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Abstract:  

As mobile technologies continue to mature network providers are experiencing ever 

increasing demands on network resources. This trend will continue for a range of 

reasons, from growing subscriber expectations to the network being viewed as an 

enabling technology for the Internet of Things. However, these changes pose significant 

challenges to network operators at a time when many are facing stagnant or falling 

Average Revenue per User (ARPU). To provide increased services with reduced costs, 

network operators are looking to improvements in technology such as Software Defined 

Networking (SDN) and Self Organising Networks (SON). Several of these techniques will 

become key components of future 5G networks. With growing network complexity and 

reduced revenue to hire staff, many of these advanced management techniques will 

benefit from detailed predictive models of network load to allow for the preallocation of 

network parameters and resources. This thesis uses anonymised Call Detail Records 

(CDR) from Meteor, a mobile network provider in the Republic of Ireland, to model 

network load and investigate how it can be serviced more efficiently.  The Meteor 

network under investigation has over 1 million customers, which represents 

ŀǇǇǊƻȄƛƳŀǘŜƭȅ ŀ ǉǳŀǊǘŜǊ ƻŦ ǘƘŜ ǎǘŀǘŜΩǎ пΦс Ƴƛƭƭƛƻƴ ƛƴƘŀōƛǘŀƴǘǎΦ  

The main contributions of this thesis are  

1. A novel methodology to predict near horizon traffic loads in practical spatially 

contiguous coverage regions.  

2. A novel application of near horizon localised prediction models to the problem 

of self-organising green networks.  

3. Empirically created foundational models of how the network experiences load.  
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4. A novel examination of causal influences on network load, spatial relationships, 

communication distances, load predictability, and load usage.  

5. A range of novel algorithms and techniques from novel metrics for measuring 

load prediction performance to novel algorithms for estimating subscriber areas 

of interest, CDR feature extraction, CDR data cleaning, load visualistation etc.  

Results from this thesis show that there is a significant underutilisation of network 

resources. It is demonstrated that sufficiently accurate predictive models of network 

load are attainable at useful levels of spatial aggregation. These models are applied to 

the problem of self-organising green networks and demonstrate that a substantial 

reduction of network resource underutilisation is possible. 
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Chapter 1 Introduction  

Cellular networks have evolved rapidly since their inception a few decades ago. As 

cellular technology has evolved, so too have the expectations placed upon it. This 

growth in expectations does not look set to abate anytime soon. Increasingly capable 

subscriber equipment has opened up whole new uses for cellular networks from on 

demand video streaming to online gaming. Coinciding with the evolution of cellular 

network technology, new industries and businesses are looking to cellular networks as 

an enabling technology for the growing Internet of Things (IoT). Therefore, it is not 

surprising that globally mobile data traffic has grown 18 fold over the past five years and 

is projected to grow sevenfold between 2016 and 2021 [1]. However, these changes 

pose significant challenges to network operators at a time when many are facing 

stagnant or falling Average Revenue per User (ARPU) [2]. Currently, the tuning of many 

network parameters is often carried out by network operators manually, using network 

planning tools or drive tests [3]. From the perspective of network operators, the manual 

configuration of an increasingly complex network incorporating multiple Radio Access 

Technologies (RATs) increases operational expenditure. The autonomous optimisation 

of network parameters which uses a minimum amount of overhead is thus an attractive 

proposition to network operators. Such autonomous configuration techniques are often 

referred to as Self Organisation (SO) methods by the network standardisation bodies [4]. 

SO is subdivided into three main classes: self-configuration, self-optimisation, and self-

healing. These three enable the auto-configuration of basic system parameters, 

resource allocation, and recovery from node failure. A more detailed description of the 

various self-organising modes is provided in [5]; SO techniques have been widely 

studied for other communication networks such as Wireless Sensor Networks (WSNs) 

and ad-hoc networks. SO concepts are relatively new in cellular networks but have 
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already attracted an extensive body of research focusing on their implementation such 

as [6-8].  To provide increased services with reduced costs, network operators are 

looking to the incorporation of SO concepts into cellular networks yielding Self 

Organising Networks (SON) [9]. [10] highlights the need for SONs capable of reducing 

human intervention by showing the growth in complexity of the configuration of a 

typical network node. [10] finds that a typical 2G node has approximately 500 

configurable parameters, a typical 3G node has approximately 1000, and a typical 4G 

node has approximately 1500. [11] projects even greater complexity for 5G networks 

with a typical node having 2000 or more configurable parameters. 

The rollout of SON technologies and the subsequent removal of the need for the manual 

configuration of network parameters opens cellular networks up to new advanced 

management techniques such as: the secondary usage of valuable licenced spectrum 

[12], opportunistic traffic scheduling [13], the dynamic switching on and off of 

underutilised Base Stations (BSs) [14], etc. The need for these new advanced 

management techniques is highlighted by a number of studies which have found large 

scale underutilisation of network resources. [15] ŦƻǳƴŘ ǘƘŀǘ άмл҈ ƻŦ ōŀǎŜ ǎǘŀǘƛƻƴǎ ŎŀǊǊȅ 

50-60% of thŜ ƭƻŀŘέ ǿƘƛŎƘ indicated a significant spatial underutilisation of certain parts 

of the network and their servicing BSs. [16] found a dramatic difference between the 

peak and trough hours of load within BSs and wider regions. [16] suggests this 

represents a significant underutilisation of network resources in the temporal domain. 

This problem was found to be particularly acute during the early morning hours when 

the network was vastly overprovisioned for the demand it experienced. The utilisation 

of advanced management techniques to more efficiently use network resources via 

SONs is a key component of future 5G networks as discussed in [11]. 
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The leveraging of techniques and concepts from Artificial Intelligence (AI) is a key 

requirement for the functioning of SONs and the advanced network management 

techniques that rely on them. Broadly speaking, future 5G SONs require AI to perform 

four main groups of tasks: Sensing, Mining, Optimisation, and Prediction [11].  

¶ Sensing is concerned with the detection of network anomalies/events/states 

from large datasets from hybrid sources. For example, [17] utilises a variety of 

AI techniques to first learn whŀǘ ŀ ŦǳƴŎǘƛƻƴŀƭ ŎŜƭƭΩǎ YŜȅ tŜǊŦƻǊƳŀƴŎŜ LƴŘƛŎŀǘƻǊǎ 

(KPIs) are, and then use this information to identify aberrant cell behaviour. 

¶ Mining in future 5G cellular networks is concerned with the classification of 

services according to their required provisioning mechanism (e.g. bandwidth, 

error rate, latency etc.) [11].  For example, [18] proposes the use of contextual 

information which can be mined from the application to optimise mobile 

connectivity for bandwidth-hungry but delay tolerant applications. 

¶ Optimisation in future cellular networks is primarily concerned with the 

configuration of a series of parameters to maximise a performance metric. For 

example, [19] employs AI techniques to develop methods for finding optimal 

antenna tilt angles in BSs.  

¶ Prediction in future cellular networks has many uses such as forecasting the 

mobility of User Equipment (UE) or predicting the traffic load ahead of time. For 

example, [20] employs user location information to predict their movement 

patterns and proactively anticipate traffic hotspots. 

All four of the above areas are touched upon to varying degrees in this work. However, 

particular attention is given to prediction in cellular networks, specifically the prediction 

of the traffic load. Load modelling and prediction is a critical element in the 

performance, planning and evaluation of telecommunications networks and has 
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consequently attracted much attention. However, most of this research has focused on 

traditional wired broadband which has many different properties and needs in 

comparison to cellular networks. What work has been carried out on cellular networks is 

mostly focused on older voice-centric networks and datasets [12, 21-23]. Due to the 

increasing capabilities of devices connecting to the cellular network and the 

concomitant rise in data usage, cellular networks have shifted from being voice-centric 

to data centric networks [24, 25]. Other works such as [26] have access to both voice 

and cellular data but unfortunately only provide predictive results for the voice portion. 

Forecasting short term load on the macro cellular network scale is possible with a high 

degree of accuracy [27]. However, it is of limited practical value for many advanced 

management techniques such as green networks (networks with reduced energy 

consumption) [28] and spectrum sharing [12] which, due to cellular network 

subsidiarity, require more localised forecasts. For such applications, groupings with finer 

spatial resolution are required. [26] creates predictive models for voice calls on the 

network but cites the greater variance of cellular data at the individual cell level as 

prohibiting the creation of predictive models of data load. Knowing that accurate 

forecasting of cellular data load is possible at large spatial aggregations [27], raises the 

question of its possibility at lower aggregations. In the field of electricity load 

forecasting [29] the authors presented significant improvements in accuracy at 

relatively modest levels of aggregation. This raises the question, is cellular data load 

predictable on the network at useful levels of spatial aggregation? If predictive models 

of cellular load can be created at sufficiently small aggregation levels, then these models 

can be incorporated into and used to improve advanced network management 

techniques. For example, one such technique that would benefit greatly from the 

inclusion of these predictive models of cell load is cell on-off switching for green 

networking. Much work has gone into algorithms and techniques to dynamically switch 
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on/off cells or BSs [28, 30, 31]. However, most work in the area simply uses historical 

static load profiles or assumes that switching decisions can be made instantaneously. 

However, real world measurement results such as those presented in [16] show that 

switching can take up to 30 minutes due to the heating systems. Thus, predictions of the 

need to perform a switch ahead of time are important. This thesis will use anonymised 

Call Detail Records (CDR) from Meteor, a mobile network provider in the Republic of 

Ireland, to model network load and investigate the practicality of localised near horizon 

predictive models of cellular load on the target network.  The Meteor network under 

investigation has over 1 million customers, which represents approximately a quarter of 

ǘƘŜ ǎǘŀǘŜΩǎ пΦс Ƴƛƭƭƛƻƴ ƛƴƘŀōƛǘŀƴǘǎΦ  

The main contributions of this thesis are:  

1. A novel methodology to predict near horizon traffic loads in practical spatially 

contiguous coverage regions.  

2. A novel application of near horizon localised prediction models to the problem 

of self-organising green networks.  

3. Empirically created foundational models of how the network experiences load.  

4. A novel examination of causal influences on network load, spatial relationships, 

communication distances, load predictability, and load usage.  

5. A range of novel algorithms and techniques from novel metrics for measuring 

load prediction performance to novel algorithms for estimating subscriber areas 

of interest, CDR feature extraction, CDR data cleaning, load visualistation, etc.  

6. A large scale measurement study of a nationwide cellular network. 
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Results from this thesis show that there is a significant underutilisation of network 

resources. It is demonstrated that predictive models of network load are attainable at 

useful levels of spatial aggregation and sufficient accuracy to allow for their practical 

application to advanced management techniques. These models are applied to the 

problem of self-organising green networks and demonstrate that a substantial reduction 

of network resource underutilisation is possible. 

The rest of the thesis is laid out as follows: 

¶ Chapter 2 provides a technical background to cellular networks and their 

operation. The dataset used in this thesis is also presented and the methods 

used to store and process it at are provided. 

¶ Chapter 3 provides a large scale nationwide study of a cellular network. Analysis 

focuses on identifying trends and possible opportunities for resource 

rationalization. This chapter then provides empirically created foundational 

models of how the network experiences load i.e. models of arrival rates, 

connection durations and data consumption. These models are provided at a 

fine-grained level broken down by connecting device type and contract type.  

¶ Chapter 4 focuses on the creation of a spatial representation of the entire 

network to allow for the association of load with defined spatial areas. A novel 

procedure is introduced to clean inaccuracies in the spatial coordinates of BSs. A 

method to visualise how the load is distributed spatially across the network 

both as a whole and across various services is provided. A novel algorithm to 

discover who lives and works within BSs/cells is created and examined. Chapter 

4 also provides a novel exploration of the presence/lack of causal influence that 

exists between neighbouring BSs. 
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¶ Chapter 5 provides a novel examination of how different levels of load, service 

type, temporal aggregation, and spatial aggregation affect traffic load 

predictability. Chapter 5 then goes on to create and explore the predictability of 

practical real world spatially contiguous aggregations of network coverage 

regions. 

¶ Chapter 6 defines and implements a novel and practical forecasting method for 

use in advanced management techniques incorporating predictive models. Two 

novel methods for the automatic modelling of large amounts of individual cells 

and their many possible permutations in different spatial aggregations are 

proposed, used and tested.  

¶ Chapter 7 introduces a regional study of power usage on the study network. The 

use of near horizon predictive models of cellular load is validated via their 

incorporation into a novel and practical energy savings scheme which is tested 

on real world data across multiple regions. 

¶ Chapter 8 concludes the thesis with a summary of the work completed, 

contributions made to the field and the relevant areas of work which remain to 

be investigated. 
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Chapter 2 Background  

 Introduction  

This work exploits a large dataset provided by the Meteor mobile phone network, which 

is a nationwide network operating in the Republic of Ireland. This chapter has three 

main contributions:  

1) It provides a general introduction to the technologies used on the network on 

which the dataset is generated. 

2) It presents specific information on the network at the time of data collection 

including its topography, subscriber base and data collection 

procedures/format. 

3) It provides an overview of the ETL (Extract, Transform, Load) process carried out 

on the raw data to prepare it for further analysis. 

The rest of this chapter is laid out as follows: sections 2.2, 2.3, 2.4, and 2.5 introduce the 

fundamental technologies/concepts required to understand cellular networks. Section 

2.6 provides specific information on the meteor network at the time of data collection 

and also details how the data was prepared for analysis. Finally, section 2.8 concludes 

the chapter. 

 Cellular Networks  

A cellular network is a spatially distributed radio network which enables voice, text, or 

data communications between two or more devices [32]. Typically, a compatible 

communications device is connected via a wireless connection to a transceiver at a fixed 

location known as a tower. Each tower covers a spatial area which is known as a cell. A 

cell can range from several square kilometres in sparsely populated rural areas down to 
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a scale of hundreds of meters in densely populated urban environments. Each 

communication flow between devices, including intra-cell communications, passes from 

the initiating device through its connected transceiver. The flow is then routed through 

a hierarchical network of elements which facilitate information flow to a destination cell 

which services the spatial area the receiving device is located in. Finally, the destination 

cell communicates the information flow to the connected device via the appropriate 

transceiver as illustrated in Figure 2.1. 

 

Figure 2.1: Overview of a simplified inter device communications flow in a cellular 

network 
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Figure 2.2: Simplified structure of a cellular network 
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Typically, cellular networks consist of a heterogeneous collection of technologies 

including those classed as second, third, and fourth generation wireless telephone 

technology. Figure 2.2 illustrates the simplified hierarchical layout of a heterogeneous 

cellular network. For simplicity, a cellular network may be divided into three primary 

sections: the mobile subscriber layer, the Radio Access Network (RAN), and the core 

network. The mobile subscriber layer consists of the mobile telephony enabled access 

devices or Mobile Stations (MS) which connect to the network. The RAN comprises the 

radio transceivers which are used to transfer data from the MS to the core network. The 

core network is the central part of the cellular network which provides services enabling 

communication, billing, and mobility. The RAN will vary depending on the 

communication standard employed between the 2G, 3G, and 4G versions. A GSM Radio 

Access Network (GRAN) is comprised of Base Transceiver Stations (BTS) and Base Station 

Controllers (BSC). A UMTS Terrestrial Radio Access Network (UTRAN) consists of Node B 

transceivers and Radio Network Controllers (RNC). An evolved UMTS terrestrial Radio 

Access Network is made up of evolved Node B (eNode B) and serving gateways. The 

core network comprises elements of 2G, 3G, and 4G standards including Mobile 

Switching Centres (MSC), Serving GPRS Support Nodes (SGSN), and Mobility 

Management Entitles (MME). For a more detailed exposition of all the above network 

components see [33]. 

 Access Techniques 

Cellular networks enable simultaneous reception and transmission between 

communication devices within a certain amount of radio spectrum. This is carried out by 

a variety of access techniques which are primarily designed to allow transmitters to 

communicate with receivers with minimum interference [34]. Thus, the spectral 

efficiency is increased as more information is successfully transmitted and received over 
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limited spectrum. The access strategies used varies depending on the generational 

standard and are: 

¶ Frequency Division Multiple Access (FDMA): Individual channels (unique 

frequency bands or spectrum slices as shown in Figure 2.3) are assigned to each 

MS on demand. During this time no other MS may use the channel. 

¶ Time Division Multiple Access (TDMA): TDMA divides the radio channel up into 

time slots. Similarly to FDMA, each slot is assigned to an MS on demand and is 

allocated to the MS for the entire transmission as illustrated in Figure 2.3. 

¶ Code Division Multiple Access (CDMA): CDMA is an example of multiple access, 

allowing several transmitters to send information simultaneously over a single 

communication channel. To facilitate multiple access without debilitating 

interference, CDMA employs spread spectrum technology with a coding 

scheme. CDMA multiples the narrowband message signal by a wideband signal 

known as the spreading signal. The spreading signal is a pseudo-noise code 

sequence with a chip rate orders of magnitude greater than the message 

signalΩǎ Řŀǘŀ ǊŀǘŜ [33]. Each MS is assigned a spreading code which is orthogonal 

to all other codes, and may transmit simultaneously using the same carrier. To 

recover the originally transmitted information, the receiver must decode the 

spreading code applied to it. Decoding is carried out using a time correlation 

operation with all the other code words appearing as noise due to decorrelation 

[33].  

