.4 could be generalised 

to not only represent load distribution but also other properties of interest such as 

connection events, subscriber distribution etc. 

4.2.2 Base Station and Cell Coverage Regions 

As discussed in Chapter 2 BTS, Node-B and eNode-B may all be mounted on the same 

tower, with each servicing various spatially overlapping geographical regions. It is 

possible to approximate idealised cell site coverage areas via Voronoi tessellation [57] 

by using the geo-spatial coordinates and the network type of each cell, where each 

centre represents a base station site location. A Voronoi tessellation is a partitioning of 

a plane into regions based on distance to points in a specific subset of the plane [57].  

Figure 4.1 depicts the base station site Voronoi tessellations areas for the 2G and 3G 

base stations on the network under examination (note Figure 4.1 - Figure 4.3 are placed 

together at the end of this subsection to facilitate their comparison). It is important to 

note that the accuracy of the tessellation in approximating base station coverage areas 

is affected by channel characteristics, topography of the area and physical layer 

parameters which include transmitter frequency, tilt, height, and transmission power 

[34]. The collection of this information is prohibitively expensive and, as such, is not 

factored into this analysis. Thus, it should be noted that the estimation technique 

applied does introduce some approximation error at a local level. 

Figure 4.1 was created with the MATLAB plotting function. The MATLAB function 

VORONOI was used to create the Voronoi tessellations using the site locations as inputs. 

A polygon is returned for each unique site location, thus base stations with matching 
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site locations on the same network share the same site polygon. The county 

geographical regions polygons presented are sourced from Ordinance Survey Ireland 

[58]. Note that the coordinate system used in Figure 4.1 - Figure 4.3 is the Irish Grid 

Coordinate Reference System [35]. This coordinate system uses the projections of 

Easting and Northing, which are in units of meters from an origin point located at 

latitude 53°30’00 N and longitude of 8°00’00 W.  

The polygons presented in Figure 4.1 are a reasonable approximation of inland coverage 

regions and coverage regions not adjacent to the border with Northern Ireland; 

however, the absence of a limiting threshold for polygon size means that coverage 

regions along the coast are less accurately approximated. Thus, to improve costal 

accuracy a maximum site radius, Smax, of 20 km and 15 km is introduced for 2G and 3G 

networks respectively. These limits reflect the realistic limits of communication within 

each standard given the network topology [33]. The site radius Sr for each site is 

calculated by 

 

𝑆𝑟 = min(√
𝑆𝑎
𝜋
, 𝑆𝑚𝑎𝑥) 

 
(4.1) 

where 𝑆𝑎 is the coverage area of the base station’s site defined as: 

 

𝑆𝑎 =
1

2
∑(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)

𝑁−1

𝑖=0

 

 
(4.2) 

where N is the number of points in the coverage polygon and (x,y) are the spatial 

coordinates of each point. 

Figure 4.2 shows the effect of introducing the base station coverage radius limit. The 

difference is particularly evident along the coast and border with Northern Ireland. 

Along these areas in Figure 4.1 the coverage regions stretched to infinity but are now 
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more realistically limited in Figure 4.2. The limited base station boundary is found by 

extracting the polygon of the spatial intersection of the idealised site coverage polygon 

with the circle of the maximum site size. This intersection is carried out via the 

POLYBOOL function from the mapping toolbox of MATLAB. Sectorised coverage regions 

of the larger base stations may be extracted by using the transmitter azimuth angle 

information in the tessellation. These sectorised coverage regions are shown in Figure 

4.3; the restricted coverage regions displayed in Figure 4.2 are now subdivided into 

individual sectorised cells in Figure 4.3. To generate the coverage regions in Figure 4.3 

each coverage polygon in Figure 4.2 is subdivided by the unique transmitter azimuth 

angles of cells associated with the site. It is important to note that sectorised cells at the 

same site sharing the same azimuth angle will share the same cell coverage polygon, Cp. 

The Cell radius (Cr) and Cell area (Ca) is calculated via equation (4.1) and equation (4.2) 

respectively. An individual cell’s centroid Easting and Northing location, (Cx, Cy), is 

calculated by equations (4.3) and (4.4), respectively. 

 
𝐶𝑥 =

1

6𝐶𝑎
∑(𝑥𝑖 + 𝑥𝑖+1)(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)

𝑁−1

𝑖=0

 
 

(4.3) 

 

 
𝐶𝑦 =

1

6𝐶𝑎
∑(𝑦𝑖 + 𝑦𝑖+1)(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)

𝑁−1

𝑖=0

 
 

(4.4) 
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Figure 4.1: Voronoi diagram of 2G (top) and 3G (bottom) cell site coverage regions. 
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Figure 4.2: Restricted 2G (top) and 3G (bottom) cell site coverage regions. 



 69 

 

 

 

Figure 4.3: Sectored 2G (top) and 3G (bottom) cell coverage regions. 



 70 

4.2.3 Data Cleaning 

As part of the routine operation of a large scale cellular network, operators sometimes 

relocate hardware around their network. Consequently, through time if the network 

operator does not keep up to date records on the movement of all hardware within the 

network the spatial locations of hardware such as cells may become outdated. This can 

introduce errors in analysis where the spatial locations of cells are important (such as in 

localised load forecasting schemes as introduced in Chapter 7). For example, the 

switching technique introduced in Chapter 7 relies on the spatial redundancy between 

proximate cells. If these cells were not in fact proximate then this would invalidate the 

entire switching process. Thus, validating the hardware location information received 

from the network operator as discussed in Chapter 2 is a vital step in any spatial analysis 

of the network. Some errors can be clearly seen when examining the distance travelled 

between certain cells in a given time. A subscriber serviced by cell Cx at time tx and who 

is subsequently observed in cell Cy at time ty is assumed to have travelled from the 

coverage polygon of cell Cx, Cpx, to cell Cy’s coverage polygon Cpy. The upper bound on 

the journey time between the two cell’s coverage regions is given by ty – tx. The actual 

distance travelled by the subscriber will depend on the particular size of the cell 

coverage polygons involved ranging from 𝑑𝑥𝑦
𝑚𝑖𝑛 to 𝑑𝑥𝑦

𝑚𝑎𝑥. Figure 4.4 illustrates the 

maximum possible distance travelled 𝑑𝑥𝑦
𝑚𝑎𝑥, the average distance 𝑑𝑥𝑦, and finally the 

minimum distance 𝑑𝑥𝑦
𝑚𝑖𝑛. As illustrated in Figure 4.4 the maximum distance in any two 

cell coverage polygons will be the distance between two vertices giving  

 𝑑𝑥𝑦
𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑎𝑏‖𝐶𝑝𝑥𝑎 − 𝐶𝑝𝑦𝑏‖ (4.5) 

where Cpij is the jth vertex of cell i’s coverage polygon. The number of vertices in the 

coverage polygon Cpx is denoted a = [1 → Ax], where Ax is the total number of vertices 

used to define the cell coverage polygon Cpx. Similarly, the number of vertices in the 
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coverage polygon Cpy is denoted b = [1 → By], where By is the total number of vertices 

used to define the cell coverage polygon Cpy. However, as demonstrated in Figure 4.4 

the minimum distance between two coverage polygons can be between a vertex and a 

side. This, in theory, makes the calculation of 𝑑𝑥𝑦
𝑚𝑖𝑛 more complicated as every point in 

every coverage polygon must be compared with all points in every other polygon 

(unless the polygons are found to be overlapping or adjacent). Also, as the coverage 

polygons are defined by their vertices locations, it necessitates the interpolation of the 

points between each vertex at an arbitrary granularity. However, in practice as coverage 

polygons are only an approximation of actual cell coverage regions which vary due to 

topography, load etc. this is needlessly complex. A simpler solution is to use a heuristic 

that the minimum possible distance between two non-adjacent/non-overlapping 

polygons is  

 𝑑𝑥𝑦
𝑚𝑖𝑛 = 𝑑𝑥𝑦 − (𝐶𝑝𝑥𝑟 + 𝐶𝑝𝑦𝑟) (4.6) 

where 𝑑𝑥𝑦 is the Euclidian distance between centroids of cell coverage polygons Cpx and 

Cpy; 𝐶𝑝𝑥𝑟 and 𝐶𝑝𝑦𝑟 denote the maximum distance between the coverage polygon 

centroids and their respective farthest vertex.  
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Figure 4.4: The range of possible distances travelled in a transition from cell Cx to Cy in 

time tx to ty. The distance,𝑑𝑥𝑦, is given by the distance between the centroids of the two 

cell coverage polygons. The maximum distance is given by 𝑑𝑥𝑦
𝑚𝑎𝑥 with the minimum 

distance being 𝑑𝑥𝑦
𝑚𝑖𝑛 

When the transitions between coverage regions are examined, a small proportion are 

found to occur in impracticably small-time periods given the supposed distance 

between the coverage regions. Thus algorithm 4.1 is used to identify out of date cell 

coverage regions. Upon completion of the geographic data cleaning, 5% of cell’s 

geographic locations were found to be out of date and excluded from further 

examination in this work.  
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Algorithm 4.1: 

The geographic data cleaning algorithm.  

 

1: Let D = (dij) be a two dimensional distance 

array (mxm) where m is the number of cells in 

the network and dij is minimum distance 

between cell polygon i and j i.e. dij = 𝑑𝑥𝑦
𝑚𝑖𝑛. 

 

2: Let T = (tij) be a two dimensional transition 

time array (mxm) where m is the number of cells 

in the network and tij is minimum observed 

transition time between cells i and j. 

 
 

3: Let F = (fij) be a two dimensional flag array 

(mxm) where m is the number of cells in the 

network and fij is = 1 if the transition between 

cells i and j is flagged as infeasible and 0 

otherwise. 

 
 

4: Iterate through each column of D, di1,di2,..dim 

(i.e. the distance between cell i and all other 

cells). For each element check the corresponding 

element in T, tij. If dij > 0 but tij = 0 flag the cell 

pair in F as F(fij) = 1. If dij / tij > 120 kph (the 

motorway speed limit is used as an upper bound 

on expected transition speed) flag the cell pair in 

F at F(fij) = 1. Otherwise set F(fij) = 0 

 
 

5: Calculate the sum for each row in F (giving 

the number of infeasible pairs the cell is 

involved in).  

 

6: Iterate through the flag array F. For each 

transition pair flagged as infeasible, mark the 

cell with the most infeasible transitions 

calculated in the previous step as out of date. 

Decrease the infeasible value for the other 

member of the pair and continue until all cells 

are assigned as either up to date or out of date 

geographically. 
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4.2.4  Usage Visualisation 

Temporal variation in cell load was explored in the previous chapter; however, this 

examination made no reference to the spatial structure of the network. As 

demonstrated in 4.2.2 each cell’s spatial structure can be visualised to build up a map of 

the entire network. Thus, a spatio-temporal load map can be constructed for the entire 

network by combining the spatial structure visualised in 4.2.2 with time series data 

representing cell load as presented in the previous chapter. A spatial smoothing 

function is required to enable the visualisation of a spatio-temporal load map for a 

network comprising many overlapping cell coverage regions of various sizes and shapes. 

The spatial smoothing function utilises an individual Gaussian function for each cell 

centred on the cell’s coverage region centroid as discussed in 4.2.3. Each Gaussian 

function’s spreading factor is a function of cell radius and spreads each cell’s load, Ca, 

over a spatial lattice, δ(x,y). The weighted spreading function for a cell is given by: 

 
𝛿(𝑥, 𝑦) = 𝛼𝐶𝑎exp(− 

(𝑥 − 𝐶𝑥)
2

2𝐶𝑟
2 − 

(𝑦 − 𝐶𝑦)
2

2𝐶𝑟
2 ) 

 
(4.7) 

where Cr is the cell radius, (Cx,Cy) are the coordinates of the cell’s centroid, (x,y) are 

coordinates of points in the spatial lattice, and α denotes the scaling weight which 

ensures the combined weights in δ(x,y) sum to Ca. Each lattice point may extend to a 

temporal horizon t by incorporating the parameter t representing the desired time 

sample. The resultant lattice δ(x,y,t) can then be combined with other lattices to view 

the spatial distribution of activities in a desired area for time sample t. The combined 

weighted lattice, θ(x,y,t), is given by: 

 

𝜃(𝑥, 𝑦, 𝑡) =∑𝛿𝐶(𝑥, 𝑦, 𝑡)

𝑁𝑐

𝐶=1

 

 
(4.8) 
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where δc(x,y,t) is the lattice representing cell C and Nc is the total number of cells in the 

spatial region of interest. 

Figure 4.5, Figure 4.6 and Figure 4.7 illustrate representative sample cell load maps for 

data load, call load, and SMS load respectively across the network for both peak and 

minimum load. To create these visualisations the spatial extent of the network was 

divided into 200x200 meter squares indicating an individual pixel. Each pixel was 

assigned a load intensity via equations (4.7) and (4.8) with a temporal bin of 300 

seconds. The visualisations were completed using the built in MATLAB plotting 

functions. To smooth out high frequency temporal variations in load, a temporal 

smoothing function was employed. The function is defined as: 

 
𝜃(𝑥, 𝑦, 𝑡) =

1

5
∑ 𝜃(𝑥, 𝑦, 𝑖)

𝑡+2

𝑖=𝑡−2

 
 

(4.9) 

This is a moving average filter which averages the current temporal sample over five 

temporal samples. Interestingly, the plots show the strong spatial unevenness in the 

distribution of load across the network. The relationship between population density 

and load is evident across all service types and for hours of maximum and minimum 

load. For example, compare the densely populated greater Dublin region with the more 

sparsely populated and hence lower usage North West of Ireland in Figure 4.5 - Figure 

4.7.  Figure 4.5, Figure 4.6 and Figure 4.7 also indicate spatial correlation between the 

loads on the three different service types. 
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Figure 4.5: Visualisation of data load on the network. On the Left the load at its daily 

maximum and on the right the load at its daily minimum. 

 

Figure 4.6: Visualisation of voice call load on the network. On the Left the load at its 

daily maximum and on the right the load at its daily minimum. 
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Figure 4.7: Visualisation of SMS load on the network. On the Left the load at its daily 

maximum and on the right the load at its daily minimum. 

4.2.5 Conclusion 

This section focused on the creation of spatial representations of the network firstly at 

the localised base station and sectorised cell coverage level, then the aggregated net-

work level. The spatial coverage region representations introduced in 4.2.2 are the 

foundational step in beginning to examine the network spatially. Much of the later work 

and many of the techniques introduced later require the use of these spatial coverage 

regions. Given their importance 4.2.3 introduced a novel method to identify and remove 

errors in their positioning. Subsection 4.2.4 provided a method to visualise the spatial 

distribution of cellular load across the network. The techniques employed in 4.2.4 are 

generalizable to not only represent load distribution but also other properties of 

interest such as connection events, subscriber distribution etc. 
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 Communication Distance 

4.3.1 Introduction 

This section provides an examination of how users communicate over spatial distance. 

Subsection 4.3.2 introduces a novel algorithm to calculate the home and work 

populations of each cell in the network. This algorithm allows for the creation of 

accurate maps of the network’s subscriber base for different classes of cells.  4.3.3 - 

4.3.5 examines and models how subscribers communicate with one another spatially. 

The classic gravity model of spatial communication distance is applied in a novel manner 

to cellular networks utilising the cellular coverage regions identified in 4.2.2 and the 

novel cellular population estimation techniques presented in 4.3.2. 

4.3.2 Cell Populations 

One of the defining features of a cellular network is the population density of the spatial 

region that the network services. Two popular methods of estimating population 

density when examining a network are the use of census records or the address 

information provided by the customer upon signing up to the network [59]. Both 

methods have their shortcomings. In the case of census information, it cannot be 

assumed that the network of interest has equal penetration across all areas studied. A 

large drawback of using address information provided by the subscriber is its lack of 

accuracy. Subscribers often provide unreliable information to service providers. This is 

self-evident in the customer data provided for prepay customers (see Chapter 2). Many 

of these prepay customers have blank address information or simple placeholders such 

as “zzz” etc.  Customers with a bill phone are obliged to submit correct home address 

details but there is no such guarantee with pre-pay users. This is particularly challenging 

due to the growth in popularity of pre-pay plans [60]. Bill-pay customers currently 
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account for just approximately 10% of the users on the network under investigation. 

Apart from the lack of accuracy of home locations inherent in both methods, neither 

takes account of the daily movement of people throughout the network. For much of 

the day a large proportion of the people living in a certain area will not be there - 

further reducing the usefulness of address or census information. A more useful dataset 

would include for example, the home and work/study locations of the subscriber base 

without recourse to self-reported address or census information. Such a data set was 

created with the use of four months of CDRs as outlined in Algorithm 4.2 & Algorithm 

4.3.  
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Algorithm 4.2: 

The home location estimation algorithm used.  

 

1: Extract all events over the study time period 

and group them by day of the week. Exclude any 

events that occur on Friday, Saturday or Sunday.  

 

2: For a day in the study period extract all events 

which occur at “home times” i.e. 8pm -6am and 

group them by user id. 

 
 

3: Load list of cell towers in the area of interest.  

 
 

4: For each subscriber count how many events 

occur within each cell’s coverage polygon region 

(see §4.2.2) 

 
 

5: Iterate through all subscribers and determine 

the most frequent cell for each subscriber for the 

day of interest.  

 

6: Assign the subscriber to the cell found in step 

5 for that particular day. 

 

7: Repeat steps 2 to 6 for each day of interest 

and find the cell the subscriber is assigned to for 

the largest amount of days. Set this cell as the 

subscriber’s home location. If a subscriber is 

associated with two or more cells for the same 

amount of days, pick one at random. 

 
 

8: Sum all the subscribers assigned to each cell 

tower and set the result as each respective cell’s 

home population. 
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Algorithm 4.3: 

The work location estimation algorithm used.  

 

1: Extract all events over the study time period 

and group them by day of the week. Exclude 

any events that occur on Saturday or Sunday.  

 

2: For a day in the study period extract all 

events which occur at “work times” i.e. 9am -

4pm and group them by user id. 

 
 

3: Load list of cell towers in the area of interest.  

 
 

4: For each subscriber count how many events 

occur within each cell’s coverage polygon 

region (see §4.2.2) 

 
 

5: Iterate through all subscribers and determine 

the most frequent cell for each subscriber for the 

day of interest.  

 

6: Assign the subscriber to the cell found in step 

5 for that particular day. 

 

7: Repeat steps 2 to 6 for each day of interest 

and find the cell the subscriber is assigned to for 

the largest amount of days. Set this cell as the 

subscriber’s work location. If a subscriber is 

associated with two or more cells for the same 

amount of days, pick one at random. 

 
 

8: Sum all the subscribers assigned to each cell 

tower and set the result as each respective cell’s 

work population. 

 

Both algorithm 4.2 and 4.3 were implemented in a mix of C and SQL for the entire 

network. Figure 4.8 shows the CDF of the home and work populations calculated for 

each cell on the network as calculated using Algorithms 4.2 and 4.3 respectively. A wide 

range of both home and work populations are evident in each cell ranging from a 

minimum of 1 to a maximum of 1000. The median home population is 38 while the 

median work population is 40. However, the mean home and work populations are 
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more than double their respective medians at 84 and 91 respectively. This indicates that 

there are many cells with low home and work populations while a disproportionate 

amount of subscribers live/work in a relatively small cohort of heavily loaded cells. This 

is consistent with both the findings presented in the previous chapter and subsection 

4.2.4. The CDF of home and work populations look very similar but it bears 

remembering that they are not necessarily for the same cells (see the comments in 

Figure 4.9). For example, a cell covering an industrial park may have a large working 

population with much a smaller residential population. The home population to work 

population ratio for each cell is displayed in Figure 4.9. Generally, the two are similar 

with the home population ranging from half to twice the work population for 85% of 

cells. However, in some cases the home population can be one tenth the work 

population at one extreme or ten times greater than the work population at the other 

extreme. 

 

Figure 4.8: CDF of the home population and work population for each cell on the 

networks 
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Figure 4.9: CDF of the home population of each cell divided by each cell’s respective 

work population. 

4.3.3 The Gravity Model 

Interestingly, having accurate home and work locations for mobile subscribers allows 

for, in some respects, the treatment of cellular networks like old fixed line connections. 

This permits the revalidation of fundamental laws of fixed line communications such as 

the gravity law in a cellular network context. It has been previously demonstrated that 

various systems can be represented as a network of nodes, connected by weighted or 

unweighted links [61]. It is a common technique to represent social networks as a 

network where each node represents a person and links between the nodes indicated 

social interactions. [62] utilises a dataset similar to CDRs to highlight the importance of 

weak ties to the propagation of information through a communication network. Several 

other authors have made use of large recently available phone and email datasets to 

study human connections and behaviours [63-66]. Geographical information allows for a 

more detailed and interesting exploration of group and individual interactions. For 
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example, [67] uses a mobile phone dataset to show that the probability of a call 

between two people decreases by the square of their distance.  

