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Abstract:

As mobile technologies continue to mature network providers are experiencing ever
increasing demands on network resources. This trend will continue for a range of
reasors, from growing subscriber expectations to the network being viewed as an
enabling technology for the Internet of Things. However, these changes pose significant
challenges to network operators at a time when many are facing stagnant or falling
Average Reasnue per User (ARPU). To provide increased services with reduced costs,
network operators are looking to improvements in technology such as Software Defined
Networking (SDN) and Self Organising Networks (SON). Several of these techniques will
become key camponents of future 5G networks. With growing network complexity and
reduced revenue to hire staff, many of these advanced management techniques will
benefit from detailed predictive models of network load to allow for the preallocation of
network parametes and resources. This thesis uses anonymised Call Detail Records
(CDR) from Meteor, a mobile network provider in the Republic of Ireland, to model
network load and investigate how it can be serviced more efficienfihhe Meteor
network under investigationhas over 1 million customers, which represents
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The main contributions of this thesis are

1. A novel methodology to predict near horizon traffic loads in practical spatially
contiguous coverageegions.

2. A novel application of near horizon localised prediction models to the problem
of selforganising green networks.

3. Empirically created foundational models of how the network experiences.load




4. A novel eamination ofcausalinfluences o networkload, spatial relationships,
communication distances, load predictability, and load usage

5. A range of novel algorithms and techniques from novel metrics for measuring
load prediction performance to novel algorithms for estimating subscriber areas

of interest, CDR feature extraction, CDR data cleaning, load visualistation etc.

Results from this thesis show that there is a significant underutilisation of network
resources. It is demonstrated that sufficiently accurate predictive models of network
load are &tainable at useful levels of spatial aggregation. These models are applied

the problem of selorganising green networks and demonstrate that a substantial

reduction of network resource underutilisation is possible.
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Chapter 1 Introduction

Cellular networks have evolved rapidly since their inception a few decades ago. As
cellular technology has evolved, soottiave the expectations placed upon it. This
growth in expectations does not look set to abate anytime soon. Increasingly capable
subscriber equipment has opened up whole new uses for cellular networks from on
demand video streaming to online gaming. Coinciding with the evolution of cellular
network technology new industries and businesses are looking to cellular networks as
an enabling technology for the growing Internet of Things (loT). Therefore, it is not
surprising that globally mobile data traffic has grown 18 fold over the past five years and
is projeced to grow sevenfold between 2016 and 20p1]. However, these changes
pose significant challenges to network operators at a time when many are facing
stagnant or falling Average Revenue per User (ARBUCurrently, the tuning of many
network parameters is often carried out by network operators manually, using network
planning tools or drive tesfS8]. From the perspective of network operators, the manual
configuration of an increasingly complex network incorporating multiple Radio Access
Technologies (RATS) increases operational expendiitre.autonomous optimisation

of network parameters which uses a minimum amount of overhead is thus an attractive
proposition to network operators. Such autonomous configuration techniques are often
referred to as Self Organisation (SO) methods by the nétwtandardisation bodiegl].

SO is subdivided into three main classes:-a@fifiguration, seloptimisation, and seif
healing. These three enable thauto-configuration of basic system parameters,
resource allocation, and recovery from node failure. A more detailed description of the
various seHlorganising modes is provided i®]; SO techniques have been widely
studied for other communication networks such as Wiss Sensor Networks (WSNS)

and adhoc networks. SO concepts are relatively new in cellular networks but have



already attracted an extensive body of research focusing on their implementation such
as [6-8]. To provide increased services with reduced costs, network operators are
looking to the incorporation of SO concepts into cellular networks yielding Self
Organising Networks (SORN). [10] highlights the need for SONs capable of reducing
human intervention by showing the growth in complexity of the foguration of a
typical network node.[1Q] finds that a typical 2G node haspproximately 500
configurable parameters, a typical 3G node lgproximately1000, and a typical 4G
node hasapproximately1500.[11] projects even greater complexity for 5Getworks

with a typical node having000 or more configurable parameters.

The rollout of SON technologies and the subsequent removal of the need for the manual
configuration of netwok parameters opens cellular networks up to new advanced
management techniques such as: the secondary usage of valuable licenced spectrum
[12], opportunistic traffic scheduling13], the dynamic switching on and off of
underutilised Base Stations (BSd9M], etc. The need for these new advanced
management techniques is highlighted by a number of studies which have found large
scale underutilisation of network resourcdd5] F 2 dzy R G KIF G amm: 2F ol &
50-60% of 5 f 2 | Riadicateld A Sgkificant spatial underutilisation of certain parts

of the network and their servicing B346] found a dramatic difference between the
peak and trough hours of load within BSs and wider regi¢h6] suggess this
represents a significant uedutilisation of network resources in the temporal domain.
This problem was found to be particularly acute during the early morning hours when
the network was vastly overprovisioned for the demand it experienced. The utilisation

of advanced management teslques to more efficiently use network resources via

SONs is a key component of future 5G networks as discus§&d.in
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The leveraging of techniques and concepts from Atrtificial Intelligence (Al) is a key
requirement for the functioning of SONs and the adged network management
techniques that rely on them. Broadly speaking, future 5G SONs require Al to perform

four main groups of tasks: Sensing, Mini@gtimisation and Predictior11].