¶ Orthogonal Frequency Division Multiple Access (OFDMA): OFDMA uses time 

sharing coupled with dynamically assigned orthogonal subcarriers to provide 

multiple access to MS. MS that require high data rates may be assigned a higher 

number of subcarriers than those with lower data rate requirements.  
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Figure 2.3: FDMA v TDMA v CDMA 

For a more detailed exposition of all the above access techniques see [32-34]. 

 Coverage 

Transmission between RAN elements communicating wirelessly with connected devices 

in the subscriber layer suffer from path loss. Path loss is the energy lost between the 

transmission and reception of a signal. A transmission from an isotropic antenna will 

expand over a spherical wavefront, with the received energy a distance d away being 

ƛƴǾŜǊǎŜƭȅ ǇǊƻǇƻǊǘƛƻƴŀƭ ǘƻ ǘƘŜ ǎǇƘŜǊŜΩǎ ǎǳǊŦŀŎŜ ŀǊŜŀΣ пd̄2 [32]. The free space path loss is 

given by the Friis Formula: 

 
ὖ ὖ

‗ὋὋ

τ“Ὠ
 

(2.1) 

where Pr and Pt are the received and transmitted powers respectively,  ˂ is the 

wavelength, Gr  is the receiver gain and Gt is the transmitter gain. 

As a result of the path loss, reliable communication is only possible over a limited 

distance for a defined maximum transmit power. Therefore, transmitters may operate 

using the same frequencies, at the same time if spatially isolated. Thus, the spatial area 

serviced by a cellular network is subdivided into smaller spatial regions. These smaller 

spatial regions are known as cells and contain a single Base Station (BS). To minimise 



 14 

interference between adjacent cells, the transmit power of each transceiver should be 

configured to ensure that the signal strength is just strong enough at the cell 

boundaries. The same frequency channels may be reused in different, spatially isolated 

cells which greatly increases the available bandwidth. Thus, one way to increase the 

available bandwidth is to reduce the cell sizes (via reducing the transmit power) while 

increasing the number of cells. This results in many small densely packed cells in areas 

of high demand such as cities, as discussed further in Chapter 4. In practise, however, it 

is not possible to eliminate interference by selecting a transmit power that leads to 

perfect isolation between proximate cells. Thus, the amount of frequency reuse is 

selected to keep interference between cells below an acceptable threshold [33]. This 

intercell interference is referred to as Other Cell Interference (OCI) and negatively 

impacts performance. A commonly used technique to reduce OCI is to sectorise cells, 

where the sectorisation is carried out via directional antennas [32]. 

A typical cell layout is presented in Figure 2.4; the hexagonal shapes presented on the 

LHS of Figure 2.4 represent the idealised version of cell coverage. However, in practise, 

this does not accurately reflect real cell boundaries. The RHS of Figure 2.4 is a truer 

reflection of a real-world scenario where the geometrically irregular shape leaves some 

areas lacking coverage for a variety of reasons ranging from interference to obstructed 

signal propagation etc. [34]Φ ¢ƻ ŦǳǊǘƘŜǊ ƛƴŎǊŜŀǎŜ ǘƘŜ ƴŜǘǿƻǊƪΩǎ ŎƻǾŜǊŀƎŜ ŀƴŘ ŎŀǇŀŎƛǘȅ ƛƴ 

a region a network operator may also use a hierarchical cell structure as depicted in 

Figure 2.5. In such scenarios, a large macro cell may provide coverage to a spatial area 

as a whole while small cells service demand in smaller areas of particularly high demand 

within the larger area.  
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Figure 2.4: Typical cell layout; LHS shows the idealised version while the RHS shows the 

practical reality. A-G are the frequency channels used by each base station. 

 

Figure 2.5: Simplified hierarchical cell structure 

As each cellular network standard operates on different frequency ranges within the 

ǊŀŘƛƻ ǎǇŜŎǘǊǳƳΣ ƴŜǘǿƻǊƪ ǇƭŀƴƴŜǊǎ ŘŜǎƛƎƴ ŜŀŎƘ ǎǘŀƴŘŀǊŘΩǎ  network coverage 

layout independently. Thus, a BTS, Node-B, and eNode-B may all broadcast from the 

same tower and service overlapping spatial areas. 
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 Mobility  Management  

As the network needs to be able to forward incoming communications, the location of 

ǘƘŜ ǎǳōǎŎǊƛōŜǊΩǎ ŘŜǾƛŎŜ Ƴǳǎǘ ōŜ ƪƴƻǿƴ ǘƻ ǘƘŜ ƴŜǘǿƻǊƪΦ ²ƘŜƴ ŀ ƳƻōƛƭŜ ŘŜǾƛŎŜ ƛǎ 

switched on it registers with the network. Thus, the network is made aware of the 

current location of the device. However, this location can change at any time as the user 

ƳƻǾŜǎ ǘƘǊƻǳƎƘ ǘƘŜ ƴŜǘǿƻǊƪΩǎ ŎƻǾŜǊŀƎŜ ŀǊŜŀΦ LŦ ǘƘŜ ǎǳōǎŎǊƛōŜǊΩǎ ŘŜǾƛŎŜ ƳƻǾŜǎ ƛƴǘƻ ŀƴ 

area covered by a different cell, it may need to report this change to the network. To 

reduce the signalling load on the network, several cells are grouped into a larger 

location area. When a mobile device connects to a new cell, the network informs the 

ƳƻōƛƭŜ ŘŜǾƛŎŜ ƻŦ ŀ ƴŜǿ ŎŜƭƭΩǎ L5 ŀnd the Location Area Code (LAC) [33]. The mobile 

device will then only report its location if the new cell belongs to a different locating 

area from the previous cell (see Figure 2.6). One disadvantage of this method is that the 

network operator is only aware of the current location area of a mobile device and not 

the exact cell. Thus, the network must search for the mobile device in all cells of a 

location area for an incoming call or SMS. This searching procedure is known as paging. 

If the location areas are very large, there will be many mobile devices operating 

simultaneously within the area. This will result in a large amount of paging traffic, as 

every paging request must be broadcast to every BS in the location area. This wastes 

both bandwidth and also power in the mobile device by requiring it to listen to too 

many broadcast messages. However, if the location areas are too small, the mobile 

device must contact the network more frequently for location changes, which can also 

drain ǘƘŜ ŘŜǾƛŎŜΩǎ ōŀǘǘŜǊȅΦ The size of the location area can be configured by the 

network operator and is typically 20-30 cells. 
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Figure 2.6: Cells in different location areas 

For the packet-switched portion of the network, cells are aggregated into Routing Areas 

(RA). An RA is a subset of a location area, however, most network operators only use a 

single RA per location area [33]. A change frƻƳ ƻƴŜ w! ǘƻ ŀƴƻǘƘŜǊ όƪƴƻǿƴ ŀǎ ŀ άwƻǳǘƛƴƎ 

!ǊŜŀ ¦ǇŘŀǘŜέύ ƛǎ ŀƭƳƻǎǘ ƛŘŜƴǘƛŎŀƭ ǘƻ ǘƘŜ ǇǊƻŎŜŘǳǊŜ ƻŦ ŎƘŀƴƎƛƴƎ ŦǊƻƳ ƻƴŜ ƭƻŎŀǘƛƻƴ ŀǊŜŀ 

to another. The primary difference is that due to the involvement of packet-switched 

data, the Serving GPRS Support Node (SGSN) is used. For newer networks supporting 

LTE, the equivalent of the location area and RA is the Tracking Area (TA). Again, the 

basic concepts behind the TA are very similar to those of the location area and RA. The 

network element involved in this case is the Mobility Management Entity (MME). 

 Data Source 

The network under investigation in this work is the Meteor mobile phone network, 

which is a nationwide network operating in the Republic of Ireland. The network has 

over one million subscribers, which represents approximately one quarter of the 
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ŎƻǳƴǘǊȅΩǎ пΦс Ƴƛƭƭƛƻƴ ƛƴƘŀōƛǘŀƴǘǎΦ !ǘ ǘƘŜ ǘƛƳŜ ƻŦ Řŀǘŀ ŎƻƭƭŜŎǘƛƻƴ ǘƘŜ ƴŜǘǿƻǊƪ ƻǇŜǊŀǘŜŘ 

both 2G and 3G services. The primary data source is Call Detail Records (CDR); CDR are 

primarily used as billing records for telecommunications transactions passing through 

the network. CDR are collected at the MSC and SGSN and contain records of all data 

transfers, voice calls and Short Message Service (SMS). The available dataset consists of 

approximately four months of data collected in 2011. The BS information provided 

includes geo-spatial coordinates in the Irish Grid Coordinate Reference System [35]. This 

coordinate system is the default system used, unless otherwise stated throughout this 

work. This coordinate system uses Easting and Northing projections which are defined in 

meter units from an origin point located at a latitude of 53°олΩлл b ŀƴŘ ƭƻƴƎƛǘǳŘŜ 

8°ллΩлл ²Φ hǘƘŜǊ ƛƴŦƻǊƳŀǘƛƻƴ ŀōƻǳǘ ǘƘŜ .{ ƛƴŎƭǳŘŜǎ ǘŜŎƘƴƻƭƻƎȅ ǘȅǇŜΣ ǘƘŜ wb/ ƻǊ a{/ 

serving the BS, and the transmitter azimuth. For more information on the topography of 

the network see section 4.2. The information provided for each subscriber contains their 

anonymised Mobile Station International Subscriber Directory Number (MSISDN), their 

subscription type (prepay/bill), year of birth, place of residence (town level), what their 

previous network was (if any), and how many upgrades they have availed of. 

Records of SMS and voice calls are divided into originating and terminating files with 

data logs provided on cellular data sessions. The originating and terminating log files for 

ǾƻƛŎŜ Ŏŀƭƭǎ ǇǊƻǾƛŘŜ ƛƴŦƻǊƳŀǘƛƻƴ ƻƴ ōƻǘƘ ǘƘŜ ŎŀƭƭŜǊ ŀƴŘ ŎŀƭƭŜŜΩǎ ŀƴƻƴȅƳƛǎŜŘ a{L5{bΣ ǘƘŜ 

time and duration of the call, the sectorised cell of both parties to the call when the call 

starts and also the respective cells when the call terminates. Note, the sectorised cell 

information is only available for Meteor subscribers. Similar information is provided for 

SMS in both the SMS originating and terminating log files. The cellular data log contains 

information on each data connection including: information on the anonymised 

MSIDSN, Access Point Name (APN), session start time, duration, amount of data 
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uploaded and downloaded, connected cell at the start and end of the connection, and 

the servicing SGSN.  

The CDR data is processed via a repository server and three SFTP servers. The data is 

received in raw format as a CSV file from the Meteor server to the repository server. 

The repository server holds all the unprocessed data while the SFTP servers are used for 

data analysis. The data is transferred, pre-processed, and then loaded into MySQL 

databases on the relevant servers where each table is suitably optimised to allow for 

parameter extraction. A database table is a set of data elements (values) using a model 

of vertical columns (identified by name) and horizontal rows, the cell being the unit 

where a row and column intersect. A table has a specified number of columns, but can 

have any number of rows. The data can then be accessed directly on the processing 

server or remotely. An overview of the system architecture and some data examples are 

provided in Figure 2.7, while the table structures are displayed in Figure 2.8-Figure 2.12.  
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Figure 2.7: CDR processing architecture overview with some example table relationships 
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Figure 2.8: CDR call originating table structure 

 

Figure 2.9: CDR SMS originating table structure 
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Figure 2.10: CDR call terminating table structure 

 

Figure 2.11: CDR SMS terminating table structure 
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Figure 2.12: CDR Data Session Table Structure 

 Privacy  

The anonymity of subscribers is addressed by a hashing of the subscribersΩ unique 

MSISDN code. A MSISDN is a uniquely identiŦƛŀōƭŜ ŎƻŘŜ ǿƘƛŎƘ ƭƛƴƪǎ ǘƻ ŀ ǇŜǊǎƻƴΩǎ 

ǎǳōǎŎǊƛǇǘƛƻƴ ƻƴ ŀ ƳƻōƛƭŜ ŎŜƭƭǳƭŀǊ ƴŜǘǿƻǊƪΦ ¢Ƙƛǎ ƘŀǎƘƛƴƎ ƎǳŀǊŀƴǘŜŜǎ ǘƘŀǘ ŀ ǳǎŜǊΩǎ ƛŘŜƴǘƛǘȅ 

is not directly observable.  

 Conclusion  

This chapter provided a general introduction to some of the technologies used on the 

network where the dataset was generated. Specific information on the network at the 
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time of data collection was also provided. The steps taken to extract, transform, and 

load the dataset to facilitate analysis were also provided. As in any research endeavour, 

the type and scope of the dataset does impose some restrictions on the type of research 

that it can be effectively applied to. For example, as discussed in section 2.6, the dataset 

provides details on the start and end cell of each communication event. However, it 

does not provide location details of devices/subscribers in-between communication 

events. Therefore, ƛǘ ƻƴƭȅ ǇǊƻǾƛŘŜǎ ŀ ǎŀƳǇƭŜ ƻŦ ŀ ŘŜǾƛŎŜΩǎκǎǳōǎŎǊƛōŜǊΩǎ ƭƻŎŀǘƛƻƴ ǿƛǘƘ ŀ 

sampling rate determined by how often the device/subscriber communicates. As 

discussed in 2.5, a fuller dataset of a devices/subscribers location while not 

communicating is available to the network operator but unfortunately is difficult to 

obtain from network operators due to lack of incentive for long term storage. In 

contrast, activity based call detail records such as those used in this work are stored for 

longer and with greater care as they are required for legal compliance and billing [36]. 

Research aǊŜŀǎ ǿƘƛŎƘ ǊŜǉǳƛǊŜ ŘŜǘŀƛƭŜŘ ƪƴƻǿƭŜŘƎŜ ƻŦ ŀ ŘŜǾƛŎŜΩǎκǎǳōǎŎǊƛōŜǊΩǎ ƭƻŎŀǘƛƻƴ ŀǘ 

all times, such as modelling the instantaneous signalling load in a specific cell/area, 

while still possible with this dataset may benefit form additional data. This dataset also 

does not provide IP packet headers which could be used to identify the specific 

application/website being used. This precludes research that requires a detailed analysis 

of these features such as in [37] (however, a broader categorisation of application usage 

is possible and introduced in Chapter 3). While bearing these shortcomings in mind, the 

dataset described in this chapter is one of the largest and most complete (an entire 

nationwide network) ever used for a work of this kind. 
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Chapter 3 Analysing Cellular Network 

Load 

 Intro duction  

In the past two decades, mobile phones and devices utilising the mobile phone network 

have become ubiquitous in modern society. Mobile phone penetration has approached 

and, in some nations exceeds 100% [38]. Cellular networks are continuing to experience 

a large and sustained increase in demand for network resources [39]. As operators 

move to add capacity, a detailed understanding of the underlying dynamics of resource 

usage is increasingly important. Some previous works have attempted to provide this 

understanding, such as large a scale study of voice calls [12] or the study of user 

dynamics [15]. However, the practical usefulness of these studies is limited by several 

important factors. For example, [12] focuses on voice calls over the network which, as 

will be demonstrated in this chapter, are already a small fraction of network load and 

are projected to diminish further in the coming years [40].  Although [15] focuses on the 

data service, the dataset employed predates the widespread adoption of smartphones 

on the network and, thus, is of limited modern relevance.  

This chapter has three main contributions: 

1) The primary aim of this chapter is to provide empirically created foundational 

models of how the network experiences load i.e. models of arrival rates, 

connection durations and data consumption. These models are provided at a 

fine grained level broken down by connecting device type and contract type. 

The models presented in this work allow an interested third party to create their 
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own models of the most important factors of how the network experiences load 

at a fined grained level.  

2) To provide an empirical measurement of network load and its constituent parts 

both at the network level and the level of the individual base station/cell.  

3) To use quantitative and qualitative analysis of the network including both its 

load and topography to identify trends and possible opportunities for resource 

rationalization.     

The primary novel feature of this chapter is the provision of empirical models of the 

fundamental network usage metrics. The first novel feature of these models is the scope 

and relevance of the dataset used to create these models. The dataset used comprises 

the entirety of a nationwide network and spans several months after the widespread 

adoption of smartphones. This is crucial, as previous work focused on the creation of 

empirical models in the pre-smartphone era [12]. The second novel feature of the 

models provided is the degree to which they are broken down by device type and 

contract type. All necessary parameters are provided to allow an interested party to 

recreate the source distributions. Thus, they will allow for the creation of more accurate 

models of network usage which will respond to changes in the mix of both device and 

contract types. The final novel feature of this chapter is the resolution to which the 

network load is quantified and qualified, both in spatial and temporal terms.  