Interurban connections such as passenger flows and phone messages and their 

dependence on separation distance have been studied for a considerable amount of 

time [68, 69]. In various economic and social networks, interactions between actors 

such as regions and countries has led to models similar to Newton’s Gravity law, where 

the size of the actor plays the role of mass [70]. These Gravity models take the following 

form: 

 
𝑊𝑖𝑗 = 𝐾

𝑀𝑖𝑀𝑗

𝑑𝑖𝑗
𝑛  

 
(4.10) 

where Wij is the weight of the link between node i and node j, dij is the distance 

between nodes Mi and Mj, n is the exponent of the distance, and K is a constant.  

Studies have also been carried out on road and airline networks between cities [9, 10]. 

In the case of road networks it appears that the gravity model holds for the strength of 

interactions. [71] analysis a CDR dataset but unlike [62] it associates users with locations 

and aggregate links between users to links between locations. [71] explores how the 

strength of the links between locations varies relative to separation distance and 

population. It finds that the strength of the link between locations is proportional to the 

populations at the locations and inversely proportional to the distance between the 

locations. Hence, [71] concludes that the inter-city communication intensity is 

characterised by a gravity model.  

4.3.4 Estimating population size and communication links 

One limitation of [71] is that it relies on the billing address Zip code provided by the 

subscribers to the network operator. All users in a specific Zip code are aggregated and 

Zip codes are aggregated to form cities. However, this introduces a potential source of 
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error as users often provide unreliable information to service providers as discussed in 

4.3.2. 

As can be seen from equation (4.10) it is important that an accurate estimate of the 

population of the two cities/areas be made. The population M of city i is calculated as 

follows: 

 
𝑀(𝑖) =∑𝑀(𝑐)

𝑛𝑐

𝑐=1

 
 

(4.11) 

where c is a cell with all or part of its coverage region contained within city i’s boundary, 

and nc is the number of cells with all or part of their coverage regions contained within 

city i’s boundary. The city boundaries are defined as the boundaries employed by the 

Central Statistics Office for the 2011 Irish census [72]. 

Equation (4.11) provides an accurate estimation of the subscriber population of cities 

i.e. Mi and Mj in equation (4.10). However, verification of equation (4.10) also requires 

values for the link weight W between cities. To generate the interurban 

communications network link weight the total communications originating and 

terminating in a city are aggregated together. The weight of the link (W) between two 

cities α and β can thus be defined as: 

 
𝑊𝛼𝛽 = ∑ 𝑤𝑖𝑗

𝑖∈𝛼,𝑗∈𝛽

 
 

(4.12) 

where wij is a link between individual users in the respective cities. The weight of the 

links between twenty-five cities/towns is thus calculated for each of the seven days in a 

week including workdays and weekend days. The weight of the links between the 

cities/towns is also calculated for two times of interest during each day – work times 

(9am-4pm Monday-Thursday and 9am-3pm Friday) and home times (8pm-7am Monday 

– Thursday). Additionally, the weight of the links is calculated for daytime weekend 
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(7am Saturday & Sunday to 8pm Saturday and Sunday) and night time weekend (8pm 

Saturday and Sunday to 7am Sunday and Monday). 

All the above calculations are performed for three different metrics of link weight – 

number of calls between cities, total call time in seconds between cities and number of 

SMS between cities. 

4.3.5 Testing the gravity model 

[73] performed a high level investigation of the gravity model on Ireland’s 

communication network. [73] found that the gravity model approximates the actual 

data under their specific aggregations. [73] aggregated results over the period of one 

week and were dealing with much larger regional aggregations. Equation (4.10) can be 

rearranged as follows: 

 
𝑑𝑖𝑗
𝑛 =

𝐾 𝑀𝑖𝑀𝑗

𝑊𝑖𝑗
 

 
(4.13) 

Using equation (4.13) the results obtained can be tested for degrees of compliance with 

the gravity model using linear regression. Two different measures of distance were used 

when testing the gravity model. The first was the spatial travel distance between the 

centres of two cities and the second was the travel time by road between two cities. 

Figure 4.10 compares one week of data plotted for both travel distance by spatial 

distance and by travel time. Figure 4.10 illustrates that the gravity model performs 

better when distances are measured in spatial distance. This result is repeated for all 

the cities examined in the study with the agreement between the gravity model and the 

results being on average 15% less when travel time is used. 
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Figure 4.10: One full week of data plotted with two different measures of distance. 

The model was tested for three different types of communications links – total number 

of call connections made, total connection time of all calls and total number of SMS sent 

and received. The greatest agreement with the gravity model was found when total 

number of SMS was used. This result is repeated for all the cities examined in the study 

with the agreement between the gravity model and the results being on average 17% 

less when total number of connections or total call time is used. It is not immediately 

clear why this is; it could represent an underlying difference in communication 

behaviour between calls and SMS. It could, however, also be a result of users sending on 

average over 4 times more text messages than making calls. As shown in Figure 4.11, 

smaller town to smaller city/town i.e. communications with few links disproportionality 
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affects the results. This smaller city/town to smaller city/town effect is reduced when 

dealing with SMS as the number of links is greater. 

 

Figure 4.11: Small town to small town communication over one week 

The agreement between the results and the model vary both with the day of the week 

and the time of the day. Figure 4.12 shows how the results change between the working 

week and the weekend. On average, the gravity model performs worse for cities during 

the weekend (on average approximately 10% less agreement between observation and 

the model) when compared with the working week. One possible explanation is the 

large amount of Irish people who work/study in the cities during the week and move 

back to the small towns/rural areas where they grew up on the weekends. There is also 

a small change in the agreement with the model based on the time of day. During the 

daytime/evening there is a slightly larger agreement between the gravity model and the 

results than at night. The effect is smaller than the weekday/weekend shift and is 

probably a result of non-residents being present in the city during daytime hours on 

weekdays and returning home outside the city at night. 
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Figure 4.10 and Figure 4.12 seem to indicate a value of K=1 in equation (4.13). There are 

several possible reasons for this. For example, the Republic of Ireland’s urban areas are 

separated by relatively small distances. This allows people to work/study in one part of 

the country while maintaining strong links with their relatively close places of birth. This 

large degree of mobility between urban areas would not be possible in a larger country.  

The relevance of the model greatly depends on having at least one large population 

centre on either end of the communication link. There are two main interurban 

communication scenarios considered. The first is when a large population is present on 

either side of the link (large population communicating with small, small to large and 

large to large). This always provides the best fit with the gravity model (see Figure 4.10 

(a)) even when taking into account variations due to the time of the week (Figure 4.12) 

or time of the day. 

The second population scenario is where there is no large population centre on either 

side of the link (smaller town to smaller town). This primarily affects the smaller towns 

with populations of less than 50,000 inhabitants (Figure 4.11). This scenario is prevalent 

in Ireland due to many of Ireland’s urban areas being relatively small by international 

standards. The Republic of Ireland only has five cities with a population greater than 

50,000 inhabitants. Thus, for the remainder of the Republic’s urban areas the gravity 

model is a poor choice for modelling interurban communication. 

This is a key difference between this study and that of [73] which shows an approximate 

national agreement with the gravity model.  The conclusion of [73] states that “this 

work has focused on county-level interaction”.  Out of the twenty six counties of the 

Republic Of Ireland covered in their study only two have a population of less than 

50,000 with most having significantly more [74]. Thus, the gravity model is only relevant 
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when dealing with sufficiently large populations, either concentrated in a large urban 

area or more widely spread out over a larger region. 

 

Figure 4.12: Change in communication patterns (a) Mon-Thurs (working days) (b) 

Saturday and Sunday (weekend) 

4.3.6 Conclusion 

4.3.2 saw the introduction of novel techniques to ascertain the network subscriber 

specific home and work populations for each cell in the network. These techniques 

allow for the creation of accurate maps of a networks subscriber base for different 

classes of cells. 4.3.2 focused on home and work cells but the techniques introduced 

could easily be generalised to build up maps of different cells e.g. socialising cells etc. 
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4.3.3 - 4.3.5 examined how subscribers communicate with one another spatially. The 

gravity model was tested as one possible model for communication distance in cellular 

networks. The performance of the model was found to vary largely based on the type of 

link chosen, the time of the week, and to a lesser extent the time of day. The value of K 

in equation (4.13) was also found to be 1 indicating a linear relationship. The gravity 

model may be more suited to static landlines than mobile phones. The simplicity of the 

model does not consider the highly mobile nature of the Irish population. This is 

probably exacerbated by the relatively small size of the Republic. This small size 

facilitates people working/studying in one area during the week while maintaining 

strong links to their place of origin. The gravity model was found to be only helpful 

when dealing with large population centres of more than 50,000 inhabitants. As the 

Republic of Ireland only has five cities with a population of 50,000 inhabitants or more 

the gravity model is a poor choice for modelling interurban communication between the 

country’s smaller urban centres. In future interurban work smaller population centres 

should be amalgamated into larger groups or a more sophisticated model should be 

employed. 

 Spatial Relationships 

4.4.1 Introduction 

In the previous chapter, 3.3 examined how network load varied between individual base 

stations and sectorised cells. A large disparity in load was identified with some base 

stations and cells servicing several orders of magnitude more load than others. 

Concomitant with those findings, 4.3.2 identified a large variation in the amount of 

people living and working in cells and the relevant ratios of both. Thus, it is already 

known that there is a great diversity of cells present on the network. The question this 

section explores is how do these differences manifest spatially? 4.4.2 explores the loads 
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serviced by cells spatially correlated while 4.4.3 - 4.4.7 explores the causal structure of 

the network’s load. 

4.4.2 Spatial Correlation 

This subsection examines how spatially correlated load is across the entire network. The 

load of each cell is now used to investigate the extent of the spatial correlation on the 

network by cross-correlating pairs of base stations’ time series with one another. Cross-

correlation is a widely used statistical method of measuring the similarity (the degree of 

correlation) between two time series [75]. Figure 4.13 shows the cross-correlation 

calculated at zero lag for all cells on the network and also for cells based on certain 

distance ranges over two weeks of data at a granularity of one hour. Similar results were 

also obtained for the 15-minute interval but are omitted due to their similarity. The 

cross-correlation between cells was found to be quite high with the one-hour interval 

displaying slightly higher values than the 15-minute interval. The median cross-

correlation was approximately 0.65 for the one-hour interval and 0.5 for the 15-minute 

interval. 80% of cells had a cross-correlation greater than or equal to 0.5 for the one-

hour interval. Cross-correlation was also found to be dependent on the distance 

between the cells as shown by the groups in Figure 4.13. For example, the median cross-

correlation between cells within 2km of each other was 0.8 falling to 0.7 for all cells 

within 20km. 
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Figure 4.13: CDF of the cross-correlation between all pairs of cells and also within 

certain distance bands based on hourly load. The distance is defined as 𝒅𝒙𝒚
𝒎𝒂𝒙as in 4.2.3 

To further examine the degree of spatial correlation identified in Figure 4.13, a different 

metric known as Moran’s I statistic is employed [76]. Moran’s I statistic is a regularly 

employed measure of spatial autocorrelation. It quantifies the correlation between 

different measurements or observations based on their spatial location. Geographic 

distance is used to indicate proximity and is employed as a weight in the formula. 

Moran’s I statistic is defined as: 

 
𝐼 = 𝑟𝑜𝑢𝑛𝑑 (

𝑁

∑ ∑ 𝑤𝑖𝑗𝑗  𝑖

 
∑  ∑ 𝑤𝑖𝑗(𝑥𝑖 − �̅�𝑗 )(𝑥𝑗 − �̅�𝑖 )

∑  (𝑥𝑖 − �̅�)
2

𝑖

) 
 
(4.14) 

where x is the random variable being studied, x ̅represents the sample mean, xi’s are the 

observations, wij is the weight associated with each pair (xi,xj) and N is the number of 

observations. In this situation, the random variable x being studied is the hourly load on 

a cell. Similarly, to other Moran’s I studies binary weights wij = 1 are employed when the 

cells are in close proximity (dxy = 2km), otherwise wij = 0. The value of Moran’s I is then 

plotted in Figure 4.14 for each hour of the week. Figure 4.14 shows that Moran’s I 
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statistic varies from a low of approximately 0.1 to a high of approximately 0.4 indicating 

a varying degree of spatial correlation within the network. Interestingly, the periodic 

pattern displayed in Figure 4.14 is reminiscent of the diurnal archetype for cellular load 

identified in 3.2.3. This suggests that the degree of spatial correlation is greatest when 

the network’s load is itself at its greatest. Thus, indicating a general tendency for the 

load of proximate cells to be more correlated when their loads are higher. This 

intuitively makes sense, as discussed in Chapter 5 - when the load on a cell or group of 

cells is very low, for example in the early morning hours, one subscriber connecting to a 

cell using a data intensive application may greatly increase the load on one cell in 

percentage terms when compared to its barely used neighbours. During hours of peak 

load however, the percentage increase will be diminished and also given the finite 

nature of cellular spectrum the new heavy subscriber’s bandwidth will be much more 

limited reducing his/her distortive capacity.  

 

Figure 4.14 Moran's I for each hour of the week for all cells on the network. The plot has 

been smoothed to remove noise by using sliding window averaging with the window 

size = 4 hours. 
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4.4.3 Causal Structure 

The previous subsection examined correlations in the spatial extent of network load; 

this subsection goes beyond spatial correlation and examines the functional influence 

present in the network. A key metric to understand the underlying functional 

connectivity present in the network is the causal influence between cells. The causal 

relationships present in the network have many uses, including load prediction [77], 

travel mode discovery [78], and identifying influential nodes to reduce load sampling 

overhead [13]. This section uses one popular measure of causality known as Granger 

Causality [79] which is a statistical framework for measuring causality between time 

series.  

4.4.4 Granger Causality 

Granger causality establishes if one time series improves the forecasting of another time 

series. One stochastic variable, X2, Granger causes another stochastic variable X1 if 

information in the past of X2 helps predict the future of X1 with a better accuracy than is 

possible with only the information in the past of X1 alone [79]. Thus, Granger causality is 

present in the direction X2 to X1, provided that the inclusion of X2 in the model improves 

the prediction of X1 by a statistically significant amount. However, this relationship is not 

necessarily symmetrical and thus ‘X2 Granger-causes X1’ does not imply that ‘X1 Granger-

causes X2’ [77].  For example, suppose there are two time series X1(t) and X2(t), both 

having a length of T. As in [80] the two time series can be described using a bivariate 

autoregressive model: 

 
𝑋1(𝑡) =∑𝐴11,𝑖𝑋1(𝑡 − 1) + ∑𝐴12,𝑖𝑋2(𝑡 − 1) + 𝜀1(𝑡).

𝑝

𝑖=1

𝑝

𝑖=1

 
 

(4.15) 
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𝑋2(𝑡) =∑𝐴21,𝑖𝑋1(𝑡 − 1) + ∑𝐴22,𝑖𝑋2(𝑡 − 1) + 𝜀2(𝑡).

𝑝

𝑖=1

𝑝

𝑖=1

 
 

(4.16) 

where p < T is the model order i.e. the maximum number of lagged observations of X2 

used to predict the current value of X1 or vice versa at time (t). The matrix A contains 

the model coefficients while ε1 & ε2 are the residuals of the autoregressive model. X2 

Granger causes X1 if all the coefficients of A12 are non-zero i.e. if the residuals are 

reduced by the inclusion of the second time series in the model. In practice, a threshold 

is set to determine if the relationship is statistically significant. One such method is the 

F-test; to be considered statistically significant the F-value should be greater than a 

desired significance threshold ranging from 0 to 1 [80]. The closer the significance 

threshold is to zero the greater the significance of the result. The Akaike Information 

Criterion (AIC) was used to estimate the model order [81]. 

Using the methods of [80] the model order was found using the AIC as illustrated in 

Figure 4.15. The time series X1 and X2 in equations (4.15) and (4.16) are the cell loads on 

pairs of cells with neighbouring or overlapping coverage grids, as defined in 4.2.2, 

aggregated over 10 minute intervals. The model order is generally quite low with about 

80% of pairings having an order of 8 or less. This suggests that in most cases only a small 

number of previous samples from causally connected neighbours are required. For the 

F-test of significance the significance threshold level was set to the commonly used 

0.05. The causality is tested for every pair of neighbouring cells in both directions. On 

this network 38% of cell pairs were found to have a statistically significant causal 

relationship in at least one direction at a granularity of 10 minutes. 
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Figure 4.15: CDF of the model order for each pair of neighbouring base stations using 

the Akaike Information Criterion with a granularity of one hour. 

To examine the network as a whole a causality graph is created using the pair-wise 

causal relationships [75]. The resulting graph of Granger causality interactions is a 

directed graph (a graph that is set of vertices connected by edges, where edges have a 

direction associated with them) G = (V, E) where V is the set of vertices, E is the set of 

edges. Thus, each cell becomes a node on the graph and there is an edge from node a to 

b (i.e. (a,b) ϵ E)  if there is a significant Granger causality interaction between them and 

they are neighbours in terms of coverage grid. This causal graph allows for the 

exploration and quantification of some causal properties useful in identifying influential 

nodes [80]. These properties are outlined in the following subsection. 

4.4.5 Causal Density 

Causal density is a global measure of the causal interactivity in a dynamic system; causal 

density shows the mean causality over the entire network. A high value of causal 

density indicates that the constituent parts of the network are coordinated in their 

activity [80]. It is the average G-causality over all the pairs of cells examined. Causal 
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density can take on a value between 0 and 1 and gives the average amount of significant 

Granger causality interactions over the entire network. Granger causality is defined 

using the causality graph: 

 
𝐶𝑎𝑢𝑠𝑎𝑙 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =

∑ ∑ 𝐼[(𝑏, 𝑎) ∈ 𝐸]𝑏∈𝑉−(𝑎)𝑎∈𝑉

∑ |𝑁𝑎|𝑎∈𝑉
 

(4.17) 

where Na is the set of neighbours of the cell corresponding to node a and I is the 

indicator function. On this network the causal density was found to be 0.38 indicating 

the presence of statistically significant Granger causality in the network. 

4.4.6 Causal Flow 

The causal graph representation enables the examination of which cells are the 

influencers and which are the influenced i.e. which cells have a causal influence on their 

neighbours and which exhibit the results of this influence. Using the causal graph 

representation, the influence emanating from node a is its out-degree (the number of 

edges going from node a). The influence node a experiences from its neighbours is given 

by node a’s in-degree (the number of edges going into node a). Figure 4.16 illustrates 

the out and in degree of every node on the network. Note that some nodes have a very 

strong influence on their surroundings, for example, the top 5% of nodes have an out-

degree of 15 or greater. 
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Figure 4.16: CDF of the out and in degree of every node on the network. 

To get a more holistic view of the influence of a node while taking into account the 

influence it experiences, a metric known as the causal flow is employed. The causal flow 

of a node (base station/cell) is the difference between the causal interaction it exerts on 

its neighbours and the causal interaction its neighbours, in turn, exert on it. Thus, on the 

causality graph, the causal flow is the difference between the node’s out degree and its 

in-degree. Nodes with positive causal flows are causal sources while nodes with 

negative causal flows are causal sinks. The more positive or negative the flow is, the 

stronger the source or sink is respectively. Figure 4.17 shows the CDF of the causal flow 

for each cell on the network. The information presented in Figure 4.17 can be used to 

identify causal sources and sinks in the network. For example, 10% of cells are causal 

sources with causal flows greater than or equal to five. Conversely, 10% of cells are 

causal sinks with flows less than or equal to negative five. The strong sources and sinks 

identified in Figure 4.17 will be further examined in the following subsection. 
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Figure 4.17: CDF of the causal flow of each cell on the network. 

Another interesting causal metric to explore is the causal path lengths present in the 

network. These causal paths represent how the causal influence propagates or flows 

through the nodes in the network. This indicates the spatial paths throughout the 

network in which information can be gleaned from previous network states. Causal 

paths are defined as continuously traversable paths from vertex to vertex via connecting 

edges in the network graph G as defined in 4.4.4. Figure 4.18 displays the CDF of the 

causal path lengths present in the network and indicates the existence of a wide range 

of causal path lengths present in the network. The median causal path length in the 

network was found to be 15 with a 90th percentile path length of approximately 50.  

Preliminary investigations of these long causal path lengths indicate that when plotted 

spatially many of them follow major transport infrastructure such as busy motorways 

etc. In future work it would be interesting to more thoroughly investigate this and 

examine if there is a relationship between any other geographical features and causal 

paths present in the network. 
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Figure 4.18: CDF of the causal path lengths found in the network 

4.4.7 Sources and Sinks 

In the previous subsection cells that exert/experience influence on/from their 

neighbours were identified. These cells were known as sources and sinks respectively. In 

this subsection these sources and sinks are examined and compared with each other 

and the general network to see if they have any special properties that stand out. Figure 

4.19 shows the CDF of each cell’s total equivalent data usage grouped by their causal 

flow. The three groupings are strong sources (top 10% of cells ranked by causal flow), all 

cells, and strong sinks (bottom 10% of cells ranked by causal flow). It is readily apparent 

that the strong sources experience much higher usage than the other two groups. For 

example, the median total equivalent data usage of a strong source cell is approximately 

4.5 times that of the median for all cells on the network. 
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Figure 4.19: CDF of the Total Equivalent Data used per cell ranked by their Causal Flow. 