I Sensing is concerned with the detection of network anomalies/es/stdtes
from large datasets from hybrid sources. For exam[dl&] utilises a variety of
Al techniques to first learn whii | Fdzy Ol A2yl OSftf Q&
(KPIs) are, and then use this information to identify aberrant cell behaviour.

I Mining in future 5G cellular networks is concerned with the classification of
services according to their required provisionimgchanism (e.g. bandwidth,
error rate, latency etc.)11]. For examplg[18] proposes the use of contextual
information which can be mined from the application to optimise mobile
connectivity for bandwidtkhungry but delay tolerant applications.

1 Optimisation in future cellular networks is primarily concerned with the
configuration of a series of parameters to nraise a performance metric. For
example,[19] employs Al techniques to develop methods for finding optimal
antenna tilt andes in BSs.

9 Prediction in future cellular networks has many uses such as forecasting the
mobility of User Equipment (UE) or predicting the traffied@head of time. For
example,[20] employs user location information to predict their movement

patterns and proactively anticipate traffic hotspots.

All four of the above areas are touched upon to varying degrees in this work. However,
particular attention is given to prediction in cellular networks, specifically the prediction
of the traffic load. Load modelling and prediction is a critical element in the

performance, planning and evaluation of telecommunications networks and has
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consequently attracted much attention. However, most of this research has focused on
traditional wired broadband which has many different properties and needs in
comparison to celllar networks. What work has been carried out on cellular networks is
mostly focused on oldevoicecentric networks and dataset§l2, 21-23]. Due to the
increasing capabilities of devices connecting to the cellular network and the
concomitant rise in data usage, cellular networks have shifted from begg-centric

to data centric networkg24, 25]. Other works such g&6] have access to both voice
and cellular data but unfortunately only provide predictive results for the voice portion.
Forecasting short ternrohd on the macro cellular network scale is possible with a high
degree of accuracy27]. However, it is of limited practical value for many advanced
management techniques such as green netwofketworks with reduced energy
consumption) [28] and spectrum sharing[12] which, due to cellular network
subsidiarity require more localised forecasts. For such applications, groupings with finer
spatial resolution are required26] creates predictive models for voice calls on the
network but cites the greater variance of cellular data at the individual cell level as
prohibiting the creation of prdictive models of data load. Knowing that accurate
forecasting of cellular data load is possible at large spatial aggregdqfi@hsaises the
question of its possibility at lower aggregations. In the field of electricity load
forecasting [29] the authors presented significant improvements in accuracy at
relatively modest levels of aggregation. This raisesdbestion, is cellular data load
predictable on the network at useful levels of spatial aggregation? If predictive models
of cellular load can be created at sufficiently small aggregation levels, then these models
can be incorporated into and used to impe advanced network management
techniques. For example, one such technique that would benefit greatly from the
inclusion of these predictive models of cell load is ceHofinswitching for green

networking.Much work has gone into algorithms and technigue dynamically switch

[ 4]
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on/off cells or BS§28, 30, 31]. Howeve, most work in the area simply uses historical
static load profiles or assumes that switching decisions can be made instantaneously.
However, real world measurement results suchtlasse presented in[16] show that
switching can take up to 30 minutes due to thealing systems. Thus, predictions of the
need to perform a switch ahead of time are importamhis thesis will use anonymised
Call Detail Records (CDR) from Meteor, a mobile network provider in the Republic of
Ireland, to model network load and investigathe practicality of localised near horizon
predictive models of cellular load on the target networkhe Meteor network under
investigation has over 1 million customers, which represents approximately a quarter of

GKS aidliSQa ndc YAftA2Yy AYyKIoAGlIydao
The main contributions of this thesis are

1. A novel methodology to predict near horizon traffic loads in practical spatially
contiguous coverage regions.

2. A novel application of near horizon localised prediction models to the problem
of selforganising gree networks.

3. HBmpirically created foundational models of how the network experiences.load

4. A novel eamination ofcausalinfluences o network load, spatial relationships,
communication distances, load predictability, and load usage

5. A range of novel algithms and techniques from novel metrics for measuring
load prediction performance to novel algorithms for estimating subscriber areas
of interest, CDR feature extraction, CDR data cleaning, load visualis&ttion

6. A large scale measurement study ofaianwide cellular network.
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Results from this thesis show that there is a significant underutilisation of network
resources. It is demonstrated that predictive models of network load are attainable at
useful levels of spatial aggregatiamd sufficient acuracy to allow for their practical
application to advanced management techniqud$hese models are applied the
problem of selorganising green networks and demonstrate that a substantial reduction

of network resource underutilisation is possible.
Therest of the thesis is laid out as follows:

1 Chapter 2provides a technical background to cellular networks and their
operation. The dataset used in this thesis is also preseatat] the methods
used to store and process it ateaprovided.