Section 3.2 provides an empirical examination of the total network load with a 

particular focus on the cellular data load. 3.3 provides an empirical examination of how 

the network load is serviced locally at the level of individual base stations/cells. 3.4 

provides empirically derived models of network usage broken down by device type, 

time of day and contract type. 
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 Total Network Load  

3.2.1 Introduction  

This section provides an empirical measurement of the network load and its constituent 

parts at the network level. Section 3.2 is broken down as follows: firstly, subsection 

3.2.2 proposes and defines a metric to allow for the accurate comparisons of data 

volumes and load across disparate services and technologies. Next, 3.2.3 presents and 

discusses the aggregated network wide daily load curve. 3.2.4 discusses how the 

network load breaks down between the three main constituent parts i.e. voice, data and 

SMS. Subsection 3.2.5 implements a classification system to categorise data connections 

into one of several different types. 3.2.6 provides a concluding discussion of total 

network load ƛƴ ƪŜŜǇƛƴƎ ǿƛǘƘ ŀƛƳ н ǇǊŜǎŜƴǘŜŘ ƛƴ ǘƘŜ ŎƘŀǇǘŜǊ ƛƴǘǊƻŘǳŎǘƛƻƴ άidentify 

trends and possible opportunities for resource rationalizationέΦ 

3.2.2 Total Equivalent Data (TED)  

For the purposes of this work voice and SMS are expressed in terms of equivalent data 

services ς as they are treated as such in a pure packet-switched network, for example 

Long Term Evolution (LTE). Voice is encoded in mobile phone networks using adaptive 

multi-rate (AMR) codecs. In GSM and wCDMA, a narrowband AMR scheme is used with 

a typical data rate of 12.2 kbps [41]. A higher quality wideband AMR is used in LTE and 

offers superior quality at a data range of 12.5 kbps [41, 42]. Higher and lower data rates 

are possible, but for this work a rate of 12.5 kbps will be used in converting voice 

channels to an equivalent data session. Text messages will be treated as a 200 byte 

message with 1 second duration. Multimedia messaging has not been included as it is 

negligible since the advent of 3G networks. 
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3.2.3 Total Network Load  

 

Figure 3.1: Total network load expressed as Total Equivalent Data (TED) in bytes over 

the course of one representative week. Note that hour zero is 0:00 on Monday morning.  

Figure 3.1 illustrates the total aggregated network load across the entire network over 

one representative week. The first and most striking feature of note in Figure 3.1 is the 

rhythmic diurnal pattern of the load. Each day the load follows a similar trend with the 

peak occurring during the evening/night-time and the trough falling in the early morning 

hours. The peak network load is consistently an order of magnitude greater each day 

than the minimum load on the network. This highlights the classical peaking problem in 

resource distribution and shows that for much of the day large amounts of resources 

(spectrum, power etc.) are going to waste. 

Interestingly, the peak hour of load shifts as the days of the week progress. On Mondays 

the peak load occurs between 6-7 p.m. and shifts slightly later each successive day until 
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it occurs between 10-11 p.m. on Friday and Saturday before moving to 7-8 p.m. on 

Sunday. Intuitively this would appear to match up with people going to bed early on 

work nights and staying out late when the next day is a day off. This is also seen when 

public holidays are considered. For example the day before a public holiday generally 

resembles a Friday while the public holiday resembles a Sunday (providing the next day 

is a working day). Interestingly, despite the shifting hour of peak load, the temporal 

location of the lowest load remains constant throughout the week, occurring between 6 

and 7 a.m. each day. Historically, load forecasting in the electrical network has received 

more attention than data load and is consequently more advanced [43]. The two fields 

however share some similarities derived from the diurnal pattern of human activity. [27] 

uses a similar approach to electrical load forecasting to model and forecast the 

aggregated network data load for an entire US state. As in electrical load forecasting the 

authors of [27] proposed the use of two separate models, one for weekdays and one for 

weekend days. Examining Figure 3.1, the data suggests that on this network when 

modeling the total aggregated network load a better approach is to individually create a 

Monday-Thursday model, a Friday model, and a weekend model. Further investigation 

suggests that public holidays should be modeled as a weekend day. This will allow for 

greater nuance in the created model to capture different daily patterns.  

3.2.4 Total Network Load by Service Type  

Figure 3.2 (a) shows the number of usage events broken down into the three main 

services provided by the network operator: voice calls, SMS, and mobile data. The 

respective totals are: 63% of communication events on the network are SMS, 20% of 

events are cellular data usage while the remaining 17% are traditional voice calls. Figure 

3.2 (a) clearly shows the predominance of SMS events on the network. However, Figure 

3.2 (b) plots the distribution of load attributed to each service type and gives a very 
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different picture. Figure 3.2 (b) clearly demonstrates that from the perspective of data 

volumes transferred across the network that cellular data is the dominant service type. 

Despite cellular data connections accounting for only 20% of all communication events 

on the network, they are responsible for over 90% of the data volume on the network. 

Conversely SMS accounts for 63% of the connection events on the network but transfers 

less than 1% of the data on the network. This is in keeping with projections such as [44] 

which shows the network moving away from SMS and voice towards a more data 

centric paradigm.  

 

Figure 3.2: (a) The number of usage events broken down by service type over a typical 

day. (b) The total volume of data transferred over the whole network expressed as TED 

broken down by service type. 

As the dataset employed in this work is mainly from 2011 it spans a time when 

smartphones were becoming widespread on the network. The results of this 

investigation will quantify the trend of smartphone users moving away from voice/SMS 

services towards alternative communication methods. This change from a voice/SMS 

centric network to a data centric network is forcing service providers to shift pricing 
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models from being call/SMS centric to data centric [45]. From the service providers 

perspective this can be partially blamed for reduced Average Revenue Per User (ARPU) 

but is good news from a consumer perspective as the price per byte transferred is 

greatly reduced [46]. 

Figure 3.3 shows how the total load on the network varies by service type over the 

course of a typical Monday. As in the aggregated usage mode case presented in Figure 

3.1, the general trend is for traffic to be light during the early morning hours and then 

peak in the 8 p.m. to midnight period. This trend is driven by the predominance of data 

traffic on the network but interestingly masks a difference between voice/SMS and 

data.  The peak hours of the former generally occur earlier than for the network as a 

whole, specifically during the 4 p.m.-8 p.m. slot. However, the call/SMS volume is 

relatively stable in the preceding and succeeding hours. Interestingly, this earlier peak 

hour better matches works such as [12] which relied on older datasets before the 

predominance of data services. 3.2.3 ŘƛǎŎǳǎǎŜŘ ǘƘŜ άǇŜŀƪƛƴƎ ǇǊƻōƭŜƳέ ƛƴ ǘƘŜ network 

i.e. how the network is resourced for performance at peak hours of load and is thus 

consequently underutilised during the rest of the day. Figure 3.3 suggests that this 

problem is exacerbated further by the move towards cellular data.  For example, for 

mobile data the ratio between usage during the midday-4 p.m. period and the 8 p.m.-

midnight period is 1:1.55 while for voice it is almost 1:1. Thus, as the network becomes 

ever more data centric it is reasonable to assume that the peaking problem and the 

commensurate underutilisation of resources will become more acute. This is in keeping 

with findings produced in [40] which suggest the peaking problem is being exacerbated 

in both  fixed line and mobile contexts due to the growth of data usage, particularly 

video applications. As will be demonstrated in 3.2.5, 63% of mobile data usage on this 

network is related to video applications. Tackling this problem will require more 
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advanced models of load and more active/automatic network management practices, 

many of which are developed in later chapters. 

 

Figure 3.3: The total load on the network for a typical Monday broken down by traffic 

type and four hour period. 

3.2.5 Qualifying and Quantifying  Cellular Data Usage 

Subsection 3.2.4 demonstrated the crucial role of cellular data usage when examining 

the total load present on the network. This subsection introduces a method to qualify 

cellular data usage into its constituent parts and then proceeds to quantify the 

contribution of each part. The dataset employed in this work is limited to CDR as 

discussed in Chapter 2 and, thus, does not directly contain information on what the 

purpose of each data session was. If packet header information was available, such as in 

[15], the purpose of each data session would be clearer. To overcome this limitation in 

the available data a classification step is required to classify the data usage into broad 

constituent parts. Figure 3.4 displays the clustering of activities according to: data 

volume, duration, and download to upload ratio. The plot suggests that there are a 
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number of clusters representing usage modes. From Figure 3.4 the following categories 

of usage can be identified: 

¶ Short rapid communications (Apps): These activities correspond to small 

quantities of data used over short durations, generally less than 10 kB and for 

less than 60 seconds. This is representative of GPS updates, app interactions, 

advertising updates etc.   

¶ Long duration, large volumes, mostly downloads (traditional): This consist of 

connections where large quantities of data are transferred asymmetrically 

(several Mbytes with large download to upload ratio) over an extended period 

of time. This is the traditional asymmetric usage mode of downloading 

webpages and other media consumption. 

¶ Similar download/upload ratios, significant data volumes, less than 20 minutes 

(P2P Video/Voice): This suggests 1:1 communication with roughly equal data 

upload and downloaded. The average data rate for this category is 120 kbps.  

Alternatively, it could be file sharing, however, in that case the download to 

upload ratio would normally favour downloads. 

¶ Fast, high data rates, mostly download, medium duration (Video): These 

sessions are classified by short bursts of high speed data usage with a large 

download to upload ratio. 

¶ Long-time connections, low data volumes, similar upload/download ratios 

(Instant Messaging (IM)): In these sessions, the download to upload relationship 

is more symmetric with the connection not regularly timing out. This is 

indicative of two users communicating with one another but with insufficient 

data rates for voice or video which suggests text based instant messaging. 
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The bulk of the mobile data used can be broadly separated into the five categories 

which are quantified in Table 3.1. The categories outlined above and in Table 3.1 

represent 84% of data connection events (Figure 3.5) and 89% of data volumes (Figure 

3.6). 

 

Figure 3.4: Plot of the data usage characteristics for one day (sampled 1:1000). 

Table 3.1: Data usage categories 

 Time D/U Ratio Volume 

Apps < 120 s --- < 256kB 

Traditional > 300 s >5 > 1 MB 

Peer2Peer <1200 s >0.5, <1.5 > 256 kB 

Video < 300 s >5 > 4 MB 

Instant Messaging (IM) > 600 s < 2 < 256 kB 

 



 35 

Figure 3.5  shows that the majority of connections to the network are still SMS, followed 

by data connections and then voice. However, as shown in [47] SMS is projected to 

shrink while data connections grow in importance. The data portion of the connections 

is further broken down into the categories listed in Table 3.1. Interestingly, app 

connections account for a plurality of data connection events, followed by video, IM and 

traditional browsing. Figure 3.6 displays the breakdown of cellular data usage volume 

into the categories presented in Table 3.1. Figure 3.6 clearly shows the predominance of 

video on network load; video accounts for the majority of data used on the network at 

63%. Interestingly, despite accounting for a majority of data volumes video only 

represents 17% of data connections. When one considers not just mobile data 

connections but connections regardless of service type (only 20% of which are mobile 

data (Figure 3.2 (a))), videos proportion of all connections falls to 3.4%. From the 

perspective of total network load, including all service types, video accounts for 63% of 

the 90% that is mobile data (Figure 3.2 (b)). Thus video accounts for 56.7% of total 

network load regardless of service type while only being 3.4% of connections. This 

compares to a global average of 53% reported by [39] in 2013.  Video clearly places a 

largely disproportionate load on network resources and managing it is a key task for 

network operators.  Upgrading the network to newer technology such as LTE is one step 

although, as discussed in the following sections, when users get more capable devices 

they tend to consume more. Other options to curtail demand are available to operators 

such as pay per MB, usage caps, fair usage policies, etc. These features are already 

common on networks and all are employed on the network studied in this work. 

Tweaking these pricing instruments to balance quality of service while remaining 

ŎƻƳǇŜǘƛǘƛǾŜ ƛǎ ƪŜȅ ǘƻ ŀƴ ƻǇŜǊŀǘƻǊΩǎ ǾƛŀōƛƭƛǘȅΦ !ƴƻǘƘŜǊ ǇƻǎǎƛōƭŜ ƻǇǘƛƻƴ ŦƻǊ ƴŜǘǿƻǊƪ 

operators is differential pricing bands for highly demanding video applications, receiving 

fees from preferred video content providers, throttling certain services, etc. However, 
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net neutrality regulations would currently prevent many of these options from being 

implemented [48]. 

Comparing Figure 3.5 and Figure 3.6 one sees that although app connections account 

for a plurality of data connections on the network (45%), they account for less than 1% 

of the total data volume. An established connection between the User Equipment (UE) 

and the network consumes a larger amount of energy in the UE than when the UE is not 

connected while also consuming network resources. Thus, after a period of inactivity 

from the UE the network ends a connection; this amount of time is usually a few 

ǎŜŎƻƴŘǎ ŀƴŘ ƛǎ ǎǇŜŎƛŦƛŜŘ ōȅ ǘƘŜ ƴŜǘǿƻǊƪΩǎ ƛƴŀŎǘƛǾƛǘȅ ǘƛƳŜǊ [33]. From the network 

ƻǇŜǊŀǘƻǊΩǎ ǇŜǊǎǇŜŎǘƛǾŜΣ ŜŀŎƘ ŎƘŀƴƎŜ ōŜǘǿŜŜƴ ŎƻƴƴŜŎǘŜŘ ŀƴŘ ŘƛǎŎƻƴƴŜŎǘŜŘ ǎǘŀǘŜǎ 

causes a signalling load in the network. This load, if great enough, can cause network 

disruptions as discussed in [49].  These app connections disproportionately affect the 

signalling load on the network by constantly sending keep-alive messages, polling for 

data, etc. As discussed in [49] network operators can alter network parameters to 

ameliorate the deleterious effect of these repeated app connections. Of course a 

balance must be found between managing the signalling load on the network and a 

possible resultant deterioration in user experience [49].  App creators could also help by 

being mindful of the implications of their design decisions on the wireless network 

resource. For example, in 2013 Facebook released a software update to its Android and 

iOS app which single-handedly drove up signalling load and airtime consumption on 

some networks by 5-10% [50]. Better app design would benefit network operators 

through lower capital expenditure, users through better battery life, the environment 

through lower energy consumption from both the UE and network equipment and the 

app designer by making their apps more attractive to end users [49]. 
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Figure 3.5: The pie chart on the left shows the total proportion of usage events by 

service type on a typical day. The pie chart on the right shows the breakdown of the 

cellular data segment into its constituent parts. 

 

Figure 3.6: The pie chart on the left shows the total volume of data transferred over the 

whole network expressed as TED broken down by usage mode on a typical day. The pie 

chart on the right shows the breakdown of the cellular data segment into its constituent 

parts. 
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3.2.6 Conclusion 

This section provided an empirical measurement of the network load and its constituent 

parts at the network level. Subsection 3.2.2 proposed and defined a novel metric to 

allow for the accurate comparisons of data volumes and load across disparate services 

and technologies. Subsection 3.2.3 presented and discussed the aggregated network 

wide daily load curve. Subsection 3.2.4 discussed how the network load breaks down 

between the three main constituent parts i.e. voice, data and SMS. Subsection 3.2.5 

implemented a classification system to categorise data connections into one of several 

different types. 

This section also identified and quantified some of the main trends and opportunities 

related to overall network load. For example, 3.2.3 identified and quantified the peaking 

problem on this network which is the source of much of the networks underutilisation 

of resources. Subsection 3.2.4 identified the trend that the problem is likely to be 

further exacerbated by more data usage in the future. 3.2.5 identified the 

predominance of video data on the network and some of the challenges it poses. 

Subsection 3.2.5 also identified the vastly disproportionate signaling load placed on the 

network by apps and discussed some ways to ameliorate this problem.  

 Local Load Distribution  

3.3.1 Introduction  

! ƭƛǎǘ ƻŦ ǘƘǊŜŜ Ƴŀƛƴ ŎƻƴǘǊƛōǳǘƛƻƴǎ ǿŀǎ ǇǊƻǾƛŘŜŘ ƛƴ ǘƘƛǎ ŎƘŀǇǘŜǊΩǎ ƛƴǘǊƻŘǳŎǘƛƻƴ, the 

second ƻŦ ǿƘƛŎƘ ǿŀǎ άprovide an empirical measurement of network load and its 

constituent parts both at the network level and the level of the individual base 

station/cellέΦ This section completes this objective (which was started in 3.2) by 
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providing an empirical measurement of the network load and its constituent parts at 

the level of individual base stations/cell. ¢Ƙƛǎ ŎƘŀǇǘŜǊΩǎ ǘƘƛǊŘ main contribution άTo use 

quantitative and qualitative analysis of the network including both its load and 

topography to identify trends and possible opportunities for resource rationalizationέ ƛǎ 

also completed in this section by identifying and quantifying some of the main trends 

and opportunities related to the topography of the network and localized load 

demands.  