The top 10% represent strong sources while the bottom 10% represents strong sinks. 

Figure 4.20 shows the CDF of the total number of connections (i.e. data connections, 

voice or SMS) made per cell over one day as ranked by their causal flow. The top 10% 

represents strong sources while the bottom 10% represents strong sinks. Figure 4.20 

illustrates that strong sources have a much larger amount of connections per day than 

the other groups. The median strong source cell has approximately 2.5 times the 

number of connections per day as the median of all cells. Thus, strong source cells 

generally use the most data and have the largest number of connections in a day. 
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Figure 4.20: CDF of the total number of connections made per cell over one day ranked 

by their causal flow. The top 10% represent strong sources while the bottom 10% 

represent strong sinks. 

4.4.8 Conclusion 

Subsection 4.4.2 found that there is a significant amount of spatial correlation between 

cell coverage regions in close proximity, decreasing as the separation distance increases. 

Interestingly, it was found that these correlations vary throughout the day in a similar 

diurnal pattern to that identified for load in the previous chapter. Spatial correlation 

increases during times of high load and decreases during times of low load. 4.4.3 - 4.4.7 

went beyond spatial correlation by examining the functional influence present in the 

network. The methodology of Granger causality was employed to identify and 

understand the underlying functional connectivity present in the network. Causal 

influences were found to be common in the network with 38% of neighbouring cell pairs 

experiencing statistically significant influence in either one or both directions. Long 

chained paths of causal influence were found to flow throughout the network. 

Anecdotally these paths appear to follow significant transport networks. In future work 
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a more rigorous examination of these causal flows and their spatial extent would be 

interesting. Highly influential/influenced cells in the network were also identified and 

examined. The main difference between these cells and cells with less extreme degrees 

of influence appears to be how much load/many connections they service. This could 

again indicate the presence of transport hubs, busy street intersections etc. 

 Discussion and Conclusion 

The introduction to this chapter identified the importance of understanding the 

network from a spatial perspective given the larger goal of creating near horizon 

localised load forecasting techniques. This chapter started out with the creation of 

spatial representations of base station and sectorised cell coverage regions in 4.2. These 

spatial coverage region representations are the foundational step in beginning to 

examine the network spatially. Much of the later work and many of the techniques 

introduced later require the use of these spatial coverage regions. Given their 

importance 4.2.3 introduced a novel method to identify and remove errors in their 

positioning. Subsection 4.2.4 provided a method to visualise the spatial distribution of 

cellular load across the network. The techniques employed in 4.2.4 could be generalised 

to not only represent load distribution but also other properties of interest such as 

connection events, subscriber distribution etc. 4.3 saw the introduction of novel 

techniques to ascertain the network subscriber specific home and work populations for 

each cell in the network. These techniques allow for the creation of accurate maps of a 

network’s subscriber base for different classes of cells. 4.3.2 focused on home and work 

cells but the techniques introduced could easily be generalised to build up maps of 

different cell e.g. socialising cells etc.  

4.3.3 - 4.3.5 examined how subscribers communicate with one another spatially. To 

explore this the classic gravity model of spatial communication distance was applied in a 
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novel manner to cellular networks utilising the cellular coverage regions identified in 

section 4.2.2 and the novel cellular population estimation techniques presented in 

section 4.3.2. The performance of the model was found to vary largely based on the 

type of link chosen/the time of the week and to a lesser extent the time of day. The 

gravity model was found to be only helpful when dealing with large population centres 

of more than 50,000 inhabitants. As the Republic of Ireland only has five cities with a 

population of 50,000 inhabitants or more, the gravity model is a poor choice for 

modelling interurban communication between the country’s smaller urban centres. In 

future interurban work smaller population centres should be amalgamated into larger 

groups or a more sophisticated model should be employed. 

4.4 found that there is a significant amount of spatial correlation between cell coverage 

regions in close proximity, decreasing as the separation distance increases. Interestingly, 

it was found that these correlations vary throughout the day in a similar diurnal pattern 

to that identified for load in the previous chapter. Spatial correlation increases during 

times of high load and decreases during times of low load. This intuitively makes sense, 

when the load on a cell or group of cells is very low, for example in the early morning 

hours, one subscriber connecting to a cell using a data intensive application may greatly 

increase the load on one cell in percentage terms when compared to its barely used 

neighbours. During hours of peak load however, the percentage increase will be 

diminished and also given the finite nature of cellular spectrum the new subscriber’s 

bandwidth will be much more limited reducing his distortive capacity. Significant spatial 

correlation indicates that for monitoring purposes it may only be necessary to monitor a 

subset of base stations. 4.4.3 went beyond spatial correlation by examining the 

functional influence present in the network. The methodology of Granger causality was 

employed to identify and understand the underlying functional connectivity present in 

the network. Causal influences were found to be common in the network with 38% of 
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neighbouring cell pairs experiencing statistically significant influence in either one or 

both directions. Long chained paths of causal influence were found to flow throughout 

the network. Anecdotally these paths appear to follow significant transport networks. In 

future work a more rigorous examination of these causal flows and their spatial extent 

would be interesting. Highly influential/influenced cells in the network were also 

identified and examined. The main difference between these cells and cells with less 

extreme degrees of influence appears to be how much load/many connections they 

service. This could again indicate the presence of transport hubs, busy street 

intersections etc.  

The above contributions are valuable to network providers and relevant to many 

advanced network management techniques. They are particularly important to those 

techniques which rely on a strong spatial understanding such as dynamic spectrum 

allocation [12], reduced sensing techniques [55], fault detection, and spatially 

influenced power saving schemes [56] such as the one presented in Chapter 7.  
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Chapter 5 Local Traffic Load Predictability 

 Introduction 

Traffic modelling and prediction is a critical element in the performance, planning and 

evaluation of telecommunications networks and has consequently attracted much 

attention. However, most of this research has focused on traditional wired broadband 

which has many different properties and needs in comparison to cellular networks. 

What work has been carried out on cellular networks is mostly focused on older voice-

centric networks and datasets [12, 21]. However, due to the increasing capabilities of 

devices connecting to the cellular network and the concomitant rise in data usage, 

cellular networks have shifted from being voice-centric to data centric networks [24, 

25]. This shift has resulted in an on-going explosion of traffic on cellular networks at the 

same time as Average Revenue Per User (ARPU) stagnates or falls [47]. This 

fundamental challenge has inspired research into new ways to more efficiently use 

limited network resources such as spectrum [12] or power [16] while still meeting 

growing user Quality of Service (QoS) expectations. Much of the promising work in this 

area involves Self Organising Networks (SON) that can dynamically manage their 

resource usage [12, 16, 82]. An important facet of many of these SON scenarios is the 

accurate modelling and prediction of traffic load in locally contiguous spatial areas. Up 

until now, much of the focus on traffic load predictability has been concerned with 

macro scale network wide predictions of load such as in [27, 83]. However, macro scale 

predictions are of limited practical value for many SON applications such as green 

networks [28] and spectrum sharing [12]. For such applications, groupings with finer 

spatial resolution are required. Thus, the central aim of this chapter is to identify smaller 

subsets of the network that provide sufficient predictability to allow for their use in SON 

techniques. The subsets must be sufficiently small and spatiality continuous so as to be 
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useful for SON techniques. These subsets provide network operators with new ways of 

viewing their network as opposed to the more traditional macro whole network view or 

the individual BS view [33]. To that end, this chapter aims to examine the predictability 

of network load and also defines and examines the predictability of three possible 

spatially contiguous coverage region aggregations of the network. In Chapter 6 these 

coverage region aggregations will be used to create localised predictive models of 

cellular load. Chapter 7 will take these localised predictive models and apply them to a 

real world SON application. The main contributions of this chapter are:  

1) A novel examination of how different levels of load, service type, temporal 

aggregation, and spatial aggregation affect traffic load predictability. 

2) The creation and examination of practical real world spatially contiguous 

aggregations of network coverage regions. 

The remainder of this chapter’s sections are laid out as follows: 

• 5.2 introduces concepts from information theory and applies these to the traffic 

load across the various service types. This provides a framework for 

understanding the relative predictability of the various service types, how this 

varies between cells for the same service type, and an understanding of how 

predictability changes with time of day and load. 

• 5.3 introduces some of the most practically useful levels of spatial aggregation 

and examines how they influence predictability.  

• 5.4 provides a concluding discussion to the chapter. 
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 Traffic Predictability  

5.2.1 Predictability 

This section will use concepts from entropy theory to examine the predictability of 

network load. Subsection 5.2.2 discusses entropy theory from which concepts are taken 

to quantify the predictability of data load while 5.2.3 introduces the methodology used 

to apply it to this dataset outlined in Chapter 2. 5.2.4 examines how entropy varies 

across the various service types; 5.2.5 explores the relationship between predictability 

and load.  

5.2.2 Entropy  

In recent years, frameworks and tools from information theory [84] have been applied 

to disparate fields of study from human mobility [84] to the predictability of market 

returns [85]. Information theory originated from the study of the digital transmission of 

random variables [86]. The objective was to find the most efficient method/coding for 

the transmission of these variables. It was found that the greater the uncertainty of a 

random variable, the longer the most efficient possible transmission code would be. 

This can be precisely quantified, and thus, provides a universal measure of the 

uncertainty of a random variable [86].  This universal measure of the uncertainty of a 

random variable is called entropy. Entropy is employed in this work as it provides a 

precise definition of the informational content of predictions via the appropriate 

Probability Mass Functions (PMFs). (Note that PMFs are employed as opposed to 

Probability Density Functions due to the data being quantised into discrete levels). 

Entropy also proves to be a generally applicable concept as it makes no assumptions 

about the underlying model. Thus, entropy is used in this work to provide a metric for 

traffic predictability across disparate BSs/cells and utilising a variety of different prior 
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and/or auxiliary information. For the interested reader [87, 88] provide a more detailed 

discussion of the applicability of entropy as a predictability metric in different 

application domains.  

5.2.3 Quantifying Predictability   

The dataset discussed in Chapter 2 was processed with the traffic of the three services 

(voice, data and SMS) sorted by time and cell ID. The traffic during a certain time period 

i within a given cell is quantized into Q quantisation levels. The quantisation level of the 

traffic at time i, QuantLevel(i), is given by equation (5.1): 

 

𝑄𝑢𝑎𝑛𝑡𝐿𝑒𝑣𝑒𝑙(𝑖) =

{
 
 

 
 𝑐𝑒𝑖𝑙 (𝑄 ⨉ 

𝑂𝑏𝑠𝑇𝑟𝑎𝑓(𝑖) 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
) , 𝑖𝑓 𝑂𝑏𝑠𝑇𝑟𝑎𝑓(𝑖) ≥ 1

1,                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
(5.1) 

where ObsTraf(i) is the traffic observed at time i, ceil is the ceiling function which maps 

a real number to the least succeeding integer [89], and Capacity is the traffic capacity of 

a given cell. The capacity of a cell varies depending on the technology used (GPRS, 

EDGE, HSDPA etc.), the number of transceivers employed, etc. Approximation is 

required as it is not possible to give an exact figure for the capacity of a cell; capacity 

varies from cell to cell and throughout the day depending on local conditions such as 

interference, the modulation scheme used, etc. [33]. Thus, for convenience the traffic 

load in every cell is quantised into Q = 10 levels over the target period. From this, the 

corresponding traffic distributions are obtained. For example, Figure 5.1 depicts the 

PMF in one cell derived from the quantised levels for the three services. For the data 

service depicted in Figure 5.1 the cell under investigation spends approximately 22.5% 

of its time with a load in the lowest decile, approximately 2% of time in the highest 

decile, etc. This indicates better than uniform predictability i.e. the cell spends a 

disproportionate amount of time in the lowest quantisation level meaning its 
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quantisation level is easier to predict. If the cell spent an equal amount of time in every 

quantisation level then it would be much harder to predict its quantisation level at any 

given time. This is a common pattern across the networks with most cells spending a 

large majority of the time in the lowest quantisation levels as depicted in Figure 5.2. 

Thus, the presence of this identifiable pattern indicates that useful load predictions can 

be made for many cells on the network. 

 

Figure 5.1: The Probability Mass Function of a representative cell 

 

Figure 5.2: The mean PMF of the quantisation level on all cells over one week. 
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Entropy which is used to quantify the uncertainty of events [88] is defined by a discrete 

random variable X with n possible values [x1 , … xn] and the corresponding PMF P(X): 

 
𝐻(𝑋) = − ∑𝑃(𝑥𝑖)log2𝑃(𝑥𝑖)

𝑛

𝑖=1

 
 

(5.2) 

As discussed in previous chapters, cells will have specific location (e.g. suburban v city 

centre), technological (e.g. EDGE v HDSPA) and management dependant (e.g. coverage v 

capacity) characteristics leading to different traffic distributions and hence distinct 

entropies. Thus, entropy provides a metric to quantify the predictability of traffic in 

Radio Access Networks (RAN). For example, Figure 5.3 illustrates a weekly traffic trace 

broken down by service type for two typical cells. Cell 1 has data entropy of 2.19, voice 

entropy of 2.03 and SMS entropy of 2.26. On the other hand, Cell 2 has data entropy of 

2.25, voice entropy of 1.67 and SMS entropy of 1.5. Thus, it can be seen that, for 

instance, the voice and SMS traffic is more predictable (lower entropy) in Cell 2 than in 

Cell 1 while the data traffic has similar predictability across both cells. To put these 

figures into context, an entropy value H(X) = 0 would indicate that the traffic load on a 

given cell was perfectly predictable, with the load staying constant in one of the Q 

quantisation levels for the entire time. This could result from for example, a 

malfunctioning cell showing no load, an extremely saturated cell constantly in the 

highest quantisation level of load, etc. Given that there are Q = 10 quantisation levels as 

depicted in Figure 5.1 the maximum possible value of the entropy is given by Hmax(X) = 

log2(10) = 3.32. This would indicate that each quantisation level has the same probability 

at each timeslot. 
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Figure 5.3: The traffic load over one week for two typical cells with different entropies. 

The entropies for data, voice and SMS for Cell 1 is 2.19, 2.03, 2.26 while the equivalent 

values for Cell 2 are 2.25, 1.67 and 1.5. 
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5.2.4 Entropy and Service Type 

Much of the previous predictive work carried out on cellular networks has focused on 

voice-centric networks and datasets [12, 21-23]. However, as shown in Chapter 3, from 

a network load perspective, cellular data is by far the most important service type 

offered on the network [24, 25]. Thus, this subsection explores how the predictability of 

the network is affected by the service type offered. Figure 5.4 is the Cumulative 

Distribution Function (CDF) of the entropies of each cell broken down by service type. 

Figure 5.4 illustrates the general pattern that data traffic has the highest entropy (least 

predictable), SMS has an intermediate entropy, and voice has the lowest entropy (most 

predictable). This is also borne out by the results presented in Table 5.1  where data not 

only has the highest mean entropy but also the largest standard deviation at 0.92 bits 

followed by 0.74 bits for SMS and 0.68 bits for voice traffic. 

 

Figure 5.4: CDF of the entropies of all cells broken down by service type. The maximum 

possible entropy given 10 quantisation levels is Hmax(X) =  log2(10) = 3.32 bits. 
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Table 5.1: Entropy Values by Service Type 

 Entropy (bits) 

Service Mean Std Dev (σ) Min Max 

Data 1.12 0.92 0.01 3.225 

Voice 0.66 0.68 0.05 3.11 

SMS 0.86 0.74 0.05 3.10 

  

Given the ever growing predominance of data on the network (Chapter 3) it is 

unfortunate that it is also the least predictable service. However, the predictability of 

the data service can be improved if only certain times of the day are considered. For 

example, Figure 5.5 shows the low usage of the network during large parts of the day, 

particularly the early morning hours. These are the very hours that many resource 

rationalisation strategies are best suited for [28]. If only the early morning hours are 

examined from for example 2am to 7am then the mean entropy of the data service 

drops from 1.12 bits to 0.57 bits. The mean PMF for all cells over all hours, and all cells 

only over the early morning hours is plotted in Figure 5.6. It illustrates that the reason 

for the lower entropy value during the early morning hours is the disproportionately 

large amount of time spent in the bottom quantisation level (89% v 64%). This is a result 

of the much lower load demand on the network during these times; if the load rarely 

ever moves beyond the first quantisation level it is much more predictable. 
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Figure 5.5: Total network load expressed as Total Equivalent Data (TED) in bytes over 

the course of one representative week. Note that hour zero is 0:00 a.m. on Monday 

morning. Note this figure was originally presented as Figure 3.1 and is reproduced here 

for the reader’s convenience  

 

Figure 5.6: The mean PMF of all cells for the data load broken down by all hours and just 

the early morning hours 2am-7am. 
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considerably across the network; a small amount of cells account for a 

disproportionately large amount of the traffic. These cells are referred to as capacity 

cells as they are added to the network to increase capacity in high load areas (as 

opposed to coverage cells which provide basic coverage with limited capacity over large 

sparse areas as discussed in Chapter 3).  As discussed in Chapter 7 these capacity cells 

provide the greatest opportunities for power savings due to their density and have the 

most valuable spectrum due to their dense urban locations. Thus, the relationship 

between cell load and predictability is especially important. 

Interestingly, all three services show a strongly positive linear correlation between the 

weekly load experienced on a cell and the cells entropy. To quantify this correlation, 

Pearson’s Product Moment Correlation Coefficient (PPMCC) [90], denoted r (a measure 

of the strength of the linear relationship between two variables), was calculated for the 

relationship between the load of each of the three service types (data, voice, SMS) and 

entropy. The relationship between data usage and entropy was found to have r = 0.98, 

voice usage and entropy has r = 0.93, and SMS usage and entropy has an r value of 0.91 

indicating a strong correlation. (r can range between 0 and 1, with values close to 1 

indicating a strong relationship). In Figure 5.7 the relationship between weekly cell 

traffic and entropy for the three services is presented. All three services show a strong 

positive relationship between entropy/unpredictability and load. All three also show 

that at very high loads the rate of increase in entropy with data slows or levels off. The 

small amount of extremely heavily loaded cells spend much of their time at saturation 

and thus their entropy does not have much scope to increase further. The correlation 

between load and predictability means that the least used cells are the most 

predictable.   
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Figure 5.7: Relationship between cell traffic and entropy for data, voice and SMS 

respectively 
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5.2.6 Predictability Conclusion 

The predictability of all three service types was found to vary largely over all the cells 

studied. It was found that voice is the most predictable service, followed by SMS and 

then finally data. Given the growing predominance of data it was unfortunate that it 

was the least predictable. However, it was found that during particular times of interest 

e.g. the early morning hours data load became much more predictable. This was due to 

the lower loads experienced during these hours resulting in the load staying in the lower 

quantisation levels for a disproportionate amount of time. This better predictability 

during hours of low usage is particularly useful given that these are the hours most likely 

to benefit from advanced resource management techniques. 5.2.5 explored the 

relationship between predictability and load; it was found that cells with lower loads 

were more predictable. This is an encouraging result as it is these cells in particular 

which are the greatest source of the large underutilisation of network resources 

identified in Chapter 7. Thus, they are also some of the cells that could benefit the most 

from predicative models informing resource utilisation improvement techniques. 

 Levels of Spatial Aggregation 

5.3.1 Introduction: Levels of Spatial Aggregation  

Forecasting short term load on the macro network scale is possible with a high degree 

of accuracy [27, 83]; however, it is of limited practical value for many applications such 

as green networks [28] and spectrum sharing [12]. For such applications, groupings with 

finer spatial resolution are required. In the following subsections, three useful levels of 

spatial aggregation are introduced: no aggregation i.e. individual cells, overlapping cells, 

and coverage grids. To aid in the comparisons between the different levels of spatial 

aggregation, a comparison subsection, 5.3.5 is included at the end of this section. To 
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simplify the presentation of results, and in keeping with Long Term Evolution (LTE) 

standards, all three services are aggregated together to give one total figure for load 

Total Equivalent Data (TED) as described in 3.2.2. 

5.3.2 Individual Cells 

The individual cell level is the finest grain of spatial resolution available in the dataset 

and also the most difficult to make predictions for due to its relatively higher entropy as 

shown in Figure 5.16 which is located at the end of subsection 5.3.4.  

Although the traffic load fluctuates over time, the traffic at the same time on 

consecutive days or during consecutive hours is relatively stable. The short/medium 

term traffic stability at the cell level is assessed by calculating the medium term traffic 

variation V(i, hcurrent) at hour hcurrent for cell i as: 

 
𝑉(𝑖, ℎ𝑐𝑢𝑟𝑟𝑒𝑛𝑡) = |

𝑇(𝑖, ℎ𝑐𝑢𝑟𝑟𝑒𝑛𝑡) − 𝑇(𝑖, ℎ𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑖)
| 

 
(5.3) 

 

where T(i,hcurrent) is the traffic load on cell i at the current hour hcurrent and T(i,hprevious) is 

the traffic load on cell i during a previous hour (h-1,h-24 etc) hprevious . Capacity(i) is the 

maximum capacity of cell i defined in the same way as in equation (5.1).  