3.3.2 Local Load Distribution  

Figure 3.7 (a) shows the distribution of daily loads (TED) serviced by base stations across 

the network broken down by day while Figure 3.7 (c) presents the same information 

broken down by base station sector (cell). The amount of load serviced varies by several 

orders of magnitude from a few megabytes up to tens of gigabytes. The key parameters 

of the distributions are presented in Table 3.2. These highlight the great variability in 

load serviced by different portions of the network; the busiest base station handles 

2000 times the load of the least used base station. Comparing the base station loads 

presented in Figure 3.7 (a) with the data presented in [15] highlights the massive growth 

in data usage in the intervening years (the dataset in [15] is from 2007, predating the 

widespread adaption of smartphones). The median load on a base station in the 

network presented in [15] is approximately 15MB or one hundred times less than the 

median base station load of 1.5 GB as outlined in Table 3.2. The distribution of load has 

a positive skew of 2.25 at the base station level and 2.9 at the individual cell level. Skew 

is defined as the difference of a distributions mean and median divided by the 

ŘƛǎǘǊƛōǳǘƛƻƴΩǎ ǎǘŀƴŘŀǊŘ ŘŜǾŀǘƛƻƴΦ A positive skew means that the right tail of the 

distribution is longer i.e. there are more base stations/cells with below average loads 

and a smaller amount with much larger loads. This is a common feature of cellular 
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networks and a natural consequence of the network topography. Smaller cells (capacity 

cells) cover densely populated urban regions with high data demands while larger cells 

(coverage cells) provide mainly call and SMS coverage in sparsely populated rural areas 

(see Chapter 4 for a more detailed discussion).  The individual cell level has a higher 

skew value than the base station level with a higher coefficient of variation cv. The 

coefficient of variation is defined as: 

 
ὧ

„

‘
 

 
(3.1) 

ǿƘŜǊŜ ˋ ƛǎ ǘƘŀǘ ǎǘŀƴŘŀǊŘ ŘŜǾƛŀǘƛƻƴ ƻŦ ōŀǎŜ ǎǘŀǘƛƻƴκŎŜƭƭ ƭƻŀŘ ŀƴŘ ˃ ƛǎ ǘƘŜ ƳŜŀƴ ōŀǎŜ 

station/cell load. Working out cv for the base stations gives cvBS = 2.8/2.5 = 1.12, while 

the equivalent value for cells cvCells is cvCells = 1.2/0.85 = 1.41. Thus the cells have a higher 

variability relative to their mean than base stations. This makes their load harder to 

predict and will be discussed in further detail in Chapter 5. 

 

Table 3.2: Descriptive statistics of BS and sectorised cell load for typical weekday. 

 Min 

 

Max Median 

(ὼ) 

Mean 

ό˃ύ 

SD 

 όˋύ 

Skewness 

όʴύ 

Base Stations 14 MB 29 GB 1.5 GB 2.5 GB 2.8 GB 2.25 

Cells 0.5 KB 14 GB 400 MB 850 MB 1.2 GB 2.9 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 3.7: (a) CDF of the daily traffic (both uplink and downlink incl. cellular data, SMS 

and voice calls) per base station broken down by day of the week. (b) Zoomed in version 

of (a). (c) CDF of the daily traffic per cell broken down by day of the week. (d) Zoomed in 

version of (c). Note the similarity between Mon-Thur on all figures 

Figure 3.7 (a) and Figure 3.7 (c) show the large variation in the daily traffic load serviced 

by individual base stations and individual cells on the network. Figure 3.8 & Figure 3.9 

further demonstrate this by presenting the percentage of total network load serviced by 

a given percentage of the base stations/cells. Figure 3.8 shows that the most heavily 

loaded 1% of base stations service 12% of all network load. This is less than the 

equivalent figure of 20% from a 2007 dataset reported in [15] but larger than projected 

values in the future [51]. It appears that as total network load increases the load on the 
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network begins to spread between base stations and cells more evenly. This makes 

intuitive sense ς due to economic factors, as the network grows the more densely 

populated areas receive the newest and most capable technology first. The less 

profitable areas are left with older less capable technology, discouraging or stifling use 

(e.g. areas with only GPRS/EDGE for data as opposed to HSDPA/LTE etc.). In time 

however, the networks capability to handle data spreads more evenly and the disparity 

begins to reduce. The imbalance is more acute at the level of specific sectorised cells as 

seen when comparing Figure 3.8 and Figure 3.9. For example 20% of network traffic is 

serviced by 1% of cells while at the base station level the top 1% of base stations service 

only 12% of the network load. Examining the usage patterns of individual subscribers 

reveals that a relatively small number of subscribers are responsible for a 

disproportionately large portion of the overall network traffic.  In Chapter 4 the home 

and work locations of these subscribers are derived from a novel analysis of the data 

set. Doing so reveals that the presence of these heavy users in certain cells is an 

important factor in the disparity of cell loads. 

 

Figure 3.8: The percentage of total network traffic (TED) serviced by a given percentage 

of base stations 
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.  

Figure 3.9: The percentage of total network traffic (TED) serviced by a given percentage 

of cells. 

 

Figure 3.10: The load broken down by traffic type for three groups of BS as a percentage 

of overall traffic volume TED. 
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Figure 3.10 shows the load broken down by traffic type for: the top 10% of heavily 

loaded base stations, the bottom 10% of base stations by load and finally the load on 

the mean base stations. Figure 3.10 clearly shows that the highly loaded cells are almost 

exclusively loaded with cellular data while in the least loaded cells voice calls 

predominate. This is in keeping with the distinction between coverage and capacity cells 

as discussed previously. 

3.3.3 Conclusion 

This section provided an empirical measurement of the network load and its constituent 

parts at the level of individual base stations/cells. This section also identified and 

quantified some of the main trends and opportunities related to the topography of the 

network and localized load demands.  A great disparity in network load was identified at 

the individual base station and cell level. For example, the base station with the heaviest 

load handles approximately two thousand times the traffic of the base station with the 

ƭƻǿŜǎǘ ƭƻŀŘΦ  hƴ ǘƘŜ ƴŜǘǿƻǊƪ ƭŜǾŜƭ мн҈ ƻŦ ǘƘŜ ƴŜǘǿƻǊƪΩǎ ǘǊŀŦŦƛŎ ƛǎ ǎŜǊǾƛŎŜŘ ōȅ Ƨǳǎǘ м҈ ƻŦ 

the base stations. This result is even more extreme at the level of individual cells where 

1% service 20% of the total network load. This disparity between cells coupled with the 

temporal peaking problem identified in 3.2 make clear the potential for greater 

resource rationalisation. Several methods of achieving this are possible, ranging from 

dynamic spectrum access, where valuable spectrum is shared between licensed primary 

and unlicensed secondary users [12], to the dynamic switching off of equipment to 

conserve energy as will be discussed in Chapter 7. 
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 Models of Network Load  

3.4.1 Introduction  

Given the importance to overall network load of data sessions (Figure 3.2) this section 

provides empirically created models for the three most important aspects of data 

sessions: 

1. Interarrival times of data sessions 

2. Data session durations 

3. Mean data session throughputs. 

With these empirically created models the data usage on this network can be modelled 

by interested parties. This section also provides a novel breakdown of the models both 

by access device class and contract type. Voice and SMS have been modelled in previous 

works and the results produced on this network are similar, so to save space and avoid 

replication they are omitted. For empirical models of voice and SMS usage see [12]. 

3.4.2 Modelling Interarrival Time  

Models of the interarrival times/arrival rates are important for creating accurate usage 

scenarios of how subscribers request network resources. The arrival rate is the number 

of arrivals per unit of time while the interarrival time is the time between each arrival 

into the system and the next. When modelling time series data an important 

consideration is the timescale over which the data to be modelled is stationary i.e. the 

timescale over which the model parameters such as mean and variance do not change. 

However, when modelling one also wishes to aggregate over timescales that are as 

large as possible to reduce the standard error (this becomes more of a problem when 

examining individual base stations with low arrival rates). To aid in the choice of an 

aggregation timescale Figure 3.11 shows how the network wide normalised average 
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data session arrival rate varies over four days, two representative weekdays and two 

representative weekend days. 

Figure 3.11 demonstrates some key aspects of the networkΩǎ ŀǊǊƛǾŀƭ ǊŀǘŜ. 

1. There are two distinct periods which approximate day and night times. The 

daytime period has high arrival rates in comparison to the night time period. 

2. The greatest change in arrival rates occur during the latenight/early morning 

hours and the late morning hours. These intervals coincide with the transition 

from the day to night period and vice versa. 

3. Apart from the transitional periods, the mean arrival rates appear (relatively) 

stationary over the course of 30 minutes.   

4. Weekdays and weekends appear to show different trends in arrival rates over 

the course of the day. This is to be expected due to the change in many 

ǎǳōǎŎǊƛōŜǊǎΩ ǎŎƘŜŘǳƭŜǎ ōŜǘǿŜŜƴ ǿŜŜƪŘŀȅǎ ŀƴŘ ǿŜŜƪŜƴŘǎ as discussed in 3.2.3.  

Taking the aforementioned points into consideration an aggregation of 30 minutes 

approximates the stationary behaviour desired. 
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Figure 3.11: Normalised arrival rate by time of day 

 

Figure 3.12: CDF of interarrival time over whole day 

Figure 3.12 shows the empirical CDF of data session interarrival times on the network 

for an entire day. The CDF of a real-valued stochastic variable X is the function given by: 
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 Ὂ ὼ ὖὢ ὼȟ (3.2) 
 

where the right hand side gives the probability that the stochastic variable X has a value 

less than or equal to x. The empirical CDF Fn for n independent identically distributed 

(iid) observations Xi is defined as: 

 
 Ὂ ὼ

ρ

ὲ
Ὅ  

(3.3) 
 

 

where I·ƛҖȄ is the indicator function which equals 1 if Xi Җ x or 0 if Xi > x 

The Interarrival time in cellular networks has traditionally been modelled as an 

exponential distribution [12] such as:  

 Ὂ ὼ ρ  Ὡ  (3.4) 
 

where x is the inter arrival time and ʊ  is the adjustable weight parameter. However, 

these models were primarily for calls and SMS, predating the widespread adoption of 

smartphones and the move to a more data centric network [24]. Figure 3.13 plots the 

interarrival time for two different periods of the day with their respective exponential 

fits (via non-linear least squares) of the form given in (3.4). There is a large difference in 

the interarrival time distributions between these distinct periods as would be expected 

given their differing arrival rates as plotted in Figure 3.11. Visually the fits are quite 

accurate with low respective RMSE as shown in Table 3.3, suggesting that the 

interarrival process for data can be modelled in a similar fashion to calls and SMS. These 

empirically crated models of the interarrival times are important for creating accurate 

usage scenarios of how subscribers request network resources. They will allow the 

interested reader to recreate the data connection request process without access to the 

original dataset.  
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Figure 3.13: CDF of interarrival time for a period of low usage (06:00-06:30) and a period 

of high usage (18:00-18:30) with their respective exponential fits of the form given in 

(3.4) and with the parameters provided in Table 3.3. 

Table 3.3: Interarrival time fit parameters by time period 

Time Period ʊ RMSE 

00:00-00:30 72.49 .0060 

06:00-06:30 22.35 .0099 

12:00-12:30 75.99 .0051 

18:00-18:30 90.23 .0047 
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3.4.3 Modelling Connection Duration  

This subsection examines the distribution of data session durations and how they can be 

modelled. Initially results are presented for a general model, then, more detailed 

models broken down by the device/contract type are provided. 

 

Figure 3.14: Histogram of data session durations. Each bin represents one minute, 

ŜȄŎŜǇǘ ŦƻǊ ǘƘŜ Ŧƛƴŀƭ ōƛƴ ǊŜǇǊŜǎŜƴǘƛƴƎ ŀƭƭ ŘǳǊŀǘƛƻƴǎ җ ƻƴŜ ƘƻǳǊΦ 

Figure 3.14 plots the histogram of data session durations with each bin representing one 

minute (except for the final bin which represents all times greater than one hour). 

Figure 3.14 ƛƭƭǳǎǘǊŀǘŜǎ ǘƘŀǘ ǎƘƻǊǘ ŘǳǊŀǘƛƻƴ Řŀǘŀ ǎŜǎǎƛƻƴǎ όҖ о ƳƛƴǳǘŜǎύ ŘƻƳƛƴŀǘŜ 

accounting for approximately 50% of all connections. The predominance of these short 

connections is no surprise given that short app connections form a plurality of data 

connections as demonstrated in Figure 3.5. Longer durations are much scarcer with only 

approximately 20% of data sessions lasting one hour or more. 
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These values are broken down further in Figure 3.15 which shows how the CDF of 

duration varies by the connecting device type. For example, Figure 3.15 shows that a 

disproportionate amount of the connection durations over 60 minutes long are from 

mobile internet USB dongles. Conversely Figure 3.15 reveals that a disproportionate 

number of the short connections come from feature phones. 

Comparing smartphones with feature phones shows that feature phones connect to the 

network for much shorter periods. Their median connection time (160s) is less than half 

that of prepay smartphones (350s) and under a third of bill pay smartphones (550s). 

Interestingly at the time of data collection feature phones were much more likely to be 

on prepay price plans than smartphones. This coupled with a poorer interface and 

experience could partially explain the difference.  

 

Figure 3.15: CDF of data session durations broken down by connecting device type. 

As seen in Figure 3.1 there appears to be approximately two distinct periods of usage 

during the day ς a early morning period and a daytime/night-time period. Also [12] 
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reported that there are two distinct call duration distributions, one for the night time 

and one for the daytime. To investigate if this is also the case for the durations of data 

sessions, the variation in the empirical CDF of the hour-wise durations is compared to 

the overall daily empirical CDF as was suggested for call durations in [12]. To do this the 

Kolmogorov-Smirnov statistic [52] is computed. This is the maximum difference 

between the overall empirical CDF and the hourly empirical CDF. The Kolmogorov-

Smirnov statistic for two samples is defined as: 

 Ὀȟ -ÁØὊȟ ὼ  Ὂȟ ὼ       (3.5) 
 

where F1,n and FнΣƴΩ are the empirical CDFs (see equation(3.3)) of the first and second 

samples respectively while sup is the supremum function.  

However, on repeating the methodology of [12] and comparing the variation in the 

empirical CDF of the hour-wise durations to the overall daily empirical CDF no significant 

distinct daily periods of data session durations were found. Thus, it appears that unlike 

call durations, the distribution of data durations is not broken into distinct daily periods. 

Figure 3.16 shows the empirical CDF of data session duration distribution. Note that the 

duration value for a particular session is assigned to the time period in which it was 

initiated. The duration distributions resemble a lognormal distribution and are modelled 

as such in Figure 3.16. The Probability Density Function (PDF) of the lognormal 

distribution of the data session durations can be reproduced via: 

 
Ὢὼ

ρ

ὼ„Ѝς“
Ὡ

  

 (3.6) 
 

where x is the data session durations, ˃ are the data sessionsΩ mean duration and ̀ is 

the standard deviation of the data sessions durations [54]. The fit applied to the data 

session durations in Figure 3.16 can be reproduced from the PDF described in equation 

(3.6) using the input parameters in Table 3.4 and the method of CDF calculation used in 
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(3.2) and (3.3). Visual inspection of the goodness of fit in Figure 3.16 coupled with the 

small RMSE reported in Table 3.4 supports the efficacy of log normal fits for cellular data 

session durations.  

 

Figure 3.16: Data session duration distribution and lognormal fit. 

Table 3.4: Parameters for lognormal model of data session duration distributions. 

Distribution µ  ̀ RMSE 

Data Session Durations 6.01894  2.49531  .0396  

 

Figure 3.15 demonstrated that the distribution of connection durations is highly 

dependent on the type of device connecting to the network and to a lesser extent the 

type of contract the user has with the network (bill pay v prepay). Thus, Figure 3.17 

illustrates some of the results for modelling the distribution of data session durations 

broken down by connection type and contract type. The complete list of parameters 

used to produce fitted models similar to those in Figure 3.17 for all the distinct 

device/contract type identified in Figure 3.15 are presented in Table 3.5. 
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Figure 3.17: Data session duration distributions for: (left) bill pay smartphone 

connections and their lognormal fits, (right) prepay smartphone connections and their 

lognormal fits 

Table 3.5: Parameters for lognormal models of data session duration distributions. 

Distribution µ  ̀ RMSE 

Bill Pay Smartphone 6.17992  2.65923  .0451  

Prepay Smartphone 5.87245  2.30635  .0236  

Feature Phone 5.19  2.39028  .0373  

USB Dongle 6.64844  2.44977  .0874  

 

  



 55 

3.4.4 Modelling Mean Throughput  

 

Figure 3.18: Empirical Mean Throughput per session (bit/s) & lognormal fit 

Figure 3.18 shows the empirical CDF of the throughput per session distribution; the 

throughput distribution resembles a lognormal distribution and is modelled as such in 

Figure 3.18 in a similar fashion to the models in 3.4.3. The distributions may be 

reproduced as lognormal distributions with the following input parameters: 

Table 3.6: Parameters for lognormal model of mean throughput per data session 

Distribution µ  ̀ RMSE 

Daytime/Night-time 6.92205  4.19348  .0034  

 

Figure 3.15 illustrated that device type played an important role in determining the 

mean duration of a data session connection. A natural follow-on from this is to explore 

the role played by device type in the mean throughput. Figure 3.19 demonstrates the 

great disparity that exists in mean throughput between the different connecting 
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devices. USB dongles have a much larger mean throughput than the other devices 

connecting to the network with a median value of 75kbps versus just 10bps for prepay 

smartphones. Interestingly, the mean throughput of feature phones is on par with bill 

pay smartphones and greater than that of prepay smartphones. It is worth reiterating 

here that this refers to mean throughput for each session and not instantaneous 

throughput.  This gives users who stay connected for a long period (while functionally 

inactive or passively consuming tiny amounts of data through small app updates etc.) a 

greatly diminished mean throughput. The large disparity between mean throughput for 

bill pay and prepay is also a striking feature of the results with bill pay users having a 

median throughput ten times greater than their prepay counterparts. One possible 

explanation for this disparity in mean throughput is that bill pay customers may be more 

likely to use data intensive applications such as video streaming given they have a set 

amount of cellular data allocation each month. Prepay customers on the other hand pay 

per byte and thus may be more likely to restrict data intensive high usage applications 

such as video streaming or offload this to WIFI networks. This disparity underlines the 

importance of also considering contract type when producing models of usage. The 

parameters of the lognormal fits by device type and contract type are provided in Table 

3.7 allowing the interested reader to reproduce the distributions. 
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Figure 3.19: Mean throughput per data session broken down by device 

Table 3.7: Parameters for lognormal models of mean throughput per session 

Distribution µ  ̀ RMSE 

Bill Pay Smartphone 4.32686  2.8086  .0027  

Prepay Smartphone 2.43485  2.69727  .0053  

Feature Phone 4.33676  3.48404  .0089  

USB Dongle 10.5527  2.06099  .02 69 

 

3.4.5 Models of Network Load Conclusion 

This section provided foundational, empirically created models of how the network 

experiences load. The three fundamental aspects of data sessions from a network 

operator perspective were modelled: 

1. Interarrival times of data sessions. 

2. Data session durations 
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3. Mean data session throughputs 

These empirically created models of data usage on this network will allow other 

interested parties to recreate these models for their own use.  This subsection also 

provided a novel breakdown of the models both by access device class and contract 

type. It was shown that short connections (<3 minutes) predominate on the network 

accounting for approximately 50% of all connections (primarily comprised of app 

interactions as discussed in 3.2.5). A difference in median connection time was 

discovered between smartphones depending on the nature of the contract with the 

median prepay smartphone connection lasting approx. 400 seconds compared to 

approx. 500 seconds for bill pay smartphones. However, the longest connections by far 

came from USB dongles with a median connection time of approx. 1500 seconds. Unlike 

call durations, the time of day was not found to have an impact on data session 

durations. Empirically created models were provided for all possible permutations of 

connecting device type and contract type. Finally, the mean throughput of all data 

connections was modelled and then this was further broken down by connecting device 

type and contract type. Interestingly, contract type was found to be of crucial 

importance when considering mean throughput with bill pay smartphone connections 

having a median mean throughput ten times greater than prepay smartphone 

connections. These empirically created models will allow for the accurate recreation and 

modelling of these key network features, not only at the general level but crucially at 

the device and contract specific level. 

 Conclusion  

The introduction of this chapter identified its three main contributions - each of these 

aims was accomplished in the succeeding sections. For example, the primary aim of this 

chapter was to provide empirically created foundational models of how the network 
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experiences load i.e. models of arrival rates, connection durations, and data 

consumption. These models were to be provided at a fine-grained level broken down by 

connection time, connecting device type and, finally, contract type. 3.4 achieved this 

objective by providing empirically created models for the three most important aspects 

of data sessions: (i) Interarrival times of data sessions, (ii) data session durations and (iii) 

mean data session throughputs. This section also provided a novel breakdown of the 

models by access device class and contract type. These empirically created models will 

allow for the accurate recreation and modelling of these key network features, not only 

at the general level but crucially at the device type and contract specific level. 

¢ƘŜ ǎŜŎƻƴŘ ŎƻƴǘǊƛōǳǘƛƻƴ ƻŦ ǘƘƛǎ ŎƘŀǇǘŜǊ ǿŀǎ άTo provide an empirical measurement of 

network load and its constituent parts both at the network level and the level of the 

individual base station/cellέΦ ¢Ƙƛǎ ǿŀǎ ŀŎƘƛŜǾŜŘ ŀǘ ǘƘŜ ƴŜǘǿƻǊƪ ƭŜǾŜƭ ƛƴ 3.2 and at the 

level of the individual base stations/cell in 3.3. 3.2 provided a network wide examination 

of network load and introduced a classification system for CDR to allow for a detailed 

breakdown of data usage. 3.3 provided a more fine-grained approach to examining 

network load and focused on the local disparities between individual base stations/cells.  

¢ƘŜ Ŧƛƴŀƭ ŎƻƴǘǊƛōǳǘƛƻƴ ƻŦ ǘƘƛǎ ŎƘŀǇǘŜǊ ǿŀǎ άTo use quantitative and qualitative analysis 

of the network including both its load and topography to identify trends and possible 

opportunities for resource rationalisationέΦ CƛǊǎǘƭȅΣ ŀ ƳŜǘǊƛŎ ŦƻǊ ŎƻƳǇŀǊƛƴƎ ƭƻŀŘ ŀŎǊƻǎǎ 

service type was introduced. Then the peaking problem on the network was introduced 

and discussed. This is where peak time loads are an order of magnitude higher than 

trough time loads. This peaking problem was found to be getting relatively worse as 

more and more mobile data was being used on the network. When the mobile data 

connections were further analysed and classified it was found that the primary driver of 

mobile data usage on this network was video streaming.  However, despite the 
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importance of video to the total volume of data transferred, when considering signalling 

overhead app connections were found to be having a vastly disproportionate impact. 

Some of the problems caused by this and possible solutions to this were discussed and 

identified. 3.3 identified the great disparity in load at the local level with the most highly 

loaded base stations having a load two thousand times greater than the least loaded 

base stations. hƴ ǘƘŜ ƴŜǘǿƻǊƪ ƭŜǾŜƭ мн҈ ƻŦ ǘƘŜ ƴŜǘǿƻǊƪΩǎ ǘǊŀŦŦƛŎ ƛǎ ǎŜǊǾƛŎŜŘ ōȅ Ƨǳǎǘ м҈ ƻŦ 

the base stations. This result is even more extreme at the level of individual cells where 

1% service 20% of the total network load. This disparity between cells coupled with the 

temporal peaking problem identified in 3.2 make clear the potential for greater 

resource rationalisation. Several methods of achieving this are possible, ranging from 

for example dynamic spectrum access where valuable spectrum is shared between 

licensed primary and unlicensed secondary users [12] to the dynamic switching off of 

equipment to conserve energy as discussed in Chapter 7.  
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Chapter 4 Spatial Usage in Cellular 

Networks  

 Intro duction  

The preceding ŎƘŀǇǘŜǊ ŜȄǇƭƻǊŜŘ ǘƘŜ ƴŜǘǿƻǊƪΩǎ ƭƻŀŘ ŘȅƴŀƳƛŎǎ ŦǊƻƳ ŀ ƴŜǘǿƻǊƪ ǿƛŘŜ 

perspective. Although that exploration was important and useful, it did not examine the 

highly localised nature of cellular networks; any examination of cellular networks is not 

complete without reference to their defining characteristic, spatial subsidiarity. For this 

thesis to complete its task of providing and examining practical Near Horizon Localised 

Load Forecasting models for cellular networks then a strong understanding of network 

spatiality is crucial. To that end this chapter focuses on the spatial properties and causal 

relationships present in the network. The primary contributions of this chapter are: 

1. The creation of a spatial representation of the entire network to allow for the 

association of load with defined spatial areas. These defined coverage areas for 

both base stations and sectorised cells are the spatial building blocks of the 

network. In later chapters they will be modelled and their load predicted both 

individually and in larger spatial amalgamations.  

2. A novel procedure is introduced to clean inaccuracies in the spatial coordinates 

of cell towers. Due to the importance of the spatial locations of base stations 

and sectorised cells in the following chapters, it is imperative that every effort is 

made to identify and exclude inaccuracies. 

3. A method to visualise how the load is distributed spatially across the network 

both as a whole and across various services. This provides an important network 
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wide view of the load distribution which is a crucial element in understanding 

how the load varies spatially. 

4. The provision of a novel method to discover who lives and works within the 

defined spatial coverage areas introduced in point 1 and how they interact with 

other network users spatially. It is axiomatic that the number of subscribers in 

an area will influence the load of that area. It is therefore useful from a network 

oǇŜǊŀǘƻǊΩǎ ǇŜǊǎǇŜŎǘƛǾŜ ǘƻ ǳƴŘŜǊǎǘŀƴŘ Ƙƻǿ ǘƘŜƛǊ ǎǳōǎŎǊƛōŜǊǎ ŀǊŜ ŘƛǎǘǊƛōǳǘŜŘ 

throughout the network. However, cell phones are also known as mobile 

phones for a reason, and thus it is not enough to simply know where subscribers 

live. It is also important to understand where they spend large amounts of their 

time such as where they work. 

5. An examination of the degree, or lack thereof of spatial correlation in load 

across the network. The previous chapter already highlighted that there is a 

large disparity in load across the network at the level of the individual base 

station/cell. Using the coverage regions introduced in this chapter the degree or 

lack thereof spatial correlation in load across these coverage regions is 

explored. 

6. A novel exploration of the presence/lack of causal influence between 

neighbouring cells within the network ƛΦŜΦ ŀƴ ŜȄŀƳƛƴŀǘƛƻƴ ƻŦ ǿƘŜǘƘŜǊ ŀ ŎŜƭƭΩǎ 

load has any influence on neighbouring cells. The causality present in the 

network can be used to aid localised prediction of load, the identification of key 

cells/base stations whose failure would be particularly deleterious to user 

experience, travel mode discovery (paths taken by subscribers as they move 

throughout the network) etc. 

The above contributions are valuable to network providers and relevant to many 

advanced network management techniques. They are particularly important to those 
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techniques which rely on a strong spatial understanding such as dynamic spectrum 

allocation [12], reduced sampling techniques [55], fault detection, and spatially 

influenced power saving schemes [56] such as the one presented in Chapter 7. The 

remainder of this chapter is laid out as follows: 

¶ 4.2 examines the spatial representation of the network. 4.2.2  explains how the 

dataset presented in Chapter 2 can be represented by spatial coverage regions. 

4.2.3 provides a novel algorithm to identify out-dated spatial information in the 

dataset and exclude it from further study. 4.2.4 presents a method of network 

wide load visualisation based on the spatial regions presented in the preceding 

sections. 

¶ 4.3 provides an examination of how users communicate over spatial distance. 

4.3.2 introduces a novel algorithm to calculate the home and work populations 

of each cell in the network. 4.3.3, 4.3.4, and 4.3.5 respectively introduce, 

implement, and test one possible model of spatial communication distance.  

¶ 4.4 examines the spatial relationships and dependencies present within the 

network structure. 4.4.2 explores the spatial correlations present in the 

ƴŜǘǿƻǊƪΩǎ ƭƻŀŘΦ 4.4.3 - 4.4.7 ŜȄǇƭƻǊŜǎ ǘƘŜ Ŏŀǳǎŀƭ ǎǘǊǳŎǘǳǊŜ ƻŦ ǘƘŜ ƴŜǘǿƻǊƪΩǎ ƭƻŀŘΦ 

¶ 4.5 ǇǊƻǾƛŘŜǎ ŀ ŎƻƴŎƭǳŘƛƴƎ ŘƛǎŎǳǎǎƛƻƴ ƻŦ ǘƘŜ ŎƘŀǇǘŜǊΩǎ ǊŜǎǳƭǘǎΦ 

 Spatial Representation of the Network  

4.2.1 Introduction  

This section focuses on the creation of spatial representations of the network firstly at 

the localised base station and sectorised cell coverage level, then the aggregated 

network level. The spatial coverage region representations introduced in 4.2.2 are the 

foundational step in beginning to examine the network spatially. Much of the later work 
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and many of the techniques introduced later require the use of these spatial coverage 

regions. Given their importance 4.2.3 introduces a novel method to identify and remove 

errors in their positioning. 4.2.4 provides a method to visualise the spatial distribution of 

cellular load across the network. The techniques employed in 4.2.4 could be generalised 

to not only represent load distribution but also other properties of interest such as 

connection events, subscriber distribution etc. 

4.2.2 Base Station and Cell Coverage Regions 

As discussed in Chapter 2 BTS, Node-B and eNode-B may all be mounted on the same 

tower, with each servicing various spatially overlapping geographical regions. It is 

possible to approximate idealised cell site coverage areas via Voronoi tessellation [57] 

by using the geo-spatial coordinates and the network type of each cell, where each 

centre represents a base station site location. A Voronoi tessellation is a partitioning of 

a plane into regions based on distance to points in a specific subset of the plane [57].  

Figure 4.1 depicts the base station site Voronoi tessellations areas for the 2G and 3G 

base stations on the network under examination (note Figure 4.1 - Figure 4.3 are placed 

together at the end of this subsection to facilitate their comparison). It is important to 

note that the accuracy of the tessellation in approximating base station coverage areas 

is affected by channel characteristics, topography of the area and physical layer 

parameters which include transmitter frequency, tilt, height, and transmission power 

[34]. The collection of this information is prohibitively expensive and, as such, is not 

factored into this analysis. Thus, it should be noted that the estimation technique 

applied does introduce some approximation error at a local level. 

Figure 4.1 was created with the MATLAB plotting function. The MATLAB function 

VORONOI was used to create the Voronoi tessellations using the site locations as inputs. 

A polygon is returned for each unique site location, thus base stations with matching 
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site locations on the same network share the same site polygon. The county 

geographical regions polygons presented are sourced from Ordinance Survey Ireland 

[58]. Note that the coordinate system used in Figure 4.1 - Figure 4.3 is the Irish Grid 

Coordinate Reference System [35]. This coordinate system uses the projections of 

Easting and Northing, which are in units of meters from an origin point located at 

latitude роϲолΩлл b ŀƴŘ ƭƻƴƎƛǘǳŘŜ ƻŦ уϲллΩлл W.  

The polygons presented in Figure 4.1 are a reasonable approximation of inland coverage 

regions and coverage regions not adjacent to the border with Northern Ireland; 

however, the absence of a limiting threshold for polygon size means that coverage 

regions along the coast are less accurately approximated. Thus, to improve costal 

accuracy a maximum site radius, Smax, of 20 km and 15 km is introduced for 2G and 3G 

networks respectively. These limits reflect the realistic limits of communication within 

each standard given the network topology [33]. The site radius Sr for each site is 

calculated by 
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where N is the number of points in the coverage polygon and (x,y) are the spatial 

coordinates of each point. 

Figure 4.2 shows the effect of introducing the base station coverage radius limit. The 

difference is particularly evident along the coast and border with Northern Ireland. 

Along these areas in Figure 4.1 the coverage regions stretched to infinity but are now 
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more realistically limited in Figure 4.2. The limited base station boundary is found by 

extracting the polygon of the spatial intersection of the idealised site coverage polygon 

with the circle of the maximum site size. This intersection is carried out via the 

POLYBOOL function from the mapping toolbox of MATLAB. Sectorised coverage regions 

of the larger base stations may be extracted by using the transmitter azimuth angle 

information in the tessellation. These sectorised coverage regions are shown in Figure 

4.3; the restricted coverage regions displayed in Figure 4.2 are now subdivided into 

individual sectorised cells in Figure 4.3. To generate the coverage regions in Figure 4.3 

each coverage polygon in Figure 4.2 is subdivided by the unique transmitter azimuth 

angles of cells associated with the site. It is important to note that sectorised cells at the 

same site sharing the same azimuth angle will share the same cell coverage polygon, Cp. 