Figure 5.8 plots the CDF of the short term traffic variation V(i,h) for all cells for each pair 

of hours h and h+1 over one month. Figure 5.8 shows that the median cell has a mean 

hour to hour traffic variation of approximately 3% of the cells’ total capacity over one 

month. Figure 5.8 also shows that 90% of cells have a mean hour to hour variation of 

less than 9% of their overall capacity. In addition to the mean for each cell Figure 5.8 

plots: 1) the 95th percentile of hour to hour load variation for each cell over a month as a 

percentage of that cells’ total capacity and 2) the maximum hour to hour traffic 
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variation for each cell as a percentage of that cells’ capacity. Figure 5.8 illustrates that 

95% of the time the median cell has an hour to hour variation of less than 9% and a 

maximum hour to hour variation of approximately 10% of the cells’ capacity. At the 

upper end of the distribution of cells presented in Figure 5.8, 90% of cells have a 95th 

percentile deviation of less than 25% and a maximum hour to hour deviation of less 

than 36% of their capacity.  

 

Figure 5.8: CDF of % of total capacity usage change for individual cells when comparing 

hour h to hour h+1. 

Figure 5.9 plots the CDF of the medium term traffic variation V(i,h) for all cells for each 

pair of hours h and h+24 over one month. Figure 5.9 shows that the median cell has a 

mean day to day traffic variation of approximately 4% of the cells’ total capacity over 

one month. Thus, this is higher than the equivalent figure for the hour to hour variation 

shown in Figure 5.8. This stronger autocorrelation of load with the previous/next hour 

than the same hour yesterday/tomorrow is present across all the different aggregation 

levels examined in this section. 95% of the time the median cell has a day to day 

variation of 10% and a maximum day to day variation of approximately 14% of the cells’ 

capacity. At the upper end of the distribution of cells presented in Figure 5.9, 90% of 

cells have a 95th percentile deviation of less than 30% and a maximum day to day 



 122 

deviation of less than 45% of their capacity. Considering that these results are for 

individual cells which will be shown in 5.3.5 to be the most volatile, these results 

highlight the possibility of useful load prediction. For example, 3.3 demonstrated that 

that a large majority of cells are only ever using a small percentage of their total 

capacity. Also, as already shown (Chapter 3) even heavily loaded cells suffer from the 

classical resource provision peaking problem. That is, during most of the day the vast 

majority of cells are severely underutilised with peak to trough ratios in excess of 10:1 

being common. Cells roughly follow a set daily pattern of load depending on 

demographics, topography, etc (see Chapter 3). Thus, it is generally possible to predict 

these periods of peaks and troughs. Therefore, if the load on a cell is currently 10% of 

capacity, and it is known from Figure 5.8 that the cells’ maximum hour to hour variation 

is less than 10% then it is reasonable to predict the load will not exceed 20% of capacity. 

If the operator wished to err on the side of caution they could double this value to 40% 

and still free up carrier frequencies for secondary usage or turn off transceivers to 

reduce operating expenditure.  

 

Figure 5.9: CDF of % of total capacity usage change for individual cells when comparing 

hour h to hour h+24. 

  



 123 

5.3.3 Overlapping Cells 

Operators normally think of cells at the BS or individual cell level, however, there are 

other possible aggregations to consider. For example, Figure 5.10 shows the cell 

coverage zone for Dublin city (as defined by the Central Statistics Office [72]). As shown 

in Figure 5.10 the operator has many cells operating at different frequencies in the same 

coverage areas to increase capacity as discussed in Chapter 2 and Chapter 4. Figure 5.10 

shows that in almost all cases there are at least two cells covering an area and in 

densely populated areas often many more. This level of spatial aggregation is useful 

because it conforms to pre-existing areas which are defined by the network operator 

and already in use. Thus, it is already known that these are realistic coverage zones and 

that overlapping cells are capable of covering each other’s area.  

 

Figure 5.10: Cell coverage zones for Dublin city [72]. Each square corresponds to 1km2. 

White zones are covered by one cell, green by two, yellow by three, and red by four or 

more. 
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Subsection 5.3.2 introduced the concept of short/medium term traffic variation for 

individual cells and defined the variation metric in equation (5.3). This section again 

examines the short/medium term traffic variation but instead of individual cells it 

examines groups of overlapping cells. In equation (5.3) the denominator was simply the 

capacity of the individual cell. Equation (5.3) is now modified for the general case of 

more than one cell of varying capacity: 

 
𝑉(𝑖, ℎ) = | 

𝑇(𝑖, ℎ𝑐𝑢𝑟𝑟𝑒𝑛𝑡) − 𝑇(𝑖, ℎ𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)

∑ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑞)𝑛
𝑞=1

| 
 

(5.4) 

where V(i,h) is the percentage of variation of total aggregate capacity between the 

hours under investigation for overlapping cell group i at hour h. Each cell group i is 

comprised of n individual cells denoted by q. T(i,hcurrent) is the traffic load on overlapping 

cell group i at the current hour hcurrent and T(i,hprevious) is the traffic load on the 

overlapping cell group i during a previous hour (h-1,h-24 etc) hprevious. Capacity(q) is the 

maximum capacity of cell n = q and is defined in the same way as in equation (5.1).  

 

Figure 5.11: CDF of % of total capacity usage change for overlapping cells when 

comparing hour h to hour h+1. 



 125 

Figure 5.11 plots the CDF of the short term traffic variation V(i,h) for all groups of 

overlapping cells for each pair of hours h and h+1 over one month. Figure 5.11 

illustrates that the median overlapping group has a mean hour to hour traffic variation 

of approximately 3% of the group’s total capacity over one month (compared with 4% 

for individual cells). Figure 5.11 also shows that 90% of groups have a mean hour to 

hour variation of less than 7% of their overall capacity (compared to 9% for individual 

cells). In addition to the mean for each group Figure 5.11 plots: 1) the 95th percentile of 

hour to hour load variation for each group over a month as a percentage of that group’s 

total capacity 2) the maximum hour to hour traffic variation for each cell as a 

percentage of that group’s capacity. Figure 5.11 shows that 95% of the time the median 

group has an hour to hour variation of 8% and a maximum hour to hour variation of 

approximately 12% of the group’s capacity. Figure 5.11 demonstrates that 90% of 

groups have a 95th percentile deviation of less than 20% and a maximum hour to hour 

deviation of less than 25% of their capacity (compared with 25% and 36% respectively 

for individual cells). 

 

Figure 5.12: CDF of % of total capacity usage change for overlapping cells when 

comparing hour h to hour h+24. 
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Figure 5.12 plots the CDF of the medium term traffic variation V(i,h) for all overlapping 

groups for each pair of hours h and h+24 over one month. As in the individual cell case, 

the variation is greater between the same hours on consecutive days than it is for 

consecutive hours. The next subsection will examine a larger aggregation of cells/BSs 

known as coverage grids. 

5.3.4 Coverage Grids 

Subsection 5.3.2 explored the predictability and short/medium term traffic variation of 

individual cells. 5.3.3 extended this to examine the predictability and short/medium 

term traffic variation of aggregated overlapping cell groups. This subsection will explore 

similar features of a larger useful spatial aggregation of BSs (usually several sectorised 

cells per BS) denoted as coverage grids. Coverage grids are groups of BSs that are within 

a certain transmission distance of each other and can provide coverage to other 

members of the group if a BS is disabled for whatever reason. These coverage grids 

differ from the overlapping cell zones discussed in 5.3.3 as they do not merely consist of 

already overlapping coverage areas. That is, they use techniques from SON (Self 

Organising Networks) to dynamically alter their group membership depending on 

certain limitations and desired outcomes. The size of the transmission distance and how 

groups are formed depend on many factors such as the local topography, user density, 

SNR etc. Coverage grids are partitioned so that each BS in each coverage grid is 

equivalent. BSs are equivalent if they can replace each other while communicating with 

subscribers. Specifically, if the distance between two BSs i and j is d(i,j), then BSs i and j 

are equivalent if: 

 𝑟𝑖 + 𝑑(𝑖, 𝑗) ≤ 𝑅𝑗  (5.5) 

 𝑟𝑗 + 𝑑(𝑖, 𝑗) ≤ 𝑅𝑖  (5.6) 
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where ri and rj are the normal communication ranges, Ri and Rj are the maximum 

possible communication ranges of i and j respectively. The location information 

discussed in Chapter 4 is used in conjunction with the transmission range of each BS to 

decide whether proximate BSs are equivalent or not. The transmission range of a BS 

may vary from 200m to 2km in cities and from 1km to 20km in rural areas depending on 

several features including topography, population/building density, etc. [33]. The local 

population of a BS was calculated in 4.3.2, this combined with the BS coverage area 

[4.2] is used as a proxy for population/building density. The maximum transmission 

range of each BS is decided on a sliding partition of population per coverage area. The 

maximum transmission range for each BS is partitioned as in Table 5.2. For example, the 

91st to 100th percentiles (most densely populated BSs) have a maximum transmission 

range assigned of 250m, the bottom decile (least densely populated BSs) have a 

maximum transmission range of 20km. The grid formation algorithm used is outlined in 

algorithm 5.1. 

Table 5.2: Maximum transmission range assignment 

Maximum Transmission 

Range (m) 

Percentiles of BS by ordered 

population density (Decreasing) 250 91-100 

500 81-90 

1000 71-80 

2000 61-70 

3000 51-60 

4000 41-50 

5000 31-40 

10000 21-30 

15000 11-20 

20000 1-10 
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Algorithm 5.1: 

BS switching algorithm 

 

1: Let L = (li) be a one dimensional BS location array 

(mx1) where m is the number of BS in the network and 

li1 is the geographic location of BS i (2.6). 

 
 

2: Let D = (dij) be a two dimensional distance array 

(mxm) where m is the number of BS in the network and 

dij is distance between BS i and j  

 

3: Let T = (ti) be a one dimensional transmission 

distance array (mx1) where m is the number of BS in the 

network and ti1 is the maximum transmission distance of 

BS i. 

 

3: Let R = (ri) be a one dimensional normal transmission 

range array (mx1) where m is the number of BS in the 

network and ri1 is the current transmission distance of BS 

i (calculated in 4.2). 

 
 

4: Let F = (fi) be a one dimensional flag array (mx1) 

where m is the number of BS in the network and fi1 is = 0 

if the BS does not currently belong to a grid and 1 

otherwise. 

 

5: From L, select the BS, x, with the most north westerly 

location in the network and set F(fx) = 1. BS x, is now 

the sole member of a new grid g1. Subsequent grids will 

be denoted g2,… gm where m is the number of grids that 

will eventually be formed from the network (unknown 

until all BS are assigned to a grid). 

 

6: Iterate through each column of D, dx1,dx2,..dxm (i.e. the 

distance between BS x and all other BSs). For each 

element check the corresponding element in F, fy. If fy = 

1 (the BS already belongs to a grid) discard the BS and 

move onto the next column of D, dxy+1.  

 

7: If fy = 0 check if BSs x and y are equivalent i.e. rx + dxy 

≤ Tx and ry + dxy ≤ Ty  

 

8: If x and y are equivalent then y is added to grid g1 and 

fy = 1. If x and y are not equivalent then continue 

iterating through each column of D, dx1,dx2,..dxm and 

checking relevant BS for equivalence and grid formation 

availability as in steps 6 and 7. However, to be added to 
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a grid, the BS under investigation must be equivalent to 

all current members of the grid. 

 

9: When all BS have been checked for equivalence with 

grid g1, select the most north westerly unassigned BS 

designated q, with F(fq) = 0 and designate it as grid g2. 

Build up g2 from the unassigned BS and once g2 is 

completed continue creating grids until all BS are 

flagged as belonging to a grid in F. 

 

 

 

An example of a simple coverage gird generation procedure is illustrated in Figure 5.13. 

Here BS1 is equivalent to BS2 and BS3, but is not equivalent to BS4, BS5 or BS6. A coverage 

grid is formed when all the BSs in it are equivalent as in equations (5.5) and (5.6). There 

are many possible permutations of coverage grids based on the origin point chosen. For 

this work, the top left corner of a spatial region is defined as the origin point for grid 

formation. That is, the first BS considered for grid formation is the one closest to the top 

left corner. Then, all equivalent BSs are clustered from top down and left to right. A new 

coverage grid is generated when a BS is found to be not equivalent to at least one BS in 

the current coverage grid. This process is repeated until the bottom right corner of the 

spatial region is reached and all BSs in the spatial area are assigned a coverage grid. In 

the example case presented in Figure 5.13, there are three coverage grids formed. A 

different choice of origin, e.g. the bottom right would result in a different coverage grid 

formation. However, this will not greatly affect the overall result as it does not alter the 

inherent proximity relationships in the network. For example, choosing the bottom right 

as opposed to the top left as the origin would still result in three coverage grids 

comprising (BS6,BS5), (BS4,BS3), and (BS2,BS1). The average overall BS density of the 

coverage grids would still remain the same at 2 under both scenarios, however, local 

capacity would just differ slightly at different spots. 
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Figure 5.13: Example of coverage grid formation. Top: The spatial locations and 

transmission distances of 6 BS. Bottom: The coverage grid divisions. 

To quantify the short/medium term variation of the coverage grids equation (5.4) is 

employed where the groups are now coverage grids of cells that do not necessarily 

overlap. 

Figure 5.14 plots the CDF of the short term traffic variation V(i,h) for all coverage grids 

for each pair of hours h and h+1 over one month. It shows for instance that the median 

coverage grid has a mean hour to hour traffic variation of approximately 2.2% of the 

group’s total capacity over one month (compared with 4% for individual cells and 3% for 

overlapping groups). Figure 5.14 also shows that 90% of coverage grids have a mean 

hour to hour variation of less than 4% of their overall capacity (compared to 9% for 

individual cells and 7% for overlapping groups of cells). In addition to the mean for each 
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coverage grid Figure 5.14 plots: 1) the 95th percentile of hour to hour load variation for 

each coverage gird over a month as a percentage of that grid’s total capacity and 2) the 

maximum hour to hour traffic variation for each grid as a percentage of that grid’s 

capacity. 95% of the time the median coverage grid has an hour to hour variation of less 

than 5% and a maximum hour to hour variation of less than 7% of the grid’s capacity 

(much lower than individual cells which have values of 9% and 10% for the same 

metrics). At the upper end of the distribution of coverage grids presented in Figure 5.14 

illustrate that 90% of grids have a 95th percentile deviation of less than 10% and a 

maximum hour to hour deviation of less than 15% of their capacity (compared with 25% 

and 36% for individual cells). 

 

Figure 5.14: CDF of % of total capacity usage change for overlapping cells when 

comparing hour h to hour h+24. 

Figure 5.15 plots the CDF of the medium term traffic variation V(i,h) for all coverage 

groups for each pair of hours h and h+24 over one month. As in the individual and 

overlapping cell cases, the variation is greater between the same hours on consecutive 

days than it is for consecutive hours.  
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Figure 5.15: CDF of % of total capacity usage change for coverage grids when comparing 

hour h to hour h+24. 

5.3.5 Comparing Levels of Spatial Aggregation  

This section has presented the three most practically useful levels of possible spatial 

aggregation and has illustrated that all three provide promising results for load 

prediction. The variation in the load between consecutive hours and also the variation 

between the same hours on consecutive days was examined. The results obtained for 

the three levels of spatial aggregation are summarised in Table 5.3 and Table 5.4. For all 

three levels of spatial aggregation it was found that consecutive hours had a smaller 

variation than the same hours on consecutive days. Table 5.3 shows that 95% of the 

time, the median coverage grid (in terms of data load) has an hour to hour variation of 

5% of its capacity compared to 8% for the median overlapping cell group and 9% for the 

median individual cell. Thus, this means that the load is more stable hour to hour at 

larger aggregations making it easier to predict at these aggregations. Table 5.4 shows 

similar results for the 90th percentile cell/spatial aggregations (in terms of data load). 

95% of the time the 90th percentile coverage grid has an hour to hour variation of 10% of 
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its capacity compared to 20% for the 90th percentile overlapping cell group and 25% for 

the 90th percentile individual cell. 

Table 5.3: The % of capacity change across aggregation levels for the median 

cell/aggregation 

Time 
Period 

Aggregation Level 

Individual Cells Overlapping Cells Coverage Grid 

 Mean of 
median cell 

+2σ Mean of 
median cell 

+2σ Mean of 
median cell 

+2σ 

Inter Hour 4 9 3 8 2.2 5 

Inter Day 4 10 3 8 3 4 

 

Table 5.4: The % of capacity change across aggregation levels for the 90th percentile 

cell/aggregation 

Time 

Period 

Aggregation Level 

Individual Cells Overlapping Cells Coverage Grid 

    

 Mean of 90th 
percentile cell 

+2σ Mean of 90th 
percentile cell 

+2σ Mean of 90th 
percentile cell 

+2σ 

Inter Hour 9 25 7 20 4 10 

Inter Day 9 30 8 24 4.5 13 

  

The increased stability and predictability of load is further borne out by Figure 5.16 

where the largest level of aggregation i.e. the coverage grids have the smallest 

entropies followed by the overlapping cells while the non-aggregated individual cells 

have much higher entropies. This is an important result; normally operators examine 

the network at the level of an individual cell/BS. However, other possible aggregations 

exist such as the overlapping cells and coverage grids presented here. In fact, the results 

from this work indicate that if an operator or modeller is concerned with the 

predictability/stability of the time series, the larger spatial aggregation levels are 

superior to the individual cell level.   
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Figure 5.16: CDF of the entropy for different aggregation levels 

 Discussion and Conclusion 

As discussed in the introduction, much of the work on predictability and modelling of 

cellular load excluded the primary driver of cellular load, cellular data. Thus, to better 

understand how cellular data affected predictability relative to the more widely studied 

service types of voice and SMS, 5.2 examined how entropy varies by service type and 

time of day. It was found that voice is the most predictable service, followed by SMS 

and then finally data. The predictability of all three service types was found to vary 

largely over all the cells studied. Given the growing predominance of cellular data it was 

unfortunate that it was the least predictable. However, it was found that during 

particular times of interest e.g. the early morning hours data load became relatively 

much more predictable. This better predictability during hours of low usage is 

particularly useful given that these are the hours most likely to benefit from advanced 

resource management techniques. 5.2 also explored the relationship between 

predictability and load. It was found that cells with lower loads were more predictable. 

This is an encouraging result as it is these cells in particular which are the greatest 
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source of the large underutilisation of network resources (as will be discussed in greater 

detail in Chapter 7). Thus, they are also some of the cells that could benefit the most 

from predicative models informing resource rationalisation techniques. 

Previous work has shown that forecasting short term load on the macro network scale is 

possible with a high degree of accuracy [27, 83]; however, it is of limited practical value 

for many applications such as green networks [28] and spectrum sharing [12]. For such 

applications, groupings with finer spatial resolution are required. Thus, the central aim 

of this chapter was to identify smaller subsets of the network that provide sufficient 

predictability to allow for their use in SON techniques. These subsets had to be 

sufficiently small and spatiality continuous as to be useful for SON techniques. Two 

novel subsets (spatial aggregations) meeting these requirements were proposed and 

compared with the smallest available spatial aggregation, the individual cell level. 

Individual cells benefit from already being defined and operational in the network; 

overlapping cells are a summation of individual cells covering the same areas at 

different frequencies. Coverage grids are more complicated amalgamations of BSs into 

larger (potentially) mutually coverable regions. The simplicity of both individual cells 

and overlapping cells is a distinct advantage in their use as predictive regions. However, 

the greater capacity redundancy of coverage grids make them more applicable to 

advanced management techniques such as green networks [28] and spectrum sharing 

[12]. Unfortunately, due to the inherent localised reuse nature that defines cellular 

networks (coupled with maximum coverage range limitations) larger spatial 

aggregations above coverage grid are less useful for SONs. Thus, there is a trade-off to 

be made between predictability and spatial aggregation. Comparing the three spatial 

aggregation levels in 5.3.5 demonstrated that load is more stable and predictable at 

larger spatial aggregations. Given coverage grid’s greater predictability, coupled with 

their mutual redundancy, coverage grids appear to occupy the optimal position in the 
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trade-off between predictability and practicality. Another benefit of a coverage grid 

centric view of the network is that their inherent spatial redundancy makes them an 

ideal default grouping for mutual coverage in the event of localised equipment failure. 

Although not explored further here, the ability to dynamically alter coverage with 

confidence within the grid aggregation level would also increase the overall networks 

redundancy.  Traditionally, the network is examined and modelled at the individual cell 

or individual BS level. However, the results of this chapter indicate that if predictability 

is an important factor in the analysis/model/network management technique, then 

higher levels of spatial aggregation are more suitable. It is hoped that these 

aggregations provide network operators with new ways of viewing their network as 

opposed to the more traditional macro whole network view or the individual BS view. 