The Cell radius (Cr) and Cell area (Ca) is calculated via equation (4.1) and equation (4.2) 

respectively. An individual cellΩǎ centroid Easting and Northing location, (Cx, Cy), is 

calculated by equations (4.3) and (4.4), respectively. 
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Figure 4.1: Voronoi diagram of 2G (top) and 3G (bottom) cell site coverage regions. 
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Figure 4.2: Restricted 2G (top) and 3G (bottom) cell site coverage regions. 
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Figure 4.3: Sectored 2G (top) and 3G (bottom) cell coverage regions. 
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4.2.3 Data Cleaning 

As part of the routine operation of a large scale cellular network, operators sometimes 

relocate hardware around their network. Consequently, through time if the network 

operator does not keep up to date records on the movement of all hardware within the 

network the spatial locations of hardware such as cells may become outdated. This can 

introduce errors in analysis where the spatial locations of cells are important (such as in 

localised load forecasting schemes as introduced in Chapter 7). For example, the 

switching technique introduced in Chapter 7 relies on the spatial redundancy between 

proximate cells. If these cells were not in fact proximate then this would invalidate the 

entire switching process. Thus, validating the hardware location information received 

from the network operator as discussed in Chapter 2 is a vital step in any spatial analysis 

of the network. Some errors can be clearly seen when examining the distance travelled 

between certain cells in a given time. A subscriber serviced by cell Cx at time tx and who 

is subsequently observed in cell Cy at time ty is assumed to have travelled from the 

coverage polygon of cell Cx, Cpx, to cell CyΩǎ ŎƻǾŜǊŀƎŜ ǇƻƭȅƎƻƴ Cpy. The upper bound on 

the journey time ōŜǘǿŜŜƴ ǘƘŜ ǘǿƻ ŎŜƭƭΩǎ ŎƻǾŜǊŀƎŜ ǊŜƎƛƻƴǎ ƛǎ ƎƛǾŜƴ ōȅ ty ς tx. The actual 

distance travelled by the subscriber will depend on the particular size of the cell 

coverage polygons involved ranging from Ὠ  to Ὠ . Figure 4.4 illustrates the 

maximum possible distance travelled Ὠ , the average distance Ὠ ȟ and finally the 

minimum distance Ὠ . As illustrated in Figure 4.4 the maximum distance in any two 

cell coverage polygons will be the distance between two vertices giving  

 Ὠ άὥὼ ὅ  ὅ  (4.5) 

where Cpij is the jth vertex of cell iΩǎ ŎƻǾŜǊŀƎŜ ǇƻƭȅƎƻƴΦ ¢ƘŜ ƴǳƳōŜǊ ƻŦ ǾŜǊǘƛŎŜǎ ƛƴ ǘƘŜ 

coverage polygon Cpx is denoted a = [1 Ҧ Ax], where Ax is the total number of vertices 

used to define the cell coverage polygon Cpx. Similarly, the number of vertices in the 
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coverage polygon Cpy is denoted b = [1 Ҧ By], where By is the total number of vertices 

used to define the cell coverage polygon Cpy. However, as demonstrated in Figure 4.4 

the minimum distance between two coverage polygons can be between a vertex and a 

side. This, in theory, makes the calculation of Ὠ  more complicated as every point in 

every coverage polygon must be compared with all points in every other polygon 

(unless the polygons are found to be overlapping or adjacent). Also, as the coverage 

polygons are defined by their vertices locations, it necessitates the interpolation of the 

points between each vertex at an arbitrary granularity. However, in practice as coverage 

polygons are only an approximation of actual cell coverage regions which vary due to 

topography, load etc. this is needlessly complex. A simpler solution is to use a heuristic 

that the minimum possible distance between two non-adjacent/non-overlapping 

polygons is  

 Ὠ Ὠ ὅ  ὅ  (4.6) 

where Ὠ  is the Euclidian distance between centroids of cell coverage polygons Cpx and 

Cpy; ὅ  and ὅ  denote the maximum distance between the coverage polygon 

centroids and their respective farthest vertex.  
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Figure 4.4: The range of possible distances travelled in a transition from cell Cx to Cy in 

time tx to ty. The distance,Ὠ , is given by the distance between the centroids of the two 

cell coverage polygons. The maximum distance is given by Ὠ  with the minimum 

distance being Ὠ  

When the transitions between coverage regions are examined, a small proportion are 

found to occur in impracticably small-time periods given the supposed distance 

between the coverage regions. Thus algorithm 4.1 is used to identify out of date cell 

cƻǾŜǊŀƎŜ ǊŜƎƛƻƴǎΦ ¦Ǉƻƴ ŎƻƳǇƭŜǘƛƻƴ ƻŦ ǘƘŜ ƎŜƻƎǊŀǇƘƛŎ Řŀǘŀ ŎƭŜŀƴƛƴƎΣ р҈ ƻŦ ŎŜƭƭΩǎ 

geographic locations were found to be out of date and excluded from further 

examination in this work.  
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Algorithm 4.1: 

The geographic data cleaning algorithm.  

 

1: Let D = (dij) be a two dimensional distance 

array (mxm) where m is the number of cells in 

the network and dij  is minimum distance 

between cell polygon i and j i.e. dij  = Ὠ . 

 

2: Let T = (tij) be a two dimensional transition 

time array (mxm) where m is the number of cells 

in the network and tij  is minimum observed 

transition time between cells i and j. 

 
 

3: Let F = (fij) be a two dimensional flag array 

(mxm) where m is the number of cells in the 

network and fij  is = 1 if the transition between 

cells i and j is flagged as infeasible and 0 

otherwise. 

 
 

4: Iterate through each column of D, di1,di2,..dim 

(i.e. the distance between cell i and all other 

cells). For each element check the corresponding 

element in T, tij. If dij > 0 but tij = 0 flag the cell 

pair in F as F(fij) = 1. If dij / tij > 120 kph (the 

motorway speed limit is used as an upper bound 

on expected transition speed) flag the cell pair in 

F at F(fij) = 1. Otherwise set F(fij) = 0 

 
 

5: Calculate the sum for each row in F (giving 

the number of infeasible pairs the cell is 

involved in).  

 

6: Iterate through the flag array F. For each 

transition pair flagged as infeasible, mark the 

cell with the most infeasible transitions 

calculated in the previous step as out of date. 

Decrease the infeasible value for the other 

member of the pair and continue until all cells 

are assigned as either up to date or out of date 

geographically. 
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4.2.4  Usage Visualisation  

Temporal variation in cell load was explored in the previous chapter; however, this 

examination made no reference to the spatial structure of the network. As 

demonstrated in 4.2.2 ŜŀŎƘ ŎŜƭƭΩǎ ǎǇŀǘƛŀƭ ǎǘǊǳŎǘǳǊŜ Ŏŀƴ ōŜ ǾƛǎǳŀƭƛǎŜŘ ǘƻ ōǳƛƭd up a map of 

the entire network. Thus, a spatio-temporal load map can be constructed for the entire 

network by combining the spatial structure visualised in 4.2.2 with time series data 

representing cell load as presented in the previous chapter. A spatial smoothing 

function is required to enable the visualisation of a spatio-temporal load map for a 

network comprising many overlapping cell coverage regions of various sizes and shapes. 

The spatial smoothing function utilises an individual Gaussian function for each cell 

ŎŜƴǘǊŜŘ ƻƴ ǘƘŜ ŎŜƭƭΩǎ ŎƻǾŜǊŀƎŜ Ǌegion centroid as discussed in 4.2.3. Each Gaussian 

ŦǳƴŎǘƛƻƴΩǎ ǎǇǊŜŀŘƛƴƎ ŦŀŎǘƻǊ ƛǎ ŀ ŦǳƴŎǘƛƻƴ ƻŦ ŎŜƭƭ ǊŀŘƛǳǎ ŀƴŘ ǎǇǊŜŀŘǎ ŜŀŎƘ ŎŜƭƭΩǎ ƭƻŀŘΣ Ca, 

over a spatial lattice, ɻ (x,y). The weighted spreading function for a cell is given by: 

 
ὼȟώ ὅÅØÐ 

ὼ  ὅ

ςὅ
 
ώ  ὅ

ςὅ
 

 
(4.7) 

where Cr is the cell radius, (Cx,Cy) ŀǊŜ ǘƘŜ ŎƻƻǊŘƛƴŀǘŜǎ ƻŦ ǘƘŜ ŎŜƭƭΩǎ ŎŜƴǘǊƻƛŘΣ όx,y) are 

coordinates of points in the spatial lattice, and h denotes the scaling weight which 

ensures the combined weights in ɻόȄΣȅύ sum to Ca. Each lattice point may extend to a 

temporal horizon t by incorporating the parameter t representing the desired time 

sample. The resultant lattice ɻόȄΣȅ,t) can then be combined with other lattices to view 

the spatial distribution of activities in a desired area for time sample t. The combined 

weighted lattice, ̒ (x,y,t), is given by: 
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(4.8) 
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where ɻ c(x,y,t) is the lattice representing cell C and Nc is the total number of cells in the 

spatial region of interest. 

Figure 4.5, Figure 4.6 and Figure 4.7 illustrate representative sample cell load maps for 

data load, call load, and SMS load respectively across the network for both peak and 

minimum load. To create these visualisations the spatial extent of the network was 

divided into 200x200 meter squares indicating an individual pixel. Each pixel was 

assigned a load intensity via equations (4.7) and (4.8) with a temporal bin of 300 

seconds. The visualisations were completed using the built in MATLAB plotting 

functions. To smooth out high frequency temporal variations in load, a temporal 

smoothing function was employed. The function is defined as: 

 
—ὼȟώȟὸ

ρ

υ
—ὼȟώȟὭ 

 
(4.9) 

This is a moving average filter which averages the current temporal sample over five 

temporal samples. Interestingly, the plots show the strong spatial unevenness in the 

distribution of load across the network. The relationship between population density 

and load is evident across all service types and for hours of maximum and minimum 

load. For example, compare the densely populated greater Dublin region with the more 

sparsely populated and hence lower usage North West of Ireland in Figure 4.5 - Figure 

4.7.  Figure 4.5, Figure 4.6 and Figure 4.7 also indicate spatial correlation between the 

loads on the three different service types. 
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Figure 4.5: Visualisation of data load on the network. On the Left the load at its daily 

maximum and on the right the load at its daily minimum. 

 

Figure 4.6: Visualisation of voice call load on the network. On the Left the load at its 

daily maximum and on the right the load at its daily minimum. 



 77 

 

Figure 4.7: Visualisation of SMS load on the network. On the Left the load at its daily 

maximum and on the right the load at its daily minimum. 

4.2.5 Conclusion 

This section focused on the creation of spatial representations of the network firstly at 

the localised base station and sectorised cell coverage level, then the aggregated net-

work level. The spatial coverage region representations introduced in 4.2.2 are the 

foundational step in beginning to examine the network spatially. Much of the later work 

and many of the techniques introduced later require the use of these spatial coverage 

regions. Given their importance 4.2.3 introduced a novel method to identify and remove 

errors in their positioning. Subsection 4.2.4 provided a method to visualise the spatial 

distribution of cellular load across the network. The techniques employed in 4.2.4 are 

generalizable to not only represent load distribution but also other properties of 

interest such as connection events, subscriber distribution etc. 
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 Communication Distance  

4.3.1 Introduction  

This section provides an examination of how users communicate over spatial distance. 

Subsection 4.3.2 introduces a novel algorithm to calculate the home and work 

populations of each cell in the network. This algorithm allows for the creation of 

accurate maps of the networkΩs subscriber base for different classes of cells.  4.3.3 - 

4.3.5 examines and models how subscribers communicate with one another spatially. 

The classic gravity model of spatial communication distance is applied in a novel manner 

to cellular networks utilising the cellular coverage regions identified in 4.2.2 and the 

novel cellular population estimation techniques presented in 4.3.2. 

4.3.2 Cell Populations  

One of the defining features of a cellular network is the population density of the spatial 

region that the network services. Two popular methods of estimating population 

density when examining a network are the use of census records or the address 

information provided by the customer upon signing up to the network [59]. Both 

methods have their shortcomings. In the case of census information, it cannot be 

assumed that the network of interest has equal penetration across all areas studied. A 

large drawback of using address information provided by the subscriber is its lack of 

accuracy. Subscribers often provide unreliable information to service providers. This is 

self-evident in the customer data provided for prepay customers (see Chapter 2). Many 

of these prepay customers have blank address information or simple placeholders such 

ŀǎ άȊȊȊέ ŜǘŎΦ  Customers with a bill phone are obliged to submit correct home address 

details but there is no such guarantee with pre-pay users. This is particularly challenging 

due to the growth in popularity of pre-pay plans [60]. Bill-pay customers currently 
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account for just approximately 10% of the users on the network under investigation. 

Apart from the lack of accuracy of home locations inherent in both methods, neither 

takes account of the daily movement of people throughout the network. For much of 

the day a large proportion of the people living in a certain area will not be there - 

further reducing the usefulness of address or census information. A more useful dataset 

would include for example, the home and work/study locations of the subscriber base 

without recourse to self-reported address or census information. Such a data set was 

created with the use of four months of CDRs as outlined in Algorithm 4.2 & Algorithm 

4.3.  
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Algorithm 4.2: 

The home location estimation algorithm used.  

 

1: Extract all events over the study time period 

and group them by day of the week. Exclude any 

events that occur on Friday, Saturday or Sunday.  

 

2: For a day in the study period extract all events 

which occur at ñhome timesò i.e. 8pm -6am and 

group them by user id. 

 
 

3: Load list of cell towers in the area of interest.  

 
 

4: For each subscriber count how many events 

occur within each cellôs coverage polygon region 

(see §4.2.2) 

 
 

5: Iterate through all subscribers and determine 

the most frequent cell for each subscriber for the 

day of interest.  

 

6: Assign the subscriber to the cell found in step 

5 for that particular day. 

 

7: Repeat steps 2 to 6 for each day of interest 

and find the cell the subscriber is assigned to for 

the largest amount of days. Set this cell as the 

subscriberôs home location. If a subscriber is 

associated with two or more cells for the same 

amount of days, pick one at random. 

 
 

8: Sum all the subscribers assigned to each cell 

tower and set the result as each respective cellôs 

home population. 
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Algorithm 4.3: 

The work location estimation algorithm used.  

 

1: Extract all events over the study time period 

and group them by day of the week. Exclude 

any events that occur on Saturday or Sunday.  

 

2: For a day in the study period extract all 

events which occur at ñwork timesò i.e. 9am -

4pm and group them by user id. 

 
 

3: Load list of cell towers in the area of interest.  

 
 

4: For each subscriber count how many events 

occur within each cellôs coverage polygon 

region (see §4.2.2) 

 
 

5: Iterate through all subscribers and determine 

the most frequent cell for each subscriber for the 

day of interest.  

 

6: Assign the subscriber to the cell found in step 

5 for that particular day. 

 

7: Repeat steps 2 to 6 for each day of interest 

and find the cell the subscriber is assigned to for 

the largest amount of days. Set this cell as the 

subscriberôs work location. If a subscriber is 

associated with two or more cells for the same 

amount of days, pick one at random. 

 
 

8: Sum all the subscribers assigned to each cell 

tower and set the result as each respective cellôs 

work population. 

 

Both algorithm 4.2 and 4.3 were implemented in a mix of C and SQL for the entire 

network. Figure 4.8 shows the CDF of the home and work populations calculated for 

each cell on the network as calculated using Algorithms 4.2 and 4.3 respectively. A wide 

range of both home and work populations are evident in each cell ranging from a 

minimum of 1 to a maximum of 1000. The median home population is 38 while the 

median work population is 40. However, the mean home and work populations are 
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more than double their respective medians at 84 and 91 respectively. This indicates that 

there are many cells with low home and work populations while a disproportionate 

amount of subscribers live/work in a relatively small cohort of heavily loaded cells. This 

is consistent with both the findings presented in the previous chapter and subsection 

4.2.4. The CDF of home and work populations look very similar but it bears 

remembering that they are not necessarily for the same cells (see the comments in 

Figure 4.9). For example, a cell covering an industrial park may have a large working 

population with much a smaller residential population. The home population to work 

population ratio for each cell is displayed in Figure 4.9. Generally, the two are similar 

with the home population ranging from half to twice the work population for 85% of 

cells. However, in some cases the home population can be one tenth the work 

population at one extreme or ten times greater than the work population at the other 

extreme. 

 

Figure 4.8: CDF of the home population and work population for each cell on the 

networks 
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Figure 4.9: CDF of the home population of each cell divided by each cellΩs respective 

work population. 

4.3.3 The Gravity Model  

Interestingly, having accurate home and work locations for mobile subscribers allows 

for, in some respects, the treatment of cellular networks like old fixed line connections. 

This permits the revalidation of fundamental laws of fixed line communications such as 

the gravity law in a cellular network context. It has been previously demonstrated that 

various systems can be represented as a network of nodes, connected by weighted or 

unweighted links [61]. It is a common technique to represent social networks as a 

network where each node represents a person and links between the nodes indicated 

social interactions. [62] utilises a dataset similar to CDRs to highlight the importance of 

weak ties to the propagation of information through a communication network. Several 

other authors have made use of large recently available phone and email datasets to 

study human connections and behaviours [63-66]. Geographical information allows for a 

more detailed and interesting exploration of group and individual interactions. For 
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example, [67] uses a mobile phone dataset to show that the probability of a call 

between two people decreases by the square of their distance.  

Interurban connections such as passenger flows and phone messages and their 

dependence on separation distance have been studied for a considerable amount of 

time [68, 69]. In various economic and social networks, interactions between actors 

ǎǳŎƘ ŀǎ ǊŜƎƛƻƴǎ ŀƴŘ ŎƻǳƴǘǊƛŜǎ Ƙŀǎ ƭŜŘ ǘƻ ƳƻŘŜƭǎ ǎƛƳƛƭŀǊ ǘƻ bŜǿǘƻƴΩǎ DǊŀǾƛǘȅ ƭŀǿΣ ǿƘŜǊŜ 

the size of the actor plays the role of mass [70]. These Gravity models take the following 

form: 

 
ὡ ὑ

ὓὓ

Ὠ
 

 
(4.10) 

where Wij is the weight of the link between node i and node j, dij is the distance 

between nodes Mi and Mj, n is the exponent of the distance, and K is a constant.  

Studies have also been carried out on road and airline networks between cities [9, 10]. 

In the case of road networks it appears that the gravity model holds for the strength of 

interactions. [71] analysis a CDR dataset but unlike [62] it associates users with locations 

and aggregate links between users to links between locations. [71] explores how the 

strength of the links between locations varies relative to separation distance and 

population. It finds that the strength of the link between locations is proportional to the 

populations at the locations and inversely proportional to the distance between the 

locations. Hence, [71] concludes that the inter-city communication intensity is 

characterised by a gravity model.  