While this chapter has focused on the inherent predictability of the three levels of 

spatial aggregation, the next chapter will use these spatial aggregations to create actual 

predictive models of cellular load.   
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Chapter 6 Localised Load Forecasting in 

Cellular Networks 

 Introduction 

Predictive modelling of network load is an area of growing importance due to the rise of 

Self Organising Networks (SON) that can dynamically manage their resource usage. The 

previous chapter discussed the inapplicability of much of the previous network load 

forecasting work when applied to some promising advanced SON techniques (namely 

unsuitable spatial scales, voice-centric data sets, etc.). These issues were addressed in 

the previous chapter by using a nationwide dataset (where the vast majority of network 

load comes from the cellular data service) to construct and examine novel spatial 

aggregations relevant to many advanced SON techniques. Thus, this chapter builds on 

the contributions of the previous chapter by taking the local, spatially contiguous 

regions defined in it and creating near horizon predictive models of their load. The 

central argument of this chapter is that network load can be predicted for spatial 

aggregations defined in the previous chapter with sufficient accuracy to allow for their 

use in advanced SON techniques. 

Section 6.2 discusses the many shortcomings of most traditional methods of evaluating 

network models and predictability when dealing with cellular networks. Cognisant of 

these shortcomings, 6.2 proposes a novel metric for evaluating the predictability of 

network models for cellular network load. Next, 6.3 introduces two methods of 

predicting local network load and an automatic procedure to build the large amount of 

models required. 6.4 presents the results obtained across the various levels of spatial 

aggregation while 6.5 provides a concluding discussion. 
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In summary the main contributions of this chapter are as follows:  

1) The drawbacks of many common forecasting metrics when applied to cellular 

network forecasting are identified and discussed. Thus, in this chapter a novel 

and practical metric is proposed and implemented: Absolute Capacity 

Percentage Error (ACPE). 

2) Two methods of load forecasting are applied in a novel manner to cells of 

different levels of spatial aggregation with a discussion of their results. 

3) Two novel methods for the automatic modelling of large amounts of individual 

cells and their many possible permutations in different spatial aggregations are 

proposed and used. 

 Evaluating Forecast Accuracy 

6.2.1 Evaluating Forecast Accuracy Introduction 

An important facet of quantifying the accuracy of a forecasting approach and the 

practicality of applying it to real situations is the forecast metric used. Generally, there 

are three broad categories of measures employed in evaluating the accuracy of time 

series forecasts: scale-dependent measures, percentage error measures, and scaled 

error measures. This section will discuss the three main categories and their advantages 

and disadvantages with regards to the practical application of local cellular network load 

forecasting. A novel measure is proposed and justified as the most useful for practical 

application. In the following sections 𝑦𝑖  denotes the ith observation of 𝑦; �̂�𝑖  denotes a 

forecast of 𝑦𝑖. When discussing time-series data a common term that arises is 

seasonality. Seasonality is the presence of variations that occur at specific regular 

intervals, such as quarterly, monthly, weekly etc. In the context of cellular network load 
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the most obvious “seasonal” trend is the daily diurnal pattern as discussed in Chapter 3. 

Thus, unless otherwise stated a season is defined as one day. 

6.2.2  Scale-Dependent Errors 

The forecast error is defined as 𝑒𝑖 = 𝑦𝑖 − �̂�𝑖, which has the same scale as the dataset. 

Thus, accuracy measures that are based on 𝑒𝑖 are scale-dependent and cannot be used 

to compare results obtained from data with different scales. Two of the commonly used 

scale-dependent measures are based on the absolute error or the square of the errors: 

 𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟:𝑀𝐴𝐸 = 𝑚𝑒𝑎𝑛(|𝑒𝑖|), (6.1) 

 
𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟: 𝑅𝑀𝑆𝐸 = √𝑚𝑒𝑎𝑛(𝑒𝑖

2). 
 

(6.2) 

   

The use of the absolute value by MAE and the squared value in RMSE avoids negative 

and positive errors from offsetting each other.  The scale dependant nature of these 

methods renders them unsuitable for their practical application to cellular network load 

forecasting for the following reasons: 

a) As demonstrated in 3.2.2 network load exhibits a strong diurnal pattern with 

the scale of the load being largely dependent on the hour of the day and, to a 

lesser extent, the day of the week.  

b) As discussed in 3.3 there is a disparity between the scale of the load 

experienced by different cells in the network.  

c) As discussed in Chapter 5 the network will be examined at different levels of 

network aggregation; this naturally leads to datasets with different scales. 

A common technique to overcome some of these problems is the use of normalisation, 

however, it suffers from many of the same drawbacks as will be discussed in 6.2.4. 
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6.2.3 Scaled Errors 

In [91] the authors suggest the use of scaled error metrics as an alternative to 

percentage error techniques when working with data on different scales. They propose 

the scaling of errors based on the training MAE from a simplistic forecasting method. 

The authors argue that this allows for a more meaningful comparison between models, 

particularly on disparate data sets across a variety of scales. In the non-seasonal case 

using the simplistic method, a one-step-ahead forecast is computed from each data 

point in a given sample. Thus, a scaled error qj is defined as: 

 𝑞𝑗 =
𝑒𝑡

1
𝑇 − 1

∑ |𝑦𝑡 − 𝑦𝑡−1|
𝑇
𝑡=2

  
(6.3) 

 

where 𝑦𝑡 denotes the observation of the load 𝑦 at time t; �̂�𝑡 denotes a forecast of 𝑦𝑡 . T 

is the number of observations (samples) of the load y over which the error is to be 

scaled; the forecast error is defined as 𝑒𝑡 = 𝑦𝑡 − �̂�𝑡. 

As both the numerator and denominator include values on the scale of the original data, 

the result is independent of the data’s scale. A scaled error of less than one results 

when the forecast is better than the mean simplistic forecast of the training data.  A 

value greater than one indicates that the forecast was worse than the simplistic forecast 

calculated from the training set. As discussed in 3.2.2 network load exhibits a strong 

diurnal i.e. seasonal pattern which must be accounted for in the simplistic forecast 

component. 

In the case of seasonal data the authors of [91] suggest defining the scaled error by 

employing a seasonal simplistic forecast: 

 𝑞𝑗 =
𝑒𝑡

𝑚
𝑇
∑ |𝑦𝑡 − 𝑦𝑡−𝑚|
𝑇
𝑡=𝑚+1

  
(6.4) 
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where m is the seasonality component of the data. For example, setting m = 24 uses the 

value of the load 24 hours ago as a naïve forecast of the load now. 

The Mean Absolute Scaled Error (MASE) is thus defined as: 

 𝑀𝐴𝑆𝐸 = 𝑚𝑒𝑎𝑛(|𝑞𝑗|) (6.5) 

 

Scaled error metrics such as MASE overcome many of the problems identified in 6.2.2. 

These scaled error metrics are also particularly good for quantifying the usefulness of 

modelling techniques as they provide, by their definition, an immediate comparison 

with simplistic forecasting techniques. However, if comparing modelling techniques is 

not the sole focus scaled error metrics provide results which are not readily 

understandable for practical application. An ideal metric would be intuitive and easily 

applied to practical applications such as resource rationalisation where the key 

questions to be asked are usually of the form “what percentage of resource x’s capacity 

is/isn’t being used…” Thus, the next subsection introduces another popular class of 

metrics, percentage errors. 

6.2.4 Percentage Errors 

Percentage error is defined as:  

 𝑝𝑖 = 100 (
𝑒𝑖
𝑦𝑖
 ) (6.6) 

 

Percentage errors are scale independent and are thus often used to compare forecast 

performance between different data sets or at different levels of aggregation such as in 

electricity load forecasting [29]. The most commonly used measure is: 
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 𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟:𝑀𝐴𝑃𝐸 = 𝑚𝑒𝑎𝑛(|𝑝𝑖|) (6.7) 

 

Although percentage error techniques solve some of the problems outlined in 6.2.2 they 

suffer from the following problems: 

a) If the load 𝑦𝑖  falls to zero there will be a division by zero. 𝑦𝑖  can occasionally 

reach zero, particularly when examining individual low demand cells during the 

early morning hours. 

b) Percentage errors can be extremely large when 𝑦𝑖  is very low. 

c) Due to the diurnal pattern of load a cell could have for example an hourly load 

of 200MB at 6AM and 1GB at 9PM with predicted loads of 100MB and 900MB 

respectively. Using equation (6.6) would yield an error of 50% for 6AM and 

6.67% for 9PM with both situations being only 100MB from the true answer. 

Despite having a much larger error the 6AM prediction may be much more 

useful; a prediction of a low relative load might indicate the possibility of 

turning off equipment to save power or share spectrum. 

6.2.5 Absolute Capacity Percentage Errors 

6.2.4 discussed percentage errors and some of their drawbacks with regard to 

forecasting the load on cellular networks. This subsection introduces a novel metric 

referred to as the Capacity Percentage Error (CPE) which is defined as follows: 

 
𝐶𝑃𝐸 = (

𝑒𝑖

∑ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑐)𝑛
𝑐=1

) × 100 
(6.8) 

where c is the index of the cell belonging to a group of n such cells. The capacity for 

each cell is determined as in Chapter 5 and summed over the entire set of cells forming 

a group or n=1 for an individual cell. The CPE leads to the ACPE (Absolute Capacity 

Percentage Error) which is defined as: 
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 𝐴𝐶𝑃𝐸 = |𝐶𝑃𝐸| (6.9) 

The ACPE has the following advantageous properties: 

1. It adequately handles situations where the load is 0, very small or negative. 

2. It allows for the comparison between data sets on different scales which is 

important when dealing with different Radio Access Technologies (RAT) and 

levels of spatial aggregation. 

3. It is intuitive and easily applied to practical applications such as resource 

rationalisation where the key questions to be asked are usually of the form 

“what percentage of capacity is/isn’t being used…” 

Thus, in the following section ACPE will primarily be employed. 

6.2.6 Evaluating Forecast Accuracy Conclusion 

This section introduced and discussed the benefits and drawbacks of some of the most 

common metrics used to evaluate predictive models. Due to the problems identified 

with these metrics, a novel metric ACPE was defined. Throughout the rest of this work, 

ACPE will be primarily employed. 

 

 Prediction Methods 

6.3.1 Prediction Methods Introduction 

The results from Chapter 5 have demonstrated the feasibility of cellular load prediction 

on a nationwide network and laid the foundation for predictions at three different 

practical levels of spatial aggregation. As shown in [24, 92] several factors can affect the 

traffic load: time of the day, day of the week, location, special events, etc. Thus, a useful 

prediction method must be capable of learning the relationships between these factors 
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and load. There are several possible methods available such as Auto-Regressive Moving 

Average (ARMA) models [78], Seasonal ARMA models (SARMA) [93], Auto-Regressive 

Integrated Moving Average Models (ARIMA) [93], Artificial Neural Networks (ANN) [94], 

wavelet based methods [95], compressed sensing based prediction methods, etc. With 

due consideration to the accuracy and the computational complexity of traffic 

prediction both SARIMA and ANN models are employed as recommended by [94, 96]. 

6.3.2 SARIMA Models 

Let yt: t = 0,1,2… be a non-stationary time series containing seasonality i.e. a seasonal 

periodic component repeats itself after every s observations, yt then depends on past 

values such as yt-1s, yt-2s, etc. as well as yt-1, yt-2, etc. 

Let wt = ▽dyt where ▽ is a differencing operator and d is the order of non-seasonal 

differencing. B is the backshift operator such that Bwt = wt-1, B2wt = wt-2 … Bnwt = wt-n.  

Thus wt is an Autoregressive Moving Average (ARMA(p,q)) process: 

 𝜑𝑝(𝐵)𝑤𝑡 = 𝑐 + 𝜃𝑞(𝐵)𝑒𝑡 (6.10) 

where   

 𝜑p(𝐵) = 1 − 𝜑1B − ⋯− 𝜑𝑝𝐵
𝑝  (6.11) 

and        

 𝜃𝑞(𝐵) = 1 − 𝜃1B − ⋯− 𝜃𝑞𝐵
𝑞  (6.12) 

 

where φp are the autoregressive polynomials and θq are the moving average polynomials 

of order p and q respectively. c is the constant or bias and et represents the errors which 

are assumed to be independent and identically distributed (i.i.d.). Equation (6.10) is an 

ARMA model of wt which is itself a differenced version of yt. Hence equation (6.10) is an 

Autoregressive Integrated Moving Average (ARIMA(p,d,q)) model of the original non-
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differenced time series yt with autoregressive order p, non-seasonal differencing order d 

and moving average order q. 

If wt = ▽d▽D yt , where D is the order of seasonal differencing then the model becomes 

a Seasonal Autoregressive Integrated Moving Average model (SARIMA(p,d,q)(P,D,Q)) 

given by: 

 𝜑𝑝(𝐵
𝑑)𝛷𝑃(𝐵

𝐷)𝑤𝑡 = 𝑐 + 𝜃𝑞(𝐵
𝑑)Θ𝑄(𝐵

𝐷)𝑒𝑡  
(6.13) 

where,  

 𝛷P(𝐵
𝐷) = 1 − 𝛷1B − ⋯− 𝛷𝑝𝐵

𝐷  
(6.14) 

and 

 ΘQ(𝐵
𝐷) = 1 − Θ1B − ⋯− Θ𝑄𝐵

𝐷  
(6.15) 

 

where ΦP are the seasonal autoregressive polynomials and ΘQ are the moving average 

polynomials of order P and Q respectively. 

6.3.3 SARIMA Model Selection 

To obtain the forecasts from the SARIMA model the Box-Jenkins methodology set out in 

[83] is adopted. The Box-Jenkins method uses a three-stage approach to select an 

appropriate model for the purpose of modelling and forecasting a time-series. The three 

steps are 1) model identification 2) the estimation of the parameters and 3) diagnostic 

checks. However, given the aim of modelling the behaviour of over ten thousand cells 

plus several thousand more conglomerations of cells at different levels of spatial 

aggregations an automated approach is required. Once a time series is found to be 

stationary (see section 3.4), or made stationary through differencing, the usual Box-

Jenkins approach involves a manual examination of a time series’ Auto Correlation 

Function (ACF) and Partial Auto Correlation Function (PACF). The manner in which these 
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decay or fall below statistical significance provides the modeller with information about 

the need for and order of the autoregressive and moving average components in the 

model. However due to the large number of models required the modelling process 

shown in Figure 6.1 is employed.  

First, load a time series comprising three months of hourly traffic loads either for a 

single cell or a group of cells summed together in larger spatial aggregations as 

discussed in Chapter 5. Next the Augmented Dickey Fuller (ADF) test is performed to 

check if the time series is stationary [97]. If the time series is found to be non-stationary 

successive differencing is applied until the series is found to be stationary or the 

differencing list is exhausted. Next iterate through a predefined list of possible 

candidate models and apply them to two months of data (the training set). These 

models were compiled by manually performing the usual Box-Jenkins model selection 

approach on a smaller subset of cells. The Akaike Information Criterion (AIC) is used to 

select a model that strikes a balance between accuracy and parsimony [98]. The 

selected model is used to generate the forecasts and compute the error metric on a 

separate month of testing data for each cell/conglomeration of cells. 
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Start 

Load the time series for the 
individual cell or group of cells. 

 

Check if time 
series is 

stationary  

 Iterate through predefined list 
of possible candidate models 

 

Select candidate model with 
lowest AIC value 

 

Generate the one hour ahead 
forecasts and calculate error 

metrics 

Iterate through different 
levels of differencing 

until time series is 
stationary or list is 
exhausted. If list 
exhausted stop 

 

Yes 
 

No 
 

Figure 6.1: Automated Modelling Process SARIMA 
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6.3.4 ANN and SANN Models 

Artificial Neural Networks (ANN) are a class of flexible computing frameworks which 

attempt to mimic the working of the brain to solve a broad range of nonlinear problems. 

ANN attempt to identify relationships and patterns in the input data, learn from 

experience and then provide generalised results based on what they have learned.  

ANNs have been applied to a wide range of problems and have the following features 

which make them suited to this forecasting application: 

1. ANNs are data-driven and self-adaptive  [91, 94]. There is no need to specify a 

particular model or to make a priori assumptions about the underlying statistical 

distribution of a dataset; the model is adaptively formed based on the features 

present in the data. This is especially useful in scenarios where there is no/poor 

theoretical understanding of the data generation process. This is also practically 

useful where there are too many models required to manually check the 

structure of each dataset as in this works application. 

2. ANNs are non-linear which allows them to be more complex and accurate when 

modelling complex systems when compared to traditional linear approaches 

such as ARIMA/SARIMA models [91, 94, 99]. 

3. ANNs are universal function approximators [100] meaning they can 

approximate any continuous function to any desired level of accuracy [91, 100]. 

ANNs can also deal with situations where the input data is incomplete, 

erroneous or fuzzy [94]. 

The most widely used ANN for time series forecasting is the Multilayer Perceptron 

(MLP) [91, 94] which has a feedforward architecture of an input layer, one or more 

hidden layers and finally an output layer. Each layer contains a number of nodes which 
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are connected to those in the following layer by acyclical links (i.e. there are no cyclical 

paths present) [101].  

 

Figure 6.2: Architecture of a MLP ANN model with four inputs, one hidden layer and a 

single output. 

Figure 6.2 shows an example of a MLP ANN with four inputs and one hidden layer. In a 

MLP with p inputs, m hidden nodes, and a single output the relationship between the 

inputs yt-i where (i=1,2,..,p) and the output yt is given by the formula [102]:  

 

𝑦𝑡 = 𝛼0 + ∑𝛼𝑗𝑔(𝛽0𝑗 + ∑𝛽𝑖𝑗𝑦𝑡−𝑖

𝑝

𝑖=1

) + 𝜀𝑡 , ∀𝑡

𝑚

𝑗=1

 

 
(6.16) 

where αj (j = 0,1,2,…,m) and βij (i = 0,1,2,…, p; j = 0,1,2,…,m) are the connection weights 

and εt is the random shock; α0 and β0 are the bias terms if present. The logical sigmoid 

function is commonly used as the nonlinear activation function where: 

 
𝑔(𝑥) =

1

1 + 𝑒−𝑥
 

 
(6.17) 
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The MLP model in (6.16) performs a non-linear functional mapping from the past 

observations of the time series to the future values , i.e. yt = f(yt-1, yt-2, …, yt-p, w) + εt , 

where w is a vector of all parameters and f is a function which is determined by a 

combination of the network structure and connection weights [91, 99]. The connection 

weights and parameters such as bias are denoted Ψ = (w, α0 , β0 )  and estimated via 

non-linear least squares based on the minimisation of the error function [103]: 

 𝐹(𝛹) =∑𝑒𝑡
2

𝑡

= ∑(𝑦𝑡 − �̂�𝑡)
2

𝑡

  
(6.18) 

The optimisation techniques used to minimise the error function in (6.18) are known as 

learning rules. The most commonly used learning-rule is error backpropagation [104] or 

back error propagation which is also known as the generalised delta rule. The MLP given 

by (6.16) is commonly known as a (p,m,1) ANN model which performs one-step ahead 

forecasting. Similarly, a (p,m,r) ANN model can be used for r-step ahead forecasting 

where r is the number of output nodes. 

Since their inception ANNs have been used numerous times for various applications of 

seasonal time series forecasting. However, some people question their efficiency when 

compared to more traditional methods [96, 105, 106]. More recently [107] has 

proposed the Seasonal ANN (SANN) which is shown to be particularly effective when 

there is strong seasonality in the data. SANN does not require any pre-processing of the 

raw data; SANN can learn the seasonal pattern in a seasonal time series without 

removing it (SARIMA models for instance first apply seasonal differencing before 

modelling begins). In SANN models, the number of input and output neurons is 

represented by the seasonal period s of the time series as shown in Figure 6.3. Thus, the 

SANN model is similar to a (s, m, s) ANN where m is the number of hidden nodes. 



 151 

 

Figure 6.3: SANN Configuration for seasonal time series 

The output of the SANN model can be expressed as [107]: 

 
𝑌𝑡+𝑞 = 𝛼𝑞 + ∑𝑤𝑗𝑞𝑔(𝜃𝑗 + ∑𝑣𝑖𝑗𝑌𝑡−𝑖

𝑠−1

𝑖=0

)  ∀𝑡; 𝑞 = 1,2, . . , 𝑠

𝑚

𝑗=1

 
 

(6.19) 

   where Yt+q (q = 1, 2, …, s) are the predictions for the future s periods and Yt-i (i = 0, 1, 2, 

…, s-1) are the observations for the previous s periods; m is the number of hidden 

nodes; vij(i = 0, 1, 2, …, s-1; j = 1, 2, …, m) are the weights of the connections from input 

nodes to hidden nodes and wjq(j = 1, 2, …, m; l = 1, 2, …, s) are the weights of the 

connections from the hidden nodes to the output nodes. Additionally, αq (q = 1,2,…,s) 

and θj (j = 1,2,…, m) are the weights of the bias connections and g is the activation 

function. Thus, while forecasting, the number of input neurons should be 24 for diurnal 

data, 12 for monthly, 4 for quarterly etc. The number of hidden nodes to be used can be 

selected by performing suitable experiments on the training data set.  

6.3.5 SANN Model Selection 

As discussed in [107] when using a (s,m,s) SANN model the number of both input nodes 

is specified in terms of the seasonal period of the data s. Thus, only the appropriate 
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number of hidden nodes m needs to be determined. For this purpose, the AIC can be 

used in a similar fashion as in 6.3.3 to select a model structure that performs well while 

encouraging parsimony. For the set of seasonal cell load time series with approximate 

periods s=24, the maximum number of hidden nodes is equal to s/4. 

The dataset employed (Chapter 2) comprises four months of time series data 

representing the hourly traffic loads either for a single cell or a group of cells summed 

together in larger spatial aggregations as discussed in Chapter 5. The models are trained 

on a training set denoted Ytrain comprising two months of data (the same two months 

used as training data in 6.3.3). To avoid over-fitting, a separate month is used as 

validation denoted Yval. Finally, the fourth month of data is used as a test set and is 

denoted Ytest. 

For each member of the set of time series, the (s,m,s) SANN model is successively 

trained on the training set by varying the number of hidden nodes m from 1 up to the 

maximum number of hidden nodes. The number of hidden nodes m for each member of 

the set of time series is then set to whatever value of m gives the minimal AIC. The 

activation function employed is the popular logical sigmoid function as discussed in 0 

and for the optimisation of weights the Levenberg-Marquardt (LM) algorithm [108] is 

used. As in 6.3.3 there are too many time series to model manually and thus the models 

must be trained, validated and tested automatically. The algorithm to achieve this is 

outlined in Figure 6.4.  
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Figure 6.4: Automated Modelling Process SANN 
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6.3.6 Prediction Methods Conclusion 

This section introduced and discussed two commonly used predictive models suitable 

for load localised near horizon load forecasting in cellular networks. The two methods 

employed were SARIMA models and SANN models discussed in 6.3.2 and 6.3.5 

respectively. Due to the large number of models to be created an automated modelling 

approach was required for both methods. These automated approaches were 

introduced and discussed in 6.3.3 and 6.3.5.   

 

 Results 

6.4.1 Results Introduction 

Section 6.2 introduced a novel metric for evaluating the accuracy of predictive models in 

cellular networks. 6.3 introduced two different methods of cellular load prediction with 

automated modelling algorithms. This section will present the results obtained from 

utilising these methods on the spatial aggregations defined in Chapter 5. Subsection 

6.4.2 begins the section by presenting some example results from a few representative 

cells/cell aggregations. 6.4.3 discusses the effect that the forecasting methods has on 

the perception of the results. Subsection 6.4.4 presents the complete network wide 

results for both methods and all the various levels of spatial aggregation introduced in 

Chapter 5. Subsection 6.4.5 concludes this section. 
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6.4.2 Example Results 

 

Figure 6.5: Example results for three different levels of spatial aggregation over one day. 

(a) Forecasted load V actual for individual cell. (b) ACPE for both forecasting methods for 

individual cell. (c) Forecasted load V actual for 3 overlapping cells. (d) ACPE for both 

forecasting methods for 3 overlapping cells. (e) Forecasted load V actual for a coverage 

grid of 9 cells. (f) ACPE for both forecasting methods for a coverage grid of 9 cells. 
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Figure 6.5 (a), (c) and (e) show an example of the forecasting results against the actual 

load (test data) for the three different levels of spatial aggregation outlined in Chapter 

5. These show an important pattern that is repeated in other groups of cell 

aggregations: as the spatial aggregation level increases the hour to hour saw-like 

oscillations of load experienced in individual cells gradually gives way to a smoother 

load curve. With increasing spatial aggregation this load curve begins to more closely 

resemble the total daily aggregate load curve for the entire network as presented in 

Chapter 3. At lower levels of aggregation and particularly at hours of low load the 

presence of an individual heavy user can significantly affect the usage in an individual 

cell. At higher levels of aggregation these peaks and troughs in individual cells gradually 

start to even each other out. Thus, generally at higher levels of spatial aggregation 

smoother load curves are found (as demonstrated in Chapter 5 using entropy) which are 

more easily modelled accurately. 

The corresponding set of figures (b), (d) and (f) show the performance of the two 

different forecasting methods as outlined in 6.3 against the ACPE metric introduced in 

6.2.5. Generally, the SANN method performs slightly better than the SARIMA method 

over the three spatial aggregation levels achieving a lower daily mean ACPE in all three 

examples.  

6.4.3 Effect of forecasting metric on result perception 

Interestingly the performance metric employed can greatly influence the perception of 

the modelling outcome. For example, in Figure 6.5 (b), (d) and (f) the period of the day 

with the consistently smallest ACPE is the early morning hours.  However, if the metric 

used to examine the accuracy of the model is changed a different impression can be 

given. For example, Figure 6.6 replots the SARIMA modelling ACPE results from Figure 

6.5 (f) along with the more popular APE and MAPE metrics introduced in 6.2.4. When 
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using ACPE to take into consideration overall capacity the error is consistently lowest 

during the early morning hours approximately 2-6 AM. This is because the total load 

during those hours is much smaller than at other times in the day as shown in Figure 6.5 

(e). Thus, even if the forecasted values are out by a large percentage of the actual value, 

in practical terms as a percentage of the total available capacity the forecast can still be 

very useful. For instance, at 5 AM the forecasted value has an APE of 150%. This 

compares poorly with the daily MAPE for Figure 6.6 of 40%. However, the actual 

forecast is only out by approximately 1.6% of the total grid of 9 cells capacity, below the 

daily average ACPE of 2%.  

 

Figure 6.6: Comparing Metric: The ACPE and the mean ACPE of a SARIMA model are 

plotted on the left vertical axis. The APE and the MAPE are plotted on the right vertical. 
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Figure 6.7: CDF of the mean ACPE for the hours 2 AM – 6 AM (inclusive) and 7 PM - 11 

PM (inclusive) for all cells over one month of test data for the SARIMA model. 

The minimisation of the error during the early morning hours is illustrated in Figure 6.7. 

Figure 6.7 presents the difference in mean ACPE between the early morning hours and 

late night hours for all cells on the network over the test month. The difference suggests 

that generally the easiest time to make predictions for cell load is during the early 

morning hours. This presents many opportunities to better use resources with one such 

application discussed in the following chapter. 
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6.4.4 Network wide results 

 

Figure 6.8: CDF of % ACPE for SARIMA models for individual cells. (b) CDF of % ACPE for 

SANN models for individual cells (c) CDF of % ACPE for SARIMA models for overlapping 

cells. (d) CDF of % ACPE for SANN models for overlapping cells (e) CDF of % ACPE for 

SARIMA 
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Figure 6.8 shows the CDF for the ACPE obtained after carrying out the forecasting 

process outlined in 6.3.3 and 6.3.5 for the three different aggregation levels outlined in 

Chapter 5. Comparing Figure 6.8 with the results presented in Chapter 5 it is 

immediately obvious that across all aggregation levels, both model types improve the 

predictability when compared with the between hour and between day variations 

(these can be thought of as simple AR processes where yt = yt-1 for between hour 

variation and yt = yt-24 for between day variations). Table 6.1 shows the ACPE of the four 

models for the median cell while Table 6.2 shows the ACPE for the cell at the 90th 

percentile of ACPE. Both tables again show that the SANN and SARIMA models perform 

best across all aggregation levels. Table 6.1 shows that 95% of the time the median 

individual cell has an ACPE below 4% and, promisingly, 95% of the time the median 

coverage grid has an ACPE of less than 3%. This means that for 50% of the coverage 

grids, their load can be predicted to within 3% of their maximum capacity 95% of the 

time. 

Generally, for all the models the ACPE decreases as the aggregation level improves. For 

example, Table 6.2 shows that for the SANN models, 90% of individual cells have a mean 

ACPE of less than 6%, 90% of overlapping cells have a mean ACPE of less than 5.5% and 

90% of coverage grids have a mean ACPE of less than 3.2%. Table 6.2 again, promisingly, 

shows that 95% of the time, 90% of individual cells have an ACPE below 15% and 95% of 

the time median coverage grid has an ACPE of less than 7%. This means that for 90% of 

the coverage grids, their load can be predicted to within 7% of their maximum capacity 

95% of the time. 

Generally, the SANN models perform slightly better than the SARIMA models. This is 

probably due to the SANN models being more suited to automatic model creation as 

outlined in [107].   
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Table 6.1: Model ACPE across aggregation levels for the median cell 

Forecasting 
Method 

Aggregation Level 

Individual Cells Overlapping Cells Coverage Grid 

 Mean of 
median cell 

+2σ Mean of 
median cell 

+2σ Mean of 
median cell 

+2σ 

Inter Hour 4 9 3 8 2.25 5 

Inter Day 4 10 3 8 3 4 

SARIMA 2.5 6.5 2 6 1 3.5 

SANN 2 4 2 4 1 3 

 

Table 6.2: Model ACPE across aggregation levels for the 90th percentile cell 

Forecasting 
Method 

Aggregation Level 

Individual Cells Overlapping Cells Coverage Grid 

    

 Mean of 90th 
percentile cell 

+2σ Mean of 90th 
percentile cell 

+2σ Mean of 90th 
percentile cell 

+2σ 

Inter Hour 9 25 7 20 4 10 

Inter Day 9 30 8 24 5 13 

SARIMA 7.5 20 6.5 16 3.5 7 

SANN 6 15 5.5 13 3.2 6.5 

 

6.4.5 Results Conclusion 

This section presented the results obtained from utilising the prediction methods 

outlined in section 6.3 on the spatial aggregations defined in section 5.3. Subsection 

6.4.2 began the section by presenting some example results from a few representative 

cells/cell aggregations. 6.4.3 discussed how the metric used to evaluate the predictive 

models can influence perception of the outcome. It was found that the novel ACPE 

metric introduced in 5.2.6 produced the most intuitive results. Using it, the early 

morning hours were identified as the hours most suited to modelling which other 

popular metrics, discussed in 5.2.6 failed to do. Subsection 6.4.4 presented the 

complete network wide results obtained for both methods for all the various levels of 

spatial aggregation. Generally, it was found that the SANN models performed better 
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across all aggregation levels. As expected from Chapter 5, generally the error reduced as 

the spatial aggregation size increased.  

 Discussion and Conclusion 

Predicting traffic in cellular networks is becoming increasingly important as the 

explosion in demand for radio access coupled with falling or stagnating ARPU drives new 

research into SONs. The previous chapter, Chapter 5, explored the predictability of 

three different levels of spatial aggregations. This chapter went further by creating 

predictive models for the spatial aggregation regions defined in section 5.3. Firstly, 

section 6.2 discussed the three main categories of predictive model metrics used in the 

literature. Particular attention was given to their advantages and disadvantages with 

regards to the practical application of local cellular network load forecasting. Due to the 

problems identified with these metrics, a novel metric ACPE was defined. Section 6.3 

introduced and discussed two possible predictive methods suitable for localised near 

horizon load forecasting in cellular networks. The two methods employed were SARIMA 

models and SANN models discussed in 6.3.2 and 6.3.4 respectively. Due to the large 

number of models to be created an automated modelling approach was required for 

both methods. These automated approaches were introduced and discussed in 6.3.3 

and 6.3.5. 6.4 presented the results obtained from utilising the prediction methods 

outlined in 6.3 on the spatial aggregations defined in Chapter 5. Subsection 6.4.2 began 

the section by presenting some example results from a few representative cells/cell 

aggregations. 6.4.3 discussed how the metric used to evaluate the predictive models 

can influence perception of the outcome. It was found that the novel ACPE metric 

introduced in 6.2 produced the most intuitive results. Using it, the early morning hours 

were identified as the hours most suited to modelling, which other popular metrics 

discussed in 6.2 failed to do. Subsection 6.4.4 presented the complete network wide 
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results obtained for both methods and all the various levels of spatial aggregation. 

Generally, it was found that the SANN model performed better across all aggregation 

levels. As expected from Chapter 5, the error reduced as the spatial aggregation size 

increased. This indicates that to improve the performance of predictive models of 

network load, the largest practicable cellular aggregation should be used as the basis for 

the predictions. Table 6.2 showed, promisingly, that 95% of the time, 90% of individual 

cells have an ACPE below 15% and 95% of the time 90% of coverage grids have an ACPE 

of less than 7%. Thus, meaning that for 90% of the coverage grids, their load can be 

predicted to within 7% of their maximum capacity 95% of the time. 

Direct comparisons of these results with other works is challenging for several reasons 

1) the paucity of comparable work 2) the ambiguity in the scales of the datasets used 3) 

the ambiguity in spatial & temporal aggregations 4) the use of unsuitable metrics as 

discussed in 6.2, and a general lack of visibility of actual results. For example, taking the 

first reason outlined above, much of the work carried out on cellular network load 

prediction is focused on older voice-centric networks and datasets [12, 21-23]. Although 

voice is still an important function of cellular networks, it is an ever decreasing 

component of overall cellular load as discussed in Chapter 3. This work, in keeping with 

Long Term Evolution (LTE) standards, has aggregated voice, data, and SMS together to 

give one total figure for load Total Equivalent Data (TED) as described in Chapter 3. 

Thus, although voice load is correlated with total network load (Chapter 3), it behaves 

differently and is more predictable than cellular data as discussed in Chapter 5. 

Addressing point 2 and 3 above, works such as [27] show that forecasting short term 

load on the macro network scale is possible with a high degree of accuracy. However, as 

discussed in Chapter 5, this is of limited practical value for many applications such as 

green networks [28] and spectrum sharing [12]. For such applications, groupings with 

finer spatial resolution are required which motivated this work focusing on small 



 164 

spatially contiguous portions of the network. Other works such as [26] have access to 

both voice and cellular data but unfortunately only provide predictive results for the 

voice portion. [26] cites the greater variance in cellular data load when compared with 

the voice traffic as a reason for not producing modelling results. Perhaps the APE (see 

6.2.4) metric used in [26] discouraged the authors from further work. While the APE can 

be very high for cellular data compared to voice given cellular data’s greater variance, if 

the variance is normalised by the cell’s actual capacity (as in 6.2.5) it appears to be a 

much more manageable problem.  

Although there is a lack of suitable external results with which to judge the effectiveness 

of the predictive models, they can be compared with the results obtained in 5.3.5 which 

are summarised as the inter hour/day rows in Table 6.1 and Table 6.2. These can be 

thought of as simple forecasts, for example an inter hour value of 5 ACPE means that 

using hour h’s load as the predicted load for hour h+1, results in an ACPE of 5. As 

previously discussed in Chapter 5, the inter hour load routinely gives a slightly better 

prediction than the inter day load and thus is used for further comparisons. With the 

inter hour load as a benchmark, both models improve the accuracy of the predictions 

over the simplistic model. For example, Table 6.2 shows that 90% of coverage grids, 95% 

of the time have an ACPE of less than 10% when using the simplistic inter hour model. 

The use of the predictive models outlined in 6.3 reduce the ACPE by 30% for the 

SARIMA models, and 35% for the SANN models. As shown in Table 6.1 and Table 6.2 

these improvements over the simplistic inter hour case are present across all levels of 

spatial aggregations. Thus, the models introduced here do improve on simple self-

similarity methods used in works such as [16]. Generally, the SANN models perform 

slightly better than the SARIMA models. This is probably due to the SANN models being 

more suited to automatic model creation as outlined in section 6.3.  
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This chapter has demonstrated that automatic, localised near horizon load forecasting is 

feasible, particularly at higher levels of spatial aggregation. The next chapter will use the 

models generated here to demonstrate the real and practical possibilities presented by 

localised near horizon predictive models of cellular load. 
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Chapter 7 Utilising Predictive Models for 

the Minimisation of Power Usage in 

Radio Access Networks 

 Introduction 

Accompanying the growth of cellular usage discussed in Chapter 3 there has also been a 

large increase in the energy used by cellular networks [99]. It is estimated that cellular 

networks account for approximately 10% of the total carbon emitted by the Information 

and Communication Technology (ICT) sector with this expected to increase further in 

the future [101]. In addition to the environmental concerns there are real economic 

benefits for network operators to minimise power consumption [102]. 

It is currently estimated that 80% of the total infrastructure power consumption takes 

places in the Radio Access Network (RAN), particularly Base Stations (BSs) [109]. Despite 

significant temporal and spatial variations in demand [25, 72, 78], networks are 

currently optimised for peak throughput at peak demand. As shown in [93], large 

underutilisation of RAN resources are present and particularly pronounced at the BS 

level. Unfortunately, the infrastructure of currently deployed networks is largely load 

invariant, meaning largely underutilised BSs stay active despite a lack of demand. This is 

a costly inefficiency in terms of power consumption but it also underutilises valuable 

licensed spectrum which could be made available for secondary usage [83].  

Accurate short and medium term predictive models of load (primary usage) at the local 

level (cell, BS, coverage grid etc.) are critical if Self-Organising Networks (SON) are to 

ameliorate the network’s inefficient usage of power and spectrum. For example, if it can 
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be predicted that traffic in a particular BS or group of BSs falls below a certain threshold 

at certain times then SON algorithms can use this information to alter the network to 

save energy [28, 30, 31]. Also, if low demand by primary users of valuable licensed 

spectrum can be predicted in certain cells/areas at, for example, off-peak times this can 

provide opportunities for secondary usage in these frequency bands [12].  

Much work has gone into algorithms and techniques to dynamically switch on/off cells 

or BSs [28, 30, 31]. However, most work in the area simply uses historical static load 

profiles or assumes that switching decisions can be made instantaneously. However, 

real world measurement results such as those presented in [16] show that switching can 

take up to 30 minutes due to the heating systems. Thus, predictions of the need to 

perform a switch ahead of time are important.  

The previous chapters introduced novel predictive models of load in spatially contiguous 

aggregations of BSs. Chapter 5 demonstrated that as the spatial aggregations increase 

the predictability of the load increases. However, for many advanced network 

management techniques such as green networks and spectrum sharing, as the spatial 

aggregation increases the usefulness of the predictions decreases. Thus, there is a 

fundamental tradeoff to be made between the accuracy of the prediction and its 

usefulness. The point at which the tradeoff is made is application dependent and is a 

crucial step in designing a worthwhile solution. For example, the provisioning of new 

backhaul infrastructure may require network wide predictions of load several years in 

advance. However, in the green networking application under investigation here the 

maximum useful spatial aggregation is the coverage grid as introduced in the previous 

chapters. This is due to the requirement of mutual redundancy, that any one member of 

the grid can service another member’s load if it is powered off. If this fundamental 
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requirement is not satisfied then the predictions are not useable for their intended 

purpose. 

The primary contributions of this chapter are: 

• A novel and practical energy savings scheme tested on real world data across 

multiple regions. 

• A validation of the usefulness of near horizon localised predictive models of 

cellular load in an advanced management technique. 

• A large scale examination and identification of the underutilisation present in an 

Irish network and how it varies by time of day, and crucially, by region. 

7.2 introduces four regions representing different examples of areas typically found in a 

cellular network. The section then goes on to examine the underutilisation present in 

the network both at the network, regional, and BS level. 7.3 introduces a novel energy 

saving scheme utilising the previously created coverage grids and predictive models. 7.4 

presents the results of testing the energy savings scheme on real world traffic data. 

Finally, 7.5 provides a concluding discussion for this chapter. 

 Network Underutilisation 

7.2.1 Network Underutilisation Introduction 

As discussed in Chapter 3 the cellular network under investigation suffers from the 

classic peaking problem of resource allocation. In effect, this means that the network is 

provisioned to deal with peak loads during late evening/early nighttime hours. Thus, for 

large portions of the day the network is largely overprovisioned for the load 

experienced. This problem, as identified in Chapter 3 is particularly acute during the 

early morning hours. Also, as discussed in Chapter 3 and Chapter 4 there is a great 
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spatial disparity in network usage which also lends itself to large scale underutilisation. 

This section presents network measurements to quantify and qualify the diversity of 

traffic load in both time and space across the network. Key features relevant to the 

reduction in power usage on the network are identified with both the challenges and 

opportunities they present discussed. Data collected from four diverse regions 

representing many different typical area types are used in this chapter. 7.2.2 begins by 

presenting the four disparate regions selected which collectively represent the diversity 

of the Irish network’s topography. Subsection 7.2.3 then examines the temporal 

diversity of the four regions and the extent of the peaking problem within each of the 

regions. 7.2.4 explores the extent of the underutilisation both at the regional and the 

local level.  

7.2.2 Region Selection 

The planning and organisation of cellular networks varies greatly by population density, 

topography, etc. Thus, it is more instructive to examine sub networks within the whole 

that are representative of particular planning features such as population density, etc. 