4.3.4 Estimating population size and communication link s 

One limitation of [71] is that it relies on the billing address Zip code provided by the 

subscribers to the network operator. All users in a specific Zip code are aggregated and 

Zip codes are aggregated to form cities. However, this introduces a potential source of 
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error as users often provide unreliable information to service providers as discussed in 

4.3.2. 

As can be seen from equation (4.10) it is important that an accurate estimate of the 

population of the two cities/areas be made. The population M of city i is calculated as 

follows: 

 
ὓὭ ὓὧ 

 
(4.11) 

where c is a cell with all or part of its coverage region contained within city iΩǎ ōƻǳƴŘŀǊȅΣ 

and nc is the number of cells with all or part of their coverage regions contained within 

city iΩǎ ōƻǳƴŘŀǊȅΦ ¢ƘŜ Ŏƛǘȅ ōoundaries are defined as the boundaries employed by the 

Central Statistics Office for the 2011 Irish census [72]. 

Equation (4.11) provides an accurate estimation of the subscriber population of cities 

i.e. Mi and Mj in equation (4.10). However, verification of equation (4.10) also requires 

values for the link weight W between cities. To generate the interurban 

communications network link weight the total communications originating and 

terminating in a city are aggregated together. The weight of the link (W) between two 

cities h  and ̡  can thus be defined as: 
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(4.12) 

where wij is a link between individual users in the respective cities. The weight of the 

links between twenty-five cities/towns is thus calculated for each of the seven days in a 

week including workdays and weekend days. The weight of the links between the 

cities/towns is also calculated for two times of interest during each day ς work times 

(9am-4pm Monday-Thursday and 9am-3pm Friday) and home times (8pm-7am Monday 

ς Thursday). Additionally, the weight of the links is calculated for daytime weekend 
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(7am Saturday & Sunday to 8pm Saturday and Sunday) and night time weekend (8pm 

Saturday and Sunday to 7am Sunday and Monday). 

All the above calculations are performed for three different metrics of link weight ς 

number of calls between cities, total call time in seconds between cities and number of 

SMS between cities. 

4.3.5 Testing the gravity model  

[73] performed a high level investigation of the gravity model on IrelŀƴŘΩǎ 

communication network. [73] found that the gravity model approximates the actual 

data under their specific aggregations. [73] aggregated results over the period of one 

week and were dealing with much larger regional aggregations. Equation (4.10) can be 

rearranged as follows: 
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ὑ ὓὓ

ὡ
 

 
(4.13) 

Using equation (4.13) the results obtained can be tested for degrees of compliance with 

the gravity model using linear regression. Two different measures of distance were used 

when testing the gravity model. The first was the spatial travel distance between the 

centres of two cities and the second was the travel time by road between two cities. 

Figure 4.10 compares one week of data plotted for both travel distance by spatial 

distance and by travel time. Figure 4.10 illustrates that the gravity model performs 

better when distances are measured in spatial distance. This result is repeated for all 

the cities examined in the study with the agreement between the gravity model and the 

results being on average 15% less when travel time is used. 
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Figure 4.10: One full week of data plotted with two different measures of distance. 

The model was tested for three different types of communications links ς total number 

of call connections made, total connection time of all calls and total number of SMS sent 

and received. The greatest agreement with the gravity model was found when total 

number of SMS was used. This result is repeated for all the cities examined in the study 

with the agreement between the gravity model and the results being on average 17% 

less when total number of connections or total call time is used. It is not immediately 

clear why this is; it could represent an underlying difference in communication 

behaviour between calls and SMS. It could, however, also be a result of users sending on 

average over 4 times more text messages than making calls. As shown in Figure 4.11, 

smaller town to smaller city/town i.e. communications with few links disproportionality 
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affects the results. This smaller city/town to smaller city/town effect is reduced when 

dealing with SMS as the number of links is greater. 

 

Figure 4.11: Small town to small town communication over one week 

The agreement between the results and the model vary both with the day of the week 

and the time of the day. Figure 4.12 shows how the results change between the working 

week and the weekend. On average, the gravity model performs worse for cities during 

the weekend (on average approximately 10% less agreement between observation and 

the model) when compared with the working week. One possible explanation is the 

large amount of Irish people who work/study in the cities during the week and move 

back to the small towns/rural areas where they grew up on the weekends. There is also 

a small change in the agreement with the model based on the time of day. During the 

daytime/evening there is a slightly larger agreement between the gravity model and the 

results than at night. The effect is smaller than the weekday/weekend shift and is 

probably a result of non-residents being present in the city during daytime hours on 

weekdays and returning home outside the city at night. 
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Figure 4.10 and Figure 4.12 seem to indicate a value of K=1 in equation (4.13). There are 

several possible reasons for this. For example, ǘƘŜ wŜǇǳōƭƛŎ ƻŦ LǊŜƭŀƴŘΩǎ ǳǊōŀƴ ŀǊŜŀs are 

separated by relatively small distances. This allows people to work/study in one part of 

the country while maintaining strong links with their relatively close places of birth. This 

large degree of mobility between urban areas would not be possible in a larger country.  

The relevance of the model greatly depends on having at least one large population 

centre on either end of the communication link. There are two main interurban 

communication scenarios considered. The first is when a large population is present on 

either side of the link (large population communicating with small, small to large and 

large to large). This always provides the best fit with the gravity model (see Figure 4.10 

(a)) even when taking into account variations due to the time of the week (Figure 4.12) 

or time of the day. 

The second population scenario is where there is no large population centre on either 

side of the link (smaller town to smaller town). This primarily affects the smaller towns 

with populations of less than 50,000 inhabitants (Figure 4.11). This scenario is prevalent 

ƛƴ LǊŜƭŀƴŘ ŘǳŜ ǘƻ Ƴŀƴȅ ƻŦ LǊŜƭŀƴŘΩǎ ǳǊōŀƴ ŀǊŜŀǎ ōŜƛƴƎ ǊŜƭŀǘƛǾŜƭȅ ǎƳŀƭƭ ōȅ ƛƴternational 

standards. The Republic of Ireland only has five cities with a population greater than 

50,000 inhabitants. Thus, ŦƻǊ ǘƘŜ ǊŜƳŀƛƴŘŜǊ ƻŦ ǘƘŜ wŜǇǳōƭƛŎΩǎ ǳǊōŀƴ ŀǊŜŀǎ ǘƘŜ ƎǊŀǾƛǘȅ 

model is a poor choice for modelling interurban communication. 

This is a key difference between this study and that of [73] which shows an approximate 

national agreement with the gravity model.  The conclusion of [73] states ǘƘŀǘ άǘƘƛǎ 

work has focused on county-ƭŜǾŜƭ ƛƴǘŜǊŀŎǘƛƻƴέΦ  hǳǘ ƻŦ ǘƘŜ ǘǿŜƴǘȅ ǎƛȄ ŎƻǳƴǘƛŜǎ ƻŦ ǘƘŜ 

Republic Of Ireland covered in their study only two have a population of less than 

50,000 with most having significantly more [74]. Thus, the gravity model is only relevant 
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when dealing with sufficiently large populations, either concentrated in a large urban 

area or more widely spread out over a larger region. 

 

Figure 4.12: Change in communication patterns (a) Mon-Thurs (working days) (b) 

Saturday and Sunday (weekend) 

4.3.6 Conclusion 

4.3.2 saw the introduction of novel techniques to ascertain the network subscriber 

specific home and work populations for each cell in the network. These techniques 

allow for the creation of accurate maps of a networks subscriber base for different 

classes of cells. 4.3.2 focused on home and work cells but the techniques introduced 

could easily be generalised to build up maps of different cells e.g. socialising cells etc. 
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4.3.3 - 4.3.5 examined how subscribers communicate with one another spatially. The 

gravity model was tested as one possible model for communication distance in cellular 

networks. The performance of the model was found to vary largely based on the type of 

link chosen, the time of the week, and to a lesser extent the time of day. The value of K 

in equation (4.13) was also found to be 1 indicating a linear relationship. The gravity 

model may be more suited to static landlines than mobile phones. The simplicity of the 

model does not consider the highly mobile nature of the Irish population. This is 

probably exacerbated by the relatively small size of the Republic. This small size 

facilitates people working/studying in one area during the week while maintaining 

strong links to their place of origin. The gravity model was found to be only helpful 

when dealing with large population centres of more than 50,000 inhabitants. As the 

Republic of Ireland only has five cities with a population of 50,000 inhabitants or more 

the gravity model is a poor choice for modelling interurban communication between the 

ŎƻǳƴǘǊȅΩǎ ǎƳŀƭƭŜǊ ǳǊōŀƴ ŎŜƴǘǊŜǎΦ Lƴ ŦǳǘǳǊŜ ƛƴǘŜǊǳǊōŀƴ ǿƻǊƪ ǎƳŀƭƭŜǊ ǇƻǇǳƭŀǘƛƻƴ ŎŜƴǘǊŜǎ 

should be amalgamated into larger groups or a more sophisticated model should be 

employed. 

 Spatial Relationships  

4.4.1 Introduction  

In the previous chapter, 3.3 examined how network load varied between individual base 

stations and sectorised cells. A large disparity in load was identified with some base 

stations and cells servicing several orders of magnitude more load than others. 

Concomitant with those findings, 4.3.2 identified a large variation in the amount of 

people living and working in cells and the relevant ratios of both. Thus, it is already 

known that there is a great diversity of cells present on the network. The question this 

section explores is how do these differences manifest spatially? 4.4.2 explores the loads 
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serviced by cells spatially correlated while 4.4.3 - 4.4.7 explores the causal structure of 

ǘƘŜ ƴŜǘǿƻǊƪΩǎ ƭƻŀŘΦ 

4.4.2 Spatial Correlation  

This subsection examines how spatially correlated load is across the entire network. The 

load of each cell is now used to investigate the extent of the spatial correlation on the 

network by cross-correlating pairs of base stationsΩ time series with one another. Cross-

correlation is a widely used statistical method of measuring the similarity (the degree of 

correlation) between two time series [75]. Figure 4.13 shows the cross-correlation 

calculated at zero lag for all cells on the network and also for cells based on certain 

distance ranges over two weeks of data at a granularity of one hour. Similar results were 

also obtained for the 15-minute interval but are omitted due to their similarity. The 

cross-correlation between cells was found to be quite high with the one-hour interval 

displaying slightly higher values than the 15-minute interval. The median cross-

correlation was approximately 0.65 for the one-hour interval and 0.5 for the 15-minute 

interval. 80% of cells had a cross-correlation greater than or equal to 0.5 for the one-

hour interval. Cross-correlation was also found to be dependent on the distance 

between the cells as shown by the groups in Figure 4.13. For example, the median cross-

correlation between cells within 2km of each other was 0.8 falling to 0.7 for all cells 

within 20km. 
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Figure 4.13: CDF of the cross-correlation between all pairs of cells and also within 

certain distance bands based on hourly load. The distance is defined as ▀●◐
□╪●as in 4.2.3 

To further examine the degree of spatial correlation identified in Figure 4.13, a different 

ƳŜǘǊƛŎ ƪƴƻǿƴ ŀǎ aƻǊŀƴΩǎ L ǎǘŀǘƛǎǘƛŎ ƛǎ ŜƳǇƭƻȅŜŘ [76]Φ aƻǊŀƴΩǎ L statistic is a regularly 

employed measure of spatial autocorrelation. It quantifies the correlation between 

different measurements or observations based on their spatial location. Geographic 

distance is used to indicate proximity and is employed as a weight in the formula. 

aƻǊŀƴΩǎ L statistic is defined as: 
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(4.14) 

where x is the random variable being studied, Ȅ represents the sample mean, xiΩs are the 

observations, wij is the weight associated with each pair (xi,xj) and N is the number of 

observations. In this situation, the random variable x being studied is the hourly load on 

a cell. Similarly, ǘƻ ƻǘƘŜǊ aƻǊŀƴΩǎ L studies binary weights wij = 1 are employed when the 

cells are in close proximity (dxy = 2km), otherwise wij Ґ лΦ ¢ƘŜ ǾŀƭǳŜ ƻŦ aƻǊŀƴΩǎ L ƛǎ ǘƘŜƴ 

plotted in Figure 4.14 for each hour of the week. Figure 4.14 ǎƘƻǿǎ ǘƘŀǘ aƻǊŀƴΩǎ L 
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statistic varies from a low of approximately 0.1 to a high of approximately 0.4 indicating 

a varying degree of spatial correlation within the network. Interestingly, the periodic 

pattern displayed in Figure 4.14 is reminiscent of the diurnal archetype for cellular load 

identified in 3.2.3. This suggests that the degree of spatial correlation is greatest when 

ǘƘŜ ƴŜǘǿƻǊƪΩǎ ƭƻŀŘ ƛǎ ƛtself at its greatest. Thus, indicating a general tendency for the 

load of proximate cells to be more correlated when their loads are higher. This 

intuitively makes sense, as discussed in Chapter 5 - when the load on a cell or group of 

cells is very low, for example in the early morning hours, one subscriber connecting to a 

cell using a data intensive application may greatly increase the load on one cell in 

percentage terms when compared to its barely used neighbours. During hours of peak 

load however, the percentage increase will be diminished and also given the finite 

ƴŀǘǳǊŜ ƻŦ ŎŜƭƭǳƭŀǊ ǎǇŜŎǘǊǳƳ ǘƘŜ ƴŜǿ ƘŜŀǾȅ ǎǳōǎŎǊƛōŜǊΩǎ ōŀƴŘǿƛŘǘƘ ǿƛƭƭ ōŜ ƳǳŎƘ ƳƻǊŜ 

limited reducing his/her distortive capacity.  

 

Figure 4.14 Moran's I for each hour of the week for all cells on the network. The plot has 

been smoothed to remove noise by using sliding window averaging with the window 

size = 4 hours. 
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4.4.3 Causal Structure  

The previous subsection examined correlations in the spatial extent of network load; 

this subsection goes beyond spatial correlation and examines the functional influence 

present in the network. A key metric to understand the underlying functional 

connectivity present in the network is the causal influence between cells. The causal 

relationships present in the network have many uses, including load prediction [77], 

travel mode discovery [78], and identifying influential nodes to reduce load sampling 

overhead [13]. This section uses one popular measure of causality known as Granger 

Causality [79] which is a statistical framework for measuring causality between time 

series.  

4.4.4 Granger Causality  

Granger causality establishes if one time series improves the forecasting of another time 

series. One stochastic variable, X2, Granger causes another stochastic variable X1 if 

information in the past of X2 helps predict the future of X1 with a better accuracy than is 

possible with only the information in the past of X1 alone [79]. Thus, Granger causality is 

present in the direction X2 to X1, provided that the inclusion of X2 in the model improves 

the prediction of X1 by a statistically significant amount. However, this relationship is not 

ƴŜŎŜǎǎŀǊƛƭȅ ǎȅƳƳŜǘǊƛŎŀƭ ŀƴŘ ǘƘǳǎ ΨX2 Granger-causes X1Ω ŘƻŜǎ ƴƻǘ ƛƳǇƭȅ ǘƘŀǘ ΨX1 Granger-

causes X2Ω [77].  For example, suppose there are two time series X1(t) and X2(t), both 

having a length of T. As in [80] the two time series can be described using a bivariate 

autoregressive model: 

 
ὢ ὸ ὃ ȟὢ ὸ ρ  ὃ ȟὢ ὸ ρ  ‐ὸȢ 

 
(4.15) 
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ὢ ὸ ὃ ȟὢ ὸ ρ  ὃ ȟὢ ὸ ρ  ‐ ὸȢ 
 

(4.16) 

where p < T is the model order i.e. the maximum number of lagged observations of X2 

used to predict the current value of X1 or vice versa at time (t). The matrix A contains 

the model coefficients while ʁ1 & 2ʁ are the residuals of the autoregressive model. X2 

Granger causes X1 if all the coefficients of A12 are non-zero i.e. if the residuals are 

reduced by the inclusion of the second time series in the model. In practice, a threshold 

is set to determine if the relationship is statistically significant. One such method is the 

F-test; to be considered statistically significant the F-value should be greater than a 

desired significance threshold ranging from 0 to 1 [80]. The closer the significance 

threshold is to zero the greater the significance of the result. The Akaike Information 

Criterion (AIC) was used to estimate the model order [81]. 

Using the methods of [80] the model order was found using the AIC as illustrated in 

Figure 4.15. The time series X1 and X2 in equations (4.15) and (4.16) are the cell loads on 

pairs of cells with neighbouring or overlapping coverage grids, as defined in 4.2.2, 

aggregated over 10 minute intervals. The model order is generally quite low with about 

80% of pairings having an order of 8 or less. This suggests that in most cases only a small 

number of previous samples from causally connected neighbours are required. For the 

F-test of significance the significance threshold level was set to the commonly used 

0.05. The causality is tested for every pair of neighbouring cells in both directions. On 

this network 38% of cell pairs were found to have a statistically significant causal 

relationship in at least one direction at a granularity of 10 minutes. 
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Figure 4.15: CDF of the model order for each pair of neighbouring base stations using 

the Akaike Information Criterion with a granularity of one hour. 