To this end, the four regions selected are outlined in Table 7.1 and illustrated in Figure 

7.1. Note: unless otherwise stated all city/county boundary information is taken from 

[72] while demographic information is taken from the 2011 Irish census [74]. 

Figure 7.1 shows the approximate cell coverage areas of the four different regions. 

Note, that for simplicity and due to lack of available data this work restricts itself to the 

examination of only the 3G network. Region 1 consists of Dublin city which is the most 

densely populated region with a population density of 4471 people/km2. Apart from 

having a large residential population it also has a broad mix of commercial/industrial 

and cultural sights which result in a large inflow of daily commuters. Region 2 is the 

administrative county of Dún Laoghaire-Rathdown which is a mainly suburban area to 
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the south east of region 1 with a population density of 1624/km2. Region 3 is the 

administrative county of Fingal which is a suburban and semi-rural area on the northern 

border of region 1 with a population density of 598/km2. Region 4 is the landlocked 

county of Laois which is a mainly rural county in the midlands of Ireland with a 

population density of just 46.8/km2, below the national average of 65/km2 [74]. 

 

Figure 7.1: Cell coverage zones in the four regions. Each square corresponds to 1km2. 

White coverage zones have one cell covering that area, green have two, yellow have 

three and red have four or more cells covering that zone. Region 3 is further subdivided 

into a suburban area around Blanchardstown and a rural area to the north west of the 

county.  
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Table 7.1: Information on the four regions under investigation 

 Region 1 Region 2 Region 3 Region 4 

Area (km2) 118 127 458 1720 

Number of BS 525 192 116 59 

Population 527612 206261 273991 80559 

Pop/km2 4471 1624 598 46.8 

Classification Urban Suburban Suburban -
Semi Rural 

Rural 

7.2.3 Temporal Diversity 

 

Figure 7.2: One week of total traffic in each region starting at 00:00 on Monday running 

to 23:59 on Sunday 

Figure 7.2 plots the normalised aggregate traffic load for each of the four regions. 

Similarly to the network wide results presented in 3.2, a strong diurnal pattern is 

evident in each of the four regions with a large gap between peaks and troughs. 

Interestingly, different regions tend to exhibit somewhat different patterns. For 

example, the peaks and troughs in region 1 (city) seem to occur at different times to 
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those observed in the rural region (4) etc.  Also, the rural region for example tends to 

deviate from the urban and suburban regions to the greatest extent on Sundays. 

To quantify the diurnal temporal traffic variation the mean ratio of the maximum to 

minimum traffic load is computed for each BS in the four regions. For each BS the 

aggregate load is calculated for every hour of the day resulting in 24 hourly loads per 

day. The maximum load of a BS is defined as the load on the BS during the hour hmax 

when load was highest (between 6 PM and 1 AM in about 70% of BSs). The minimum 

load of a BS is defined as the load on the BS during the hour hmin when load was smallest 

(between 1 AM and 7 AM in over 90% of all BSs). 

Figure 7.3 presents the Complementary Cumulative Distribution Function (CCDF) of the 

maximum to minimum traffic ratio for all BSs in the four regions. Interestingly the 

maximum to minimum ratio is greater than ten for more than 80% of BSs in all regions. 

This indicates that there is a high degree of temporal diversity in almost every BS. Such 

strong temporal diversity indicates large underutilisation of both network infrastructure 

and spectrum in the time domain. This network infrastructure inefficiency indicates that 

there are large savings to be made from a move towards networks where the power 

consumption is dependent on traffic load. Also, the inefficient use of spectrum shows 

the real possibility for large scale secondary usage of licensed spectrum with minimum 

impact on primary usage. 

Unsurprisingly, the sparsely populated rural region 4 deviates from the more densely 

populated urban regions.  On visual inspection, it appears that the four regions 

maximum to minimum load ratios are positively related to population density. This is 

further borne out by examining smaller sub regions such as those identified in region 3 

as shown in Figure 7.1. This is interesting as it indicates that the wastage due to peak 

provisioning is greatest in densely populated urban environments. These densely 
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populated urban environments with higher maximum to minimum load ratios are where 

spectrum is most limited and also most valuable. 

 

Figure 7.3: Maximum to Minimum Traffic Load Ratio 

7.2.4 Regional and Local Underutilisation 

The aggregate traffic load in a given region is found to be only a fraction of the 

aggregate traffic capacity in that region. To verify this, the percentage of the total 

regional capacity X(h) used during each hour (h) is calculated. X(h) is defined as the ratio 

of the aggregate traffic load during hour h in a region to the sum of the peak observed 

load in each BS in that region over the entire period (a lower bound estimate of the cells 

capacity): 

 
𝑋(ℎ) =

∑ 𝐿(𝑖, ℎ)𝑛
𝑖=1

∑ 𝐿(𝑖, ℎ𝑚𝑎𝑥)
𝑛
𝑖=1

 
 
(7.1) 

 

where n is the number of BSs in a region, L(i,h) is the traffic load of BS i during hour h 

and L(i,hmax) is the largest load observed on BS i during the observation period. The 
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percentage of regional traffic being used during each hour of one week is presented in 

Figure 7.4. This shows that at no point during the week in any region is the aggregate 

traffic demand greater than 45% of the total regional capacity. Furthermore, in the 

urban/suburban regions where spectrum and space are most limited, the regional 

utilisation peaks at approximately 20-25% and drops into single digits for approximately 

the first 12 hours of each day.  

 

Figure 7.4: The percentage of total regional capacity being used over the course of one 

week. 

One reason for the large underutilisation is that all the cells in a region do not peak 

simultaneously. The operator deploys infrastructure to service peak demand at each 

location even though this only lasts for a small period of the day. As this peak hour is 

location dependant the aggregate deployed capacity (the sum of all BS capacity in an 

area) is much greater than the actual traffic demand at any given time. The degree to 

which peak hour varies within a region influences the amount of underutilisation. For 

example, region 4 is a rural area where most BSs have similar profiles and peak at the 
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same time. In contrast regions 1-3 are a more complex mixture of 

residential/business/semi-rural areas with diverse profiles. 

 

Figure 7.5: The percentage of hours in a month where each cells load falls below 25% of 

the maximum hourly load observed in that cell during the month. 

To further examine temporal dynamics at the individual cell level, the percentage of 

hours in a month where the traffic load in a cell falls below 25% of that cell’s maximum 

observed load is plotted in Figure 7.5. Here the maximum load is defined as the 

maximum hourly load observed in the cell during the month under investigation (i.e. the 

lower bound on the cell’s actual capacity as the cells are overprovisioned to deal with 

future network growth). Figure 7.5 helps underline the large underutilisation of both 

network hardware and licensed spectrum discussed above. Figure 7.5 shows that for the 

three Urban/Suburban regions (Regions 1-3) 66% of cells spend at least 90% of the 

hours in a month with a load of less than 25% of their maximum observed hourly load. 

Figure 7.5 again like Figure 7.3 and Figure 7.4 shows a difference between the more 

densely populated regions and the sparser region 4. The greater underutilisation and 
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consequent opportunity is again present in the more densely populated regions. This is 

possibly, a result of larger daily flows in and out of these urban regions resulting in a 

larger peaking problem for network planners compared to the more static nature of 

rural areas. However, even in the rural region, the median cell spends 80% of their time 

with a load below 25% of their maximum observed load. 

Figure 7.6 illustrates the normalised relative distribution of hours of the day where 

traffic falls below 25% of capacity for all cells in all regions. Figure 7.6 shows that the 

hours between 2 AM and 8 AM are approximately twice as likely to see the load fall 

below 25% of capacity compared to the hours from 6 PM to 11 PM. Of course the hours 

of low load may vary by location; as discussed in 7.2.4 the local distribution depends on 

the local profile (urban, suburban, rural, commercial etc.). These hours of low load are 

particularly suited to modelling due to their larger near term traffic stability as outlined 

in Chapter 6. 

 

Figure 7.6: Normalised Frequency of hours with a load below 25% of max 
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 Traffic Prediction Based Energy Savings Scheme 

Chapter 6 demonstrated the feasibility of cellular load prediction on small, spatially 

contiguous groups of mutually interchangeable BSs known as coverage grids. 7.2 

identified a large underutilisation of network resources. This underutilisation can be 

ameliorated by the use of load prediction in these coverage grids to switch off 

underutilised BS ahead of time. On/off algorithms are a well-studied area of green 

cellular networks [16, 28], however, many of these works react to instantaneous traffic 

demands. This may not be entirely realistic as BS switching is not instantaneous, 

requiring cooling, many complex parameter updates to alter coverage etc. Thus, an 

element of localised near horizon load prediction is an important enabling step in 

practical applications. To that end, 7.3.1 gives some background on power consumption 

in a BS and how it can be modelled. Subsection 7.3.2 introduces a novel BS switching 

algorithm incorporating near horizon localised predictive models of cell load. 7.3.3 

discusses how the switching procedure outlined in 7.3.2 can be practically integrated 

with current technology. 7.3.4 outlines and justifies the selection of the parameters 

used in the simulation.  

7.3.1 Modelling Power Consumption 

The infrastructure of the 3G network is comprised of two main parts: the RAN and the 

Core Network (CN). The RAN is comprised of the User Equipment (UE), the Radio 

Network Controller (RNC), and the BS which can be further subdivided into cells. Each 

RNC manages many BSs which are split into cells and service subscribers through their 

air interface with the UE [33].   
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Figure 7.7: A typical BS in a 3G Network 

There are two primary subsystems: the communications subsystem and the support 

subsystem. The communications subsystem is comprised of the Remote Radio Unit 

(RRU), the Feeder, and the Base Band Unit (BBU). The RRU provides the radio hardware 

for each sector of the base station. Each BS may have several RRUs near the antennas to 

allow for varying coverage and capacity [16]. The BBU is responsible for all the other 

communication functions such as control, Iub interfaces to the RNC, base band, 

scrambling, link quality measurements, soft handovers, etc. [33]. Each BS may also have 

several BBUs. The feeder is a fiber optic pair cable connecting the RRUs to the BBUs. The 

supporting subsystem is comprised of the cooling subsystem and supporting devices. 

The cooling subsystem maintains an appropriate operating temperature at the BS.  

The cooling subsystem coupled with some of the transmission modules are responsible 

for the consumption of a significant amount of the power in a BS (over 50% [16]) but are 

load invariant i.e. their power consumption does not proportionately scale down with 

low demand. Thus, the RAN can conserve large amounts of power by powering down 
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certain BSs under low load conditions. For BSs, the power consumption models outlined 

in [16, 110] are applied where the total power consumption P at a given BS is given by: 

 𝑃 = 𝑃𝑡𝑥  +  𝑃𝑚𝑖𝑠𝑐  (7.2) 

where, Ptx accounts for the power used to provide network access to subscribers’ UE. 

This includes power consumed by the RRUs, the BBUs, the feeder, and the RNC 

transmissions. Pmisc is the power consumed by cooling, monitoring and the auxiliary 

power supply. 

Ptx can be linearly approximated as: 

 𝑃𝑡𝑥(𝐿) = 𝑃𝛼 ∙ 𝐿 + 𝑃𝛽  (7.3) 

where L is the traffic load factor on a BS. Ptx varies as a result of both the RRU and BBU. 

For example, during periods of high traffic the RRU consumes more power servicing 

more active links. Thus, the power consumption varies with traffic load. Conversely, the 

BBU carries out base band processing for all frequencies used by the BS. Its power 

consumption is mainly determined by the number of frequency carriers and not the 

number of active links. Also, other operations such as signaling over control channels 

use energy even under low loads. The coefficient Pα depends on the transmission 

distance of the BS as greater power is consumed communicating over a greater distance 

[16]. Pmisc as outlined in [16] is mainly a function of external conditions such as 

temperature. Due to its dependence on temperature, Pmisc changes constantly, however, 

it is largely invariant with load.  

7.3.2 Switching procedure 

Chapter 5 defined spatial regions known as coverage grids where each BS in the region 

was equivalent i.e. each BS could cover the others area. The near horizon cellular load 
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was then predicted for these coverage grids in Chapter 6. Now, the next step is to select 

the correct set of BSs to leave on/switch off. A good switching procedure will: 

1. Meet both capacity and coverage requirements while reducing power 

consumption. 

2. Predict the load ahead of time to allow the network to adjust (cooling etc. [16])  

3. Minimise the number of on/off switches in a grid.  

To meet these requirements a novel switching algorithm was developed which is 

outlined in Algorithm 7.1. The primary novel feature of this algorithm is the inclusion of 

the localised prediction models generated in the previous chapters. Firstly, each of the 

four regions is divided up into coverage grids as discussed in 5.3. Next, an order of 

switching merit is created. This order of merit determines the order in which BS are 

switched on and off. The order of merit is created by first sorting the BS within a 

coverage grid by their capacity. The highest capacity BS should be the first to be turned 

on and the last to be turned off. Next, BSs are sorted by their power consumption. If 

two BS have the same capacity but different power consumption then the BS with the 

lowest power consumption should be the first to be turned on and the last to be turned 

off. Finally, the BSs are sorted by their distance from the centre of the coverage grid. If 

two BS have the same capacity, the same power consumption, the one closest to the 

centre should be the first to be turned on and the last to be turned off. If two or more 

BSs are equivalent on all of the above, their order of merit can be assigned randomly. 

BSs closest to the centre of the coverage grids are preferred as this minimises the 

distance between the User Equipment (UE) and the BS, and thus, minimises the power 

consumption in the UE [33]. A greater distance between the BS and UE can result in the 

UE increasing its transmit power when transmitting uplink data. However, it is 

noteworthy that the uplink to downlink ratio is approximately 1:10 in the network as 
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shown in Figure 7.8.  This means that the BS and not the UE, bears the increased power 

consumption for 90% of the communication volume. Increased power consumption in 

the BS due to a greater transmission range is already factored into the BS power model. 

Also, the extended ranges of the BSs in switching scenarios is still within the limits 

regularly deployed in rural regions with which the UE are designed to work. Using the 

order of merit has two primary benefits; firstly, it reduces the number of BS switches 

required. Minimising BS switching is important because every time a BS switches on/off, 

handover procedures are initiated generating signalling load in the network. Also, 

frequent switching is wasteful from an energy perspective as a BS newly switched on 

may require extra cooling while an already on BS will be currently cooled, etc. Switching 

decisions are made ahead of time via the predictive SANN models generated in Chapter 

6. It is important to assure that the local aggregated capacity assigned for the predicted 

hour Cagg(h) is greater than or equal to the predicted load for that hour Lpred(h) plus a 

certain margin of error γ. The selection of an appropriate margin of error is an 

important consideration as it a trade-off between maintaining spare capacity to ensure 

quality of service and minimising power consumption. The results presented in Chapter 

6 are used as a guide in this regard. For example, for the SANN predictive model over 

one month, the maximum error (ACPE) in the prediction for 99% of coverage grids was 

found to be 20% of capacity. Thus, as a conservative estimate the margin of error γ is set 

to 20% of a coverage grid’s aggregate capacity.  
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Algorithm 7.1: 

BS switching algorithm 

 

1: Create coverage grids for each region as 

outlined in 5.3.4 

 

2: Create an order of merit for each coverage 

grid.  

I. Sort each BS in the grid by capacity 

(Decreasing) 

II. Sort BS with same capacity by power 

consumption (Increasing) 

III. Sort each BS with same capacity and same 

power consumption by distance from centre 

of grid, favouring BS closest to the centre. 

 
 

3: Use the predictive SANN models outlined in 

Chapter 6 to predict the next hours load, hour 

(h). 

 
 

4: Turn on enough BSs to meet the predicted 

load (Lpred(h)) + a margin of error (γ). Select 

these BS from the order of merit, starting with 

the highest ranked BS until the aggregate 

capacity for hour h is Cagg(h) ≥ Lpred(h) + γ 

 
 

5: During hour h, predict the load (Lpred(h+1))  

for hour h+1.  

 

6: There are three possible scenarios 

I. (Cagg(h) = (Lpred(h+1) + γ), leave BS 

configuration as is. 

II. (Cagg(h) < (Lpred(h+1) + γ), turn on BSs 

until Cagg(h) ≥ (Lpred(h+1) + γ). Select 

BSs to turn on via order of merit 

(highest currently off first etc.). 

III. (Cagg(h) > (Lpred(h+1) + γ), turn off BSs 

until doing so would cause (Cagg(h) < 

(Lpred(h+1) + γ). Select BSs to turn off 

via order of merit (lowest currently on is 

turned off first etc.) 

 

7: Repeat the cycle from point 5 for all 

subsequent hours. 

 

 



 183 

 

Figure 7.8: The total load on the network for a typical Monday broken down by traffic 

type and four hour period. This figure originally appeared in Chapter 3 but is reproduced 

here for the convenience of the reader. 

7.3.3 Implementation within Standards 

The BS switching algorithm outlined in 7.3.2 raises a number of practical problems that 

must be overcome within the confines of the current technology. The primary issues 

that need to be addressed are:  

1. How can a BS dynamically change its coverage area to service an area that was 

previously covered by a BS that has been switched off? 

2. When a BS is being switched off, how are its connected clients migrated to 

another active BS? 

3. How can load information be shared between the BSs comprising a coverage 

grid to enable the real time updating of the predictive models and subsequent 

switching decisions? 
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4. How can a switched off BS be brought back online when required and how long 

will this take? 

These four issues can be answered as follows: 

Altering Coverage Area: A fundamental component of the switching procedure is the 

ability to dynamically alter a BS’s coverage area to include that of its sleeping 

neighbours. This can be achieved via the use of cell breathing [111] which is currently 

used to adjust cell coverage boundaries within 3G networks. Normally, cell breathing is 

a mechanism which allows overloaded cells to offload subscriber traffic to neighbouring 

cells by changing the geographic size of their coverage area. Thus, heavily loaded cells 

decrease in size while neighbouring cells increase their size to compensate. Therefore, a 

portion of the traffic is distributed from the overloaded cell to neighbouring cells which 

helps balance the load. In a similar fashion to its primary function as load balancing 

mechanism, it could also be used for the switching procedure outlined in 7.3.2. In a 

power saving implementation of cell breathing, a cell would increase in size not when its 

neighbour’s traffic is high but when its neighbour’s traffic is low. If the newly expanded 

cell could meet the traffic needs of both its current and neighbouring service area, then 

the neighbouring cell could be switched off. 

Subscriber Migration: When a BS is switched off to save power, the users currently 

connected to it will need to be transferred to a new replacement BS. Mobility 

management of subscribers moving between BS coverage areas is already a 

fundamental component of 3G networks. Thus, the current Network Controlled HandOff 

(NCHO) procedure is utilised. The subscriber migration procedure is depicted in Figure 

7.9 for a subscriber connected to a BS being switched off. In Figure 7.9 the UE is 

connected to BS1 which is being switched off, BS2 will now service the UE once it is 

handed over to it. The following handover procedure is carried out for all UE connected 
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to BS1: (1) Upon being commanded to switch off, BS1 sends a handoff request to a 

neighbouring active BS within the same coverage grid via the RNC; (2) BS2 sends an 

acknowledgement of the handoff request to BS1 via the RNC, BS2 provisions resources 

for the migrating UE; (3) BS1 sends the UE a handoff command; (4) The UE completes the 

handoff and transmits this through BS2 which it is now connected to. If the handover 

procedure fails, BS1 repeats it with other BSs within the same coverage grid. BS1 waits 

until all of the UE connected to it are transferred before switching off. Note that the 

presence of the handover procedure already in the 3G standard greatly reduces the 

barrier to implementation of the switching procedure. 

 

Figure 7.9: Subscriber migration procedure (3G) 
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Coordination: The managing of the switching procedure necessitates the exchange of 

load information between the BSs in a coverage grid and a centralised controller 

capable of implementing the predictive models of cell load and making the required 

switching decisions. An obvious place for this information sharing and command 

decision making to take place is at the RNC. Normally, all the BS’s within a coverage grid 

will belong to the same RNC. If on the rare occasion they do not, the local grids can be 

reconstructed to make sure that all members of a respective grid share an RNC. This will 

have a marginally negative impact on grid formation but by eliminating inter RNC 

signalling, it greatly reduced the complexity and the signalling overhead.  

Switching On: Many of the subsystems in a BS are designed to operate within certain 

temperature conditions, hence the AC/cooling system discussed in 7.3.1. When a BS is 

powered off, the ambient temperature may fluctuate outside of the desired operating 

range. Therefore, before the BS can be switched on again, the AC/cooling subsystem 

needs to be turned on and operational in advance. According to real world 

measurements provided by [16], it can take on average 30 minutes for the AC/cooling 

system to bring the BS’s machine room temperatures into the desired range. This is a 

problem for many green cellular network procedures which react to the current traffic 

demand without predicting the future state [28, 110]. Thus, the primary novel feature in 

this work is the integration of predictive models into the switching procedure. This gives 

a BS’s machine room the required time to reach an optimal temperature and for the 

BS’s subsystems to self-configure. 