To examine the network as a whole a causality graph is created using the pair-wise 

causal relationships [75]. The resulting graph of Granger causality interactions is a 

directed graph (a graph that is set of vertices connected by edges, where edges have a 

direction associated with them) G = (V, E) where V is the set of vertices, E is the set of 

edges. Thus, each cell becomes a node on the graph and there is an edge from node a to 

b (i.e. (a,b)  E)  if there is a significant Granger causality interaction between them and 

they are neighbours in terms of coverage grid. This causal graph allows for the 

exploration and quantification of some causal properties useful in identifying influential 

nodes [80]. These properties are outlined in the following subsection. 

4.4.5 Causal Density 

Causal density is a global measure of the causal interactivity in a dynamic system; causal 

density shows the mean causality over the entire network. A high value of causal 

density indicates that the constituent parts of the network are coordinated in their 

activity [80]. It is the average G-causality over all the pairs of cells examined. Causal 
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density can take on a value between 0 and 1 and gives the average amount of significant 

Granger causality interactions over the entire network. Granger causality is defined 

using the causality graph: 

 
ὅὥόίὥὰ ὈὩὲίὭὸώ
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(4.17) 

where Na is the set of neighbours of the cell corresponding to node a and I is the 

indicator function. On this network the causal density was found to be 0.38 indicating 

the presence of statistically significant Granger causality in the network. 

4.4.6 Causal Flow 

The causal graph representation enables the examination of which cells are the 

influencers and which are the influenced i.e. which cells have a causal influence on their 

neighbours and which exhibit the results of this influence. Using the causal graph 

representation, the influence emanating from node a is its out-degree (the number of 

edges going from node a). The influence node a experiences from its neighbours is given 

by node aΩǎ ƛƴ-degree (the number of edges going into node a). Figure 4.16 illustrates 

the out and in degree of every node on the network. Note that some nodes have a very 

strong influence on their surroundings, for example, the top 5% of nodes have an out-

degree of 15 or greater. 
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Figure 4.16: CDF of the out and in degree of every node on the network. 

To get a more holistic view of the influence of a node while taking into account the 

influence it experiences, a metric known as the causal flow is employed. The causal flow 

of a node (base station/cell) is the difference between the causal interaction it exerts on 

its neighbours and the causal interaction its neighbours, in turn, exert on it. Thus, on the 

Ŏŀǳǎŀƭƛǘȅ ƎǊŀǇƘΣ ǘƘŜ Ŏŀǳǎŀƭ Ŧƭƻǿ ƛǎ ǘƘŜ ŘƛŦŦŜǊŜƴŎŜ ōŜǘǿŜŜƴ ǘƘŜ ƴƻŘŜΩǎ ƻǳǘ ŘŜƎǊŜŜ ŀƴŘ ƛǘǎ 

in-degree. Nodes with positive causal flows are causal sources while nodes with 

negative causal flows are causal sinks. The more positive or negative the flow is, the 

stronger the source or sink is respectively. Figure 4.17 shows the CDF of the causal flow 

for each cell on the network. The information presented in Figure 4.17 can be used to 

identify causal sources and sinks in the network. For example, 10% of cells are causal 

sources with causal flows greater than or equal to five. Conversely, 10% of cells are 

causal sinks with flows less than or equal to negative five. The strong sources and sinks 

identified in Figure 4.17 will be further examined in the following subsection. 
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Figure 4.17: CDF of the causal flow of each cell on the network. 

Another interesting causal metric to explore is the causal path lengths present in the 

network. These causal paths represent how the causal influence propagates or flows 

through the nodes in the network. This indicates the spatial paths throughout the 

network in which information can be gleaned from previous network states. Causal 

paths are defined as continuously traversable paths from vertex to vertex via connecting 

edges in the network graph G as defined in 4.4.4. Figure 4.18 displays the CDF of the 

causal path lengths present in the network and indicates the existence of a wide range 

of causal path lengths present in the network. The median causal path length in the 

network was found to be 15 with a 90th percentile path length of approximately 50.  

Preliminary investigations of these long causal path lengths indicate that when plotted 

spatially many of them follow major transport infrastructure such as busy motorways 

etc. In future work it would be interesting to more thoroughly investigate this and 

examine if there is a relationship between any other geographical features and causal 

paths present in the network. 
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Figure 4.18: CDF of the causal path lengths found in the network 

4.4.7 Sources and Sinks 

In the previous subsection cells that exert/experience influence on/from their 

neighbours were identified. These cells were known as sources and sinks respectively. In 

this subsection these sources and sinks are examined and compared with each other 

and the general network to see if they have any special properties that stand out. Figure 

4.19 shows the CDF of each cellΩs total equivalent data usage grouped by their causal 

flow. The three groupings are strong sources (top 10% of cells ranked by causal flow), all 

cells, and strong sinks (bottom 10% of cells ranked by causal flow). It is readily apparent 

that the strong sources experience much higher usage than the other two groups. For 

example, the median total equivalent data usage of a strong source cell is approximately 

4.5 times that of the median for all cells on the network. 
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Figure 4.19: CDF of the Total Equivalent Data used per cell ranked by their Causal Flow. 

The top 10% represent strong sources while the bottom 10% represents strong sinks. 

Figure 4.20 shows the CDF of the total number of connections (i.e. data connections, 

voice or SMS) made per cell over one day as ranked by their causal flow. The top 10% 

represents strong sources while the bottom 10% represents strong sinks. Figure 4.20 

illustrates that strong sources have a much larger amount of connections per day than 

the other groups. The median strong source cell has approximately 2.5 times the 

number of connections per day as the median of all cells. Thus, strong source cells 

generally use the most data and have the largest number of connections in a day. 
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Figure 4.20: CDF of the total number of connections made per cell over one day ranked 

by their causal flow. The top 10% represent strong sources while the bottom 10% 

represent strong sinks. 

4.4.8 Conclusion 

Subsection 4.4.2 found that there is a significant amount of spatial correlation between 

cell coverage regions in close proximity, decreasing as the separation distance increases. 

Interestingly, it was found that these correlations vary throughout the day in a similar 

diurnal pattern to that identified for load in the previous chapter. Spatial correlation 

increases during times of high load and decreases during times of low load. 4.4.3 - 4.4.7 

went beyond spatial correlation by examining the functional influence present in the 

network. The methodology of Granger causality was employed to identify and 

understand the underlying functional connectivity present in the network. Causal 

influences were found to be common in the network with 38% of neighbouring cell pairs 

experiencing statistically significant influence in either one or both directions. Long 

chained paths of causal influence were found to flow throughout the network. 

Anecdotally these paths appear to follow significant transport networks. In future work 
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a more rigorous examination of these causal flows and their spatial extent would be 

interesting. Highly influential/influenced cells in the network were also identified and 

examined. The main difference between these cells and cells with less extreme degrees 

of influence appears to be how much load/many connections they service. This could 

again indicate the presence of transport hubs, busy street intersections etc. 

 Discussion and Conclusion  

The introduction to this chapter identified the importance of understanding the 

network from a spatial perspective given the larger goal of creating near horizon 

localised load forecasting techniques. This chapter started out with the creation of 

spatial representations of base station and sectorised cell coverage regions in 4.2. These 

spatial coverage region representations are the foundational step in beginning to 

examine the network spatially. Much of the later work and many of the techniques 

introduced later require the use of these spatial coverage regions. Given their 

importance 4.2.3 introduced a novel method to identify and remove errors in their 

positioning. Subsection 4.2.4 provided a method to visualise the spatial distribution of 

cellular load across the network. The techniques employed in 4.2.4 could be generalised 

to not only represent load distribution but also other properties of interest such as 

connection events, subscriber distribution etc. 4.3 saw the introduction of novel 

techniques to ascertain the network subscriber specific home and work populations for 

each cell in the network. These techniques allow for the creation of accurate maps of a 

networkΩs subscriber base for different classes of cells. 4.3.2 focused on home and work 

cells but the techniques introduced could easily be generalised to build up maps of 

different cell e.g. socialising cells etc.  

4.3.3 - 4.3.5 examined how subscribers communicate with one another spatially. To 

explore this the classic gravity model of spatial communication distance was applied in a 
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novel manner to cellular networks utilising the cellular coverage regions identified in 

section 4.2.2 and the novel cellular population estimation techniques presented in 

section 4.3.2. The performance of the model was found to vary largely based on the 

type of link chosen/the time of the week and to a lesser extent the time of day. The 

gravity model was found to be only helpful when dealing with large population centres 

of more than 50,000 inhabitants. As the Republic of Ireland only has five cities with a 

population of 50,000 inhabitants or more, the gravity model is a poor choice for 

modelling interurban communicatiƻƴ ōŜǘǿŜŜƴ ǘƘŜ ŎƻǳƴǘǊȅΩǎ ǎƳŀƭƭŜǊ ǳǊōŀƴ ŎŜƴǘǊŜǎΦ Lƴ 

future interurban work smaller population centres should be amalgamated into larger 

groups or a more sophisticated model should be employed. 

4.4 found that there is a significant amount of spatial correlation between cell coverage 

regions in close proximity, decreasing as the separation distance increases. Interestingly, 

it was found that these correlations vary throughout the day in a similar diurnal pattern 

to that identified for load in the previous chapter. Spatial correlation increases during 

times of high load and decreases during times of low load. This intuitively makes sense, 

when the load on a cell or group of cells is very low, for example in the early morning 

hours, one subscriber connecting to a cell using a data intensive application may greatly 

increase the load on one cell in percentage terms when compared to its barely used 

neighbours. During hours of peak load however, the percentage increase will be 

diminished aƴŘ ŀƭǎƻ ƎƛǾŜƴ ǘƘŜ ŦƛƴƛǘŜ ƴŀǘǳǊŜ ƻŦ ŎŜƭƭǳƭŀǊ ǎǇŜŎǘǊǳƳ ǘƘŜ ƴŜǿ ǎǳōǎŎǊƛōŜǊΩǎ 

bandwidth will be much more limited reducing his distortive capacity. Significant spatial 

correlation indicates that for monitoring purposes it may only be necessary to monitor a 

subset of base stations. 4.4.3 went beyond spatial correlation by examining the 

functional influence present in the network. The methodology of Granger causality was 

employed to identify and understand the underlying functional connectivity present in 

the network. Causal influences were found to be common in the network with 38% of 
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neighbouring cell pairs experiencing statistically significant influence in either one or 

both directions. Long chained paths of causal influence were found to flow throughout 

the network. Anecdotally these paths appear to follow significant transport networks. In 

future work a more rigorous examination of these causal flows and their spatial extent 

would be interesting. Highly influential/influenced cells in the network were also 

identified and examined. The main difference between these cells and cells with less 

extreme degrees of influence appears to be how much load/many connections they 

service. This could again indicate the presence of transport hubs, busy street 

intersections etc.  

The above contributions are valuable to network providers and relevant to many 

advanced network management techniques. They are particularly important to those 

techniques which rely on a strong spatial understanding such as dynamic spectrum 

allocation [12], reduced sensing techniques [55], fault detection, and spatially 

influenced power saving schemes [56] such as the one presented in Chapter 7.  
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Chapter 5 Local Traffic Load Predictability  

 Intro duction  

Traffic modelling and prediction is a critical element in the performance, planning and 

evaluation of telecommunications networks and has consequently attracted much 

attention. However, most of this research has focused on traditional wired broadband 

which has many different properties and needs in comparison to cellular networks. 

What work has been carried out on cellular networks is mostly focused on older voice-

centric networks and datasets [12, 21]. However, due to the increasing capabilities of 

devices connecting to the cellular network and the concomitant rise in data usage, 

cellular networks have shifted from being voice-centric to data centric networks [24, 

25]. This shift has resulted in an on-going explosion of traffic on cellular networks at the 

same time as Average Revenue Per User (ARPU) stagnates or falls [47]. This 

fundamental challenge has inspired research into new ways to more efficiently use 

limited network resources such as spectrum [12] or power [16] while still meeting 

growing user Quality of Service (QoS) expectations. Much of the promising work in this 

area involves Self Organising Networks (SON) that can dynamically manage their 

resource usage [12, 16, 82]. An important facet of many of these SON scenarios is the 

accurate modelling and prediction of traffic load in locally contiguous spatial areas. Up 

until now, much of the focus on traffic load predictability has been concerned with 

macro scale network wide predictions of load such as in [27, 83]. However, macro scale 

predictions are of limited practical value for many SON applications such as green 

networks [28] and spectrum sharing [12]. For such applications, groupings with finer 

spatial resolution are required. Thus, the central aim of this chapter is to identify smaller 

subsets of the network that provide sufficient predictability to allow for their use in SON 

techniques. The subsets must be sufficiently small and spatiality continuous so as to be 



 108 

useful for SON techniques. These subsets provide network operators with new ways of 

viewing their network as opposed to the more traditional macro whole network view or 

the individual BS view [33]. To that end, this chapter aims to examine the predictability 

of network load and also defines and examines the predictability of three possible 

spatially contiguous coverage region aggregations of the network. In Chapter 6 these 

coverage region aggregations will be used to create localised predictive models of 

cellular load. Chapter 7 will take these localised predictive models and apply them to a 

real world SON application. The main contributions of this chapter are:  

1) A novel examination of how different levels of load, service type, temporal 

aggregation, and spatial aggregation affect traffic load predictability. 

2) The creation and examination of practical real world spatially contiguous 

aggregations of network coverage regions. 

The remainder of this chapterΩǎ ǎŜŎǘƛƻƴǎ ŀǊŜ laid out as follows: 

¶ 5.2 introduces concepts from information theory and applies these to the traffic 

load across the various service types. This provides a framework for 

understanding the relative predictability of the various service types, how this 

varies between cells for the same service type, and an understanding of how 

predictability changes with time of day and load. 

¶ 5.3 introduces some of the most practically useful levels of spatial aggregation 

and examines how they influence predictability.  

¶ 5.4 provides a concluding discussion to the chapter. 
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 Traffic Predictability  

5.2.1 Predictability  

This section will use concepts from entropy theory to examine the predictability of 

network load. Subsection 5.2.2 discusses entropy theory from which concepts are taken 

to quantify the predictability of data load while 5.2.3 introduces the methodology used 

to apply it to this dataset outlined in Chapter 2. 5.2.4 examines how entropy varies 

across the various service types; 5.2.5 explores the relationship between predictability 

and load.  

5.2.2 Entropy  

In recent years, frameworks and tools from information theory [84] have been applied 

to disparate fields of study from human mobility [84] to the predictability of market 

returns [85]. Information theory originated from the study of the digital transmission of 

random variables [86]. The objective was to find the most efficient method/coding for 

the transmission of these variables. It was found that the greater the uncertainty of a 

random variable, the longer the most efficient possible transmission code would be. 

This can be precisely quantified, and thus, provides a universal measure of the 

uncertainty of a random variable [86].  This universal measure of the uncertainty of a 

random variable is called entropy. Entropy is employed in this work as it provides a 

precise definition of the informational content of predictions via the appropriate 

Probability Mass Functions (PMFs). (Note that PMFs are employed as opposed to 

Probability Density Functions due to the data being quantised into discrete levels). 

Entropy also proves to be a generally applicable concept as it makes no assumptions 

about the underlying model. Thus, entropy is used in this work to provide a metric for 

traffic predictability across disparate BSs/cells and utilising a variety of different prior 
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and/or auxiliary information. For the interested reader [87, 88] provide a more detailed 

discussion of the applicability of entropy as a predictability metric in different 

application domains.  

5.2.3 Quantifying Predictability   

The dataset discussed in Chapter 2 was processed with the traffic of the three services 

(voice, data and SMS) sorted by time and cell ID. The traffic during a certain time period 

i within a given cell is quantized into Q quantisation levels. The quantisation level of the 

traffic at time i, QuantLevel(i), is given by equation (5.1): 
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(5.1) 

where ObsTraf(i) is the traffic observed at time i, ceil is the ceiling function which maps 

a real number to the least succeeding integer [89], and Capacity is the traffic capacity of 

a given cell. The capacity of a cell varies depending on the technology used (GPRS, 

EDGE, HSDPA etc.), the number of transceivers employed, etc. Approximation is 

required as it is not possible to give an exact figure for the capacity of a cell; capacity 

varies from cell to cell and throughout the day depending on local conditions such as 

interference, the modulation scheme used, etc. [33]. Thus, for convenience the traffic 

load in every cell is quantised into Q = 10 levels over the target period. From this, the 

corresponding traffic distributions are obtained. For example, Figure 5.1 depicts the 

PMF in one cell derived from the quantised levels for the three services. For the data 

service depicted in Figure 5.1 the cell under investigation spends approximately 22.5% 

of its time with a load in the lowest decile, approximately 2% of time in the highest 

decile, etc. This indicates better than uniform predictability i.e. the cell spends a 

disproportionate amount of time in the lowest quantisation level meaning its 
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quantisation level is easier to predict. If the cell spent an equal amount of time in every 

quantisation level then it would be much harder to predict its quantisation level at any 

given time. This is a common pattern across the networks with most cells spending a 

large majority of the time in the lowest quantisation levels as depicted in Figure 5.2. 

Thus, the presence of this identifiable pattern indicates that useful load predictions can 

be made for many cells on the network. 

 

Figure 5.1: The Probability Mass Function of a representative cell 

 

Figure 5.2: The mean PMF of the quantisation level on all cells over one week. 
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