7.3.4 Parameter Selection 

The first step in evaluating the switching procedure outlined in 7.3.2 is the definition of 

the parameters to be used. Firstly, the margin of error term γ is set to 20% as discussed 

in 7.3.2. As shown in equation (7.2), the power consumed by a BS comprises Ptx and 
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Pmisc; Ptx, or the transmit power accounts for the power used to provide network access 

to subscribers’ UE. This includes power consumed by the RRUs, the BBUs, the feeder, 

and the RNC transmissions. Pmisc, the miscellaneous power, is the power consumed by 

cooling, monitoring, and the auxiliary power supply. The value of these elements is 

taken from real world measurements provided in [16]. Equation (7.2) becomes Ptx = 6L + 

600W at a BS’s normal transmission range and Ptx = 12L + 600W when expanded to its 

maximum transmission range. Pmisc as outlined in [16] is mainly a function of external 

conditions such as temperature. Due to its dependence on temperature, Pmisc changes 

constantly, however, it is largely invariant with load. Thus, for simplicity the assumption 

is made that the supporting subsystem power consumption stays constant at 1500w as 

suggested by [16]. The predictive models of cellular load are trained and validated for 

the coverage grids as in Chapter 6. Then, the switching procedure is tested on a 

separate independent week of traffic data. 

 Results 

This section will present the results of the simulation of the switching procedure 

outlined in 7.3.2 to real world independent cellular traffic. 

Table 7.2: Power savings broken down by region 

 Region 1 Region 2 Region 3 Region 4 

ECurrent (MWh) 30.21 10.23 6.47 3.31 

Eoptimised (MWh) 17.21 6.44 4.91 2.94 

Esavings (%) 43% 37% 24% 11% 

% hours missed 0.0023% 0.0014% 0.017% 0.011% 
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Table 7.3: Power savings by region by time period 

Region Early Morning Esavings (%) Late Evening/Early Night Esavings (%) 

Region 1 62.02% 31.12% 

Region 2 54.14% 22.01% 

Region 3 36.84% 16.23% 

Region 4 16.73% 6.30% 

 

The results of the simulation broken down by region, on one independent week of data 

using the parameters outlined in 7.3.4 are displayed in Table 7.2. The first row, ECurrent, 

presents the current total daily energy consumption in each region. The second row, 

Eoptimised, presents the simulated daily energy consumption in each region after using the 

switching procedure outlined in 7.3.2. The third row, Esavings, shows the % savings 

achieved by adapting the switching procedure in the simulation. Finally, the last row % 

hours missed, shows the percentage of hours over all grids in a region that the 

aggregate capacity allocated via the prediction step was insufficient for the demand. 

Table 7.3 shows Esavings, broken down by period of the day. The two periods are chosen 

due to them representing opposite ends (peak and trough) of each region’s load profile 

as demonstrated in Figure 7.4. The following observations can be made from the results 

obtained: 

I. As shown in the Esavings row of Table 7.2, it is possible to make significant power 

savings while also preallocating the network resources ahead of time via 

predictive models. The predictive switching procedure manages to save energy 

in each of the four disparate study regions while maintaining a negligible % of 

hours missed. 
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II. The power savings achievable appear to be a function of the BS density. The 

more dense the BS deployment in a region the higher the potential power 

saving as outlined in Table 7.2. For example, comparing the density 

classifications in Table 7.1 with the potential power savings in Table 7.2 shows 

that the % savings are: 43% in the most dense urban region 1, 37% in the 

second most dense suburban region 2, 24% in the third most dense suburban 

with some semi/rural region 3, and finally 11% in the least dense rural region 4. 

This is to be expected as the deployment density determines the degree of 

capacity redundancy available in a coverage grid which influences on/off 

switching decisions. In sparsely populated regions, such as region 1, a coverage 

grid may only comprise one BS. Thus, no matter how low the predicted load is 

at a given time the BS will never be turned off. 

III. The potential energy saving is largely dependent on the traffic load. 

Underutilisation of network resources is disproportionately large at hours of low 

load. Figure 7.6 shows that these hours are much more likely to occur during 

the early morning period. Thus, it is no surprise that as outlined in Table 7.3, the 

largest power savings are made during the lightly loaded early morning hours. 

For example, in region 1, 62% energy savings are possible during the early 

morning hours while the corresponding figure for the hours of peak load is only 

31%. Across all regions, the energy saving is between 2 and 3 times greater 

during the early morning hours than the peak Late Evening/Early Night hours. 

IV. Energy savings are currently possible even at peak hours, particularly for the 

regions with the largest deployment density (31% possible in region 1 during 

peak hours). This may be a result of overprovisioning of network resources to 

meet future growth in traffic demands, particularly in more profitable densely 

populated urban regions. However, it may also be symptomatic of a network 
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that is currently planned and optimised on an ad hoc basis at the BS level. 

Perhaps, a more holistic view of network provisioning centered on larger spatial 

aggregation regions with mutual internal redundancy such as coverage grids 

would lead to a more efficient use of network resources. This becomes even 

more important as network heterogeneity increases. Fortunately, advances in 

Software Defined Networking and Self Organising Networks will make the 

planning and management of these larger coverage areas comprising 

heterogeneous technologies more feasible.   

 Conclusion and Discussion 

The implementation of energy efficient cellular networks has been a topic that is widely 

studied due to both the operational and environmental costs associated with excessive 

power consumption. Broadly speaking, this work and others like it seek to build energy 

proportional 3G networks with non-energy proportional 3G BSs. However, much of the 

work focused on 3G infrastructure relies on idealised simulated traffic traces and 

complicated unrealistic centralised optimisation models without regard to practical 

implementation. This chapter has provided a novel, local, distributed, practical approach 

to BS switching which employs localised near horizon load prediction to give the 

network infrastructure the required time to react to changes in traffic demand. The 

energy savings procedure implemented in this chapter gives savings of: 

• 43% for densely packed urban areas 

• 37% for suburban areas  

• 11% for sparsely populated rural areas.  

This is less than in other works such as [28] which estimates savings of 50%-80% in 

densely populated urban areas while [112] suggests theoretical network wide savings of 
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60%. However, unlike other works, the energy savings procedure presented here (1) 

does not assume instantaneous BS switching, (2) does not assume perfect knowledge of 

the load (3) builds in a set margin of error to maintain QOS (4) is computationally 

simpler (5) mainly relies on techniques and procedures already operational in the 

network.  

The results of the regional analysis show that the degree to which power savings are 

achievable is a function of the BS deployment density. The denser the BS deployment in 

a region, the higher the potential power saving. In current and future networks, to 

overcome capacity constraints cells are getting smaller and more densely deployed 

(particularly with the widespread adoption of femto and pico cells). It is theorised that 

these smaller cells will improve the actual power efficiency of the network by offloading 

small high demand areas from the traditional larger macro BSs [113]. This could reduce 

the need for additional macro BSs, but despite gains in efficiency, more cells will overall 

result in a larger aggregate power consumption. Thus, given the relationship between 

power saving potential and deployment density, these particularly densely packed high 

load regions will be particularly suited to the novel power savings scheme outlined here. 

Widespread underutilisation of the network was found at all times, even in densely 

populated urban regions at peak hours. This underutilisation is less apparent when 

viewed from the perspective of an individual BS or sectorised cell. It is also more 

understandable that individual cells and BSs would be overprovisioned by network 

operators given their smaller aggregate capacity and greater traffic unpredictability. In 

future deployment scenarios, it may be more suitable for network operators to focus 

more on planning the network as a collection of mutually redundant coverage areas 

(such as the coverage grids presented in this work) as opposed to individual cells/BSs. Of 

course this is easier said than done, and given the sometimes ad-hoc nature of 

equipment deployment it would require careful planning and execution to insure 
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continued redundancy within a grid. However, advances in Software Defined 

Networking and Self Organising Networks will make the planning and management of 

these larger coverage areas comprising heterogeneous technologies more feasible.   

The primary aim of this chapter was to validate the applicability of predictive models of 

network load to practical network management strategies. Given more time and data a 

number of enhancements could be made to the problem of minimising power 

consumption which are left for future work  

(1) This work focused on the 3G network which was the most advanced equipment 

deployed at the time of data collection. The power saving procedure outlined in this 

chapter is designed for a heterogeneous network where the various technologies have 

different power consumption and aggregate capacity characteristics. However, future 

work could examine the network further with the inclusion of data from more modern 

radio access technologies.  

(2) Possible alternatives to cell breathing for coverage range extension could be 

considered. For example, BS’s containing multiple BBU/RRU subsystems. Many of the 

components of these subsystems such as power amplifiers are designed to give peak 

performance under certain transmission conditions. For example, a BS could come 

equipped with a dual BBU/RRU subsystem, one designed to operate in “urban mode” 

i.e. over small range and one designed to operate in “rural mode” i.e. long range. When 

the BS wishes to extend its range, instead of cell breathing it could switch its subsystems 

from “urban mode” to “rural mode”. Another alternative to cell breathing is for a BS to 

use lower frequency bands if it wishes to extend its range. However, the availability of 

these bands and managing possible interference would increase the complexity of the 

solution.  
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(3) This work was carried out on the network of a single operator. However, typically 

there are multiple operators servicing the same region each with similar coverage 

profiles. BSs from different operators are often co-located to minimize rent, capital 

expenditure, planning issues, and to fully utilise sites that are naturally conducive to 

broadcasting such as high ground overlooking a town etc. Given that the equipment is 

co-located, it is possible that the BSs would be capable of providing inter network 

redundancy. This could increase both the predictability of the now larger multi network 

coverage grids and also increase the possibilities for energy savings given the (now 

accessible) greater deployment density. However, for this to be possible the switching 

procedure outlined in this work would have to be altered and made more complex. For 

example, coverage grids comprising BSs spanning multiple RNCs are already excluded 

due to the added complexity and signaling load of the inter-RNC handover process. 

Internetwork handovers, although possible increase the signaling load further and 

would push the information sharing point further back from a common RNC with the 

ensuing complexity. However, in the face of stagnant revenue and a move towards 

network operator consolidation, it would be an interesting and timely extension to this 

work. 
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Chapter 8 Concluding Summary and 

Future Work 

 Concluding Summary 

This thesis used anonymised Call Detail Records (CDR) from a mobile network provider 

in the Republic of Ireland, to model network load and investigate the practicality of 

localised near horizon predictive models of cellular load on the target network.  The 

Meteor network under investigation had over 1 million customers, representing 

approximately one quarter of the state’s 4.6 million inhabitants when the data was 

collected.  

This thesis began by providing a technical background of cellular networks and their 

operation in Chapter 2. The dataset used in this thesis was presented and the methods 

used to store, process, and analysis the dataset were provided. Once the dataset was 

prepared for analyses, a large scale nationwide study of the cellular network was carried 

out in Chapter 3. Analysis focused on identifying trends and possible opportunities for 

resource rationalization. Great spatial disparities in network load were identified within 

the network with 1% of cells servicing 20% of the total network load. Also, intracell 

temporal disparities in load were identified with peak hour loads an order of magnitude 

higher than trough time loads for most cells. This peaking problem was found to be 

getting relatively worse as more and more cellular data was being used on the network. 

The spatial disparity between cell loads coupled with the temporal peaking problem 

made clear the potential for greater resource rationalisation, which would later be 

implemented in Chapter 7. Chapter 3 also provided empirically created foundational 

models of how the network experiences load i.e. models of arrival rates, connection 
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durations and data consumption. These empirically created models will allow for the 

accurate recreation and modelling of these key network features, not only at the 

general level but crucially at the device type and contract specific level. 

Chapter 4 focused on the creation of a spatial representation of the entire network to 

allow for the association of load with defined spatial areas. These spatial coverage 

region representations are a foundational step in beginning to examine the network 

spatially. Much of the subsequent work and many of the techniques introduced later 

required the use of these spatial coverage regions. Given their importance, a novel 

procedure was introduced to clean inaccuracies in the spatial coordinates of cells. A 

method to visualise how the load is distributed spatially across the network both as a 

whole and across various services was provided. This method could be generalised to 

not only represent the load distribution but also other properties of interest such as 

connection events, subscriber distribution, etc.  A novel algorithm to discover who lives 

and works within BSs/cells was also created and examined. These techniques allowed 

for the creation of accurate maps of the network’s subscriber base and also an 

examination of how distance affects communication likelihood between areas. Chapter 

4 concluded by providing a novel exploration of the presence/lack of causal influence 

that exists between neighbouring cells. It was found that there is a significant amount of 

spatial correlation between cell coverage regions in close proximity, decreasing as the 

separation distance increases. Significant spatial correlation indicates that for 

monitoring purposes it may only be necessary to monitor a subset of cells. Causal 

influences were found to be common in the network with 38% of neighbouring cell pairs 

experiencing statistically significant influence in either one or both directions. Long 

chained paths of causal influence were found to flow throughout the network. 

Anecdotally, it appears that these pathways follow significant transport networks.  A 

strong understanding of the spatial aspects of network load are valuable to network 



 196 

providers and relevant to many advanced network management techniques. They are 

particularly important to those techniques which rely on a strong spatial understanding 

such as dynamic spectrum allocation [12], reduced sensing techniques [55], fault 

detection, and spatially influenced power saving schemes [56] such as the one 

presented in Chapter 7. 

Chapter 5 provided a novel examination of how different levels of load, service type, 

temporal aggregation, and spatial aggregation affect traffic load predictability. As 

discussed in Chapter 5, much of the work on predictability and modelling of cellular load 

excluded the primary driver of cellular load, cellular data. To better understand how 

cellular data affected predictability relative to the more widely studied service types of 

voice and SMS, an examination of how predictability varies by service type and time of 

day was carried out. It was found that voice is the most predictable service, followed by 

SMS and then finally data. The predictability of all three service types was found to vary 

largely over all the cells studied. Given the growing predominance of cellular data it was 

unfortunate that it was the least predictable. However, it was found that during 

particular times of interest e.g. the early morning hours data load became relatively 

much more predictable. This better predictability during hours of low usage is 

particularly useful given that these are the hours most likely to benefit from advanced 

resource management techniques. Chapter 5 then went on to identify small subsets of 

the network that provide sufficient predictability to allow for their use in SON 

techniques. These subsets had to be sufficiently small and spatiality continuous as to be 

useful for SON techniques. Two novel subsets/spatial aggregation (overlapping cells and 

coverage grids) meeting these requirements were proposed and compared with the 

smallest available spatial aggregation, the individual cell level. These comparisons 

demonstrated that load is more stable and predictable at larger spatial aggregations. 

Given coverage grid’s greater predictability, coupled with their mutual redundancy, 
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coverage grids appear to occupy the optimal position in the trade-off between 

predictability and practicality. Traditionally, the network is examined and modelled at 

the individual cell or individual BS level. However, the results of Chapter 5 indicate that 

if predictability is an important factor in the analysis/model/network management 

technique, then higher levels of spatial aggregation are more suitable. It is hoped that 

the aggregations provided give network operators new ways of viewing their network as 

opposed to the more traditional macro whole network view or the individual BS view. 

Chapter 6 built on the work of Chapter 5 by creating predictive models for the spatial 

aggregation regions it defined. Two novel methods for the automatic modelling of large 

amounts of individual cells and their many possible permutations in different spatial 

aggregations were proposed, used and tested. One of these was based on SARIMA 

predictive models while the other was based on SANN predictive models. The influence 

of the metric used to evaluate the predictive models on the perception of the outcome 

was discussed and led to the creation of a novel metric (ACPE) for this work. Generally, 

it was found that the SANN model performed better across all aggregation levels. As 

expected from Chapter 5, the error reduced as the spatial aggregation size increased. 

This indicated that to improve the performance of predictive models of network load, 

the largest practicable cellular aggregation should be used as the basis for the 

predictions. Chapter 6 showed, promisingly, that 95% of the time, 90% of individual cells 

have an ACPE below 15% and 95% of the time 90% of coverage grids have an ACPE of 

less than 7%. This means that for 90% of the coverage grids, their load can be predicted 

to within 7% of their maximum capacity 95% of the time. This demonstrates that 

automatic, localised near horizon load forecasting is feasible, particularly at higher levels 

of spatial aggregation. 
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Chapter 7 introduced a regional study of power usage on the network. The use of near 

horizon predictive models of cellular load was validated via their incorporation into a 

novel and practical energy savings scheme which was tested on real world data across 

multiple regions. The novel energy saving scheme presented is a local, distributed, 

practical approach to BS switching which employs localised near horizon load prediction 

to give the network infrastructure the required time to react to changes in traffic 

demand. The energy savings procedure gave savings on the order of 43% for densely 

packed urban areas, 37% for suburban areas and 11% for sparsely populated rural areas. 

This is less than in some other works, however, as discussed further in Chapter 7, the 

comparable energy saving schemes rely on perfect knowledge of future load, leave no 

room for error, and require instantaneous BS switching – all three of which are 

unrealistic real-world requirements. As discussed in greater detail in Chapter 7, the 

energy savings scheme presented here solves these problems via the incorporation of 

load prediction. Therefore, the energy saving scheme introduced here is more feasible 

for practical introduction into real world network deployments. In future deployment 

scenarios, it may be more suitable for network operators to focus more on planning the 

network as a collection of mutually redundant coverage areas (such as the coverage 

grids presented in this work) as opposed to individual cells/BSs. This would be more 

complicated than traditional network provisioning and given the sometimes ad-hoc 

nature of equipment deployment it would require careful planning and execution to 

insure continued redundancy within a grid. However, advances in Software Defined 

Networking and SONs will make the planning and management of these larger coverage 

areas comprising heterogeneous technologies more feasible. As discussed in Chapter 1, 

these technological advances will facilitate the utilisation of advanced management 

techniques to more efficiently use network resources via SONs as a key component of 

future 5G networks. The work presented in this thesis demonstrates the feasibility of 
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creating sufficiently accurate predictive models of network load at useful levels of 

spatial aggregation. The authors hope that these predictive models can be incorporated 

into future SONs and the advanced network management techniques that rely on them.   

 Future Work 

This thesis has addressed many of the central issues related to the creation and 

incorporation of localised near horizon predictive models of cellular load into SONs. 

However, there is more work that could be done to update and extend the 

contributions from this thesis. For example, networks and their underlying technologies, 

the devices accessing them, and subscriber behaviour are constantly evolving and 

changing. For example, the data source used for this work was collected after the 

widespread adoption of smartphones but before the network operator’s nationwide 

rollout of 4G services. Thus, any future work in this area would benefit from updating to 

include 4G services.  

As in any research endeavour, the type and scope of the dataset does impose some 

restrictions on the research that it can be effectively applied to. For example, the 

dataset provides details on the start and end cell of each communication event. 

However, it does not provide location details of devices/subscribers in-between 

communication events. Therefore, it only provides a sample of a device’s/subscriber’s 

location with a sampling rate determined by how often the device/subscriber 

communicates. Research areas which require detailed knowledge of a 

device’s/subscriber’s location at all times, such as modelling the instantaneous signalling 

load in a specific cell/area, would benefit from additional data. This dataset also does 

not provide IP packet headers which could be used to identify the specific 

application/website being used. This precludes research that requires a detailed analysis 

of these features.  
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Preliminary investigations of the long causal paths identified in Chapter 4 indicate that 

when plotted spatially many of the paths follow major transport infrastructure such as 

busy motorways etc. In future work, it would be interesting to more thoroughly 

investigate this and examine if there is a relationship between any other geographic 

features and causal load relationships. Causal relationships indicate that a cells past and 

present loads can improve the predictability of its causal neighbour’s future loads. 

Quantifying the improvements in predictability from causal neighbour’s incorporation in 

predictive models would be an interesting extension to this work. 

Coverage grids’ inherent spatial redundancy makes them an ideal default grouping for 

mutual coverage in the event of localised equipment failure. Although not explored 

further here, the ability to dynamically alter coverage with confidence within the grid 

aggregation level suggests the potential for increased equipment redundancy. A 

quantification and exploration of the increased redundancy from a grid based planning 

approach to network planning would be interesting. Another interesting avenue of 

further research would be the incorporation of the predictive models outlined in this 

work to spectrum sharing schemes. For example, reliable predictions of low loads in a 

coverage gird with a large load redundancy could indicate the possibility of temporarily 

freeing up spectrum for secondary usage. The power minimisation technique presented 

in this work could be improved and updated by incorporating small cell and alternatives 

to cell breathing such as dual BBU/RRU subsystems.  

One major and valuable extension to this work would be the incorporation of data from 

other overlapping network operators. While this work was carried out on the network 

of a single operator, typically, there are multiple operators servicing the same region 

each with similar coverage profiles. Equipment from different operators is often co-

located to minimize rent, capital expenditure, planning issues, and to fully utilise sites 
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that are naturally conducive to broadcasting such as high ground overlooking a town 

etc. Given that the equipment is co-located, it is possible that the BSs would be capable 

of providing inter network redundancy. This could increase both the predictability of the 

now larger multi network coverage grids and also increase the possibilities for energy 

savings given the (now accessible) greater deployment density. Of course, the 

considerable benefits of this would have to be compared with the technical and 

business challenges its implementation would entail. 
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