1 Chapter 3Jprovides a large scale nationwide study of a cellular network. Analysis
focuses on identifying trends and possible opportunities for resource
rationalization. This chapter then provides empirically creafedndational
models of how the network experiences load i.e. models of arrival rates,
connection durations and data consumption. These models are provided at a
fine-grainedlevel broken down by connecting device type and contract type.

1 Chapter 4focuses onthe creation of a spatial representation of the entire
network to allow for the association of load with defined spatial aréasovel
procedure is introduced to clean inaccuracies in the spatial coordinatBSef
method to visualise how the load is distributed spatially across the network
both as a whole and across various serviseprovided. Anovel algorithm to
discover who lives and works withBSs/cells is created and examined. Chapter
4 also provides aovel exporation of the presence/lack of causal influence that

existsbetween neighbouring BSs.

(6]
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1 Chapter Sprovides a noveéxamination of how different levels of load, service
type, temporal aggregation, and spatial aggregation affeciffic load
predictability. Chapter 5 then goes on to create and explore the predictability of
practical real world spatially contiguous aggregations of network coverage
regions.

1 Chapter 6defines and implements a novel andagtical forecasting method for
use in advanced management techniques incorporating predictive mobets.
novel methods for the automatic modelling of large amounts of individual cells
and their many possible permutations in different spatial aggregatiares
proposed,usedand tested

T Chapter 7introduces a regional study of power usage on the study network. The
use of near horizon predictive models of cellular load is validated via their
incorporation into a novel and practit energy savings scheme which is tested
on real world data across multiple regions.

i Chapter 8concludes the thesis with a summary of the work completed,
contributions madeo the field and the relevant areas of work which rem#o

be investigated.
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Chapter 2 Background

2.1 Introduction

This work exploits a large dataggovided by the Meteor mobile phone network, which
is a nationwide network operating in the Republic of Ireland. This chapter has three

main contributions

1) It provides a general introduction to the technologies used on the network on
which the dataset is generated.

2) It presentsspedfic information on the networkat the time of data collection
including its topography, subscriber base and data collection
procedures/format

3) It providesan overview of the ETL (Extract, Transform, Load) process carried out

on the raw data to prepare it for further analysis.

The rest of this chapter is laid out as followsctions2.2, 2.3, 2.4, and2.5introducethe

fundamental technologies/concepts required to understand cellular netwdBestion
2.6 provides specific information on the meteor netvk at the time of data collection
and also details how the data was prepared for analysis. Fisakyion2.8 concludes

the chapter.

2.2 Cellular Networks

A cellular network is a spatially distributed radio network which enabtése, text, or

data communications between two or more devicg®?]. Typically, a compatible
communications device is connected via a wireless connection to a transceiver at a fixed
location known as a tower. Each towewvers a spatial area whighknown as a cell. A

cell can range from several square kilometres in sgdgrsopulated rural areas down to

(&)
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a scaleof hundreds of meters in densely populated urban environmerEach
communication flow between devices, including intrell communications, passes from
the initiating device through its connected transceiver. Tlba is then routed through

a hierarchical network of elements which facilitate information flow to a destination cell
which serviceshe spatialarea thereceiving device is located in. Finally, the destination
cell communicates the information flow to ¢hconnected device via the appropriate

transceiver as illustrated iRigure2.1.

Core Network

T T
Transceiver Transceiver
@
&
o
s
o
Initiating Receiving
Device Device

Figure2.1: Overview of a simplified inter device communications flow in a cellular

network
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Typically, cellular networks consist of a heterogeneous collection of technologies
including those classed as second, third, and fourth generatiorless tdéephone
technology.Figue 2.2 illustrates the simplified hierarchical layout of a heterogeneous
cellular network. For simplicity, a cellular network may be divided into three primary
sections: the mobile subscribdayer, theRadio Access Btwork (RAN) and the core
network. The mobile subscriber layeonsists ofthe mobile telephony enabled access
devices or Mobile Stations @) which connect to the network. TIRANcomprises the

radio transceivers which are usealtransfer data from the MS to the core network. The

core network is the central part of the cellular network which provides services enabling
communication, billing, and mobility.The RAN will vary depending on the
communication standard employed betwe¢he 2G, 3G, and 4G versions. A GSM Radio
Access Network (GRAN) is comprised of Base Transceiver Stations (BTS) and Base Station
Controllers (BSCA UMTS Terrestrial Radio Access Network (UTRAN) consists of Node B
transceivers and Radio Network Contral§RNC). An evolved UMTS terrestrial Radio
Access Network is made up of evolved Node B (eNode B) and serving gateways. The
core network comprises elements of 2G, 3G, and 4G standards including Mobile
Switching Centres (MSC), ServigPRS Support Nosle(SGN) and Mobility
Management Entitles (MMEJor a more detailed exposition of all the above network

components se¢33].

2.3 Access Techniques

Cellular networks enable simultaneous reception and transmission between
communication devices within a certain amount of radio spectrum. This is carried out by
a variety of access techniques which aremaiily designed to allow transmitters to
communicate with receivers with minimum interferend@4]. Thus, the spectral

efficiency is increased as more information is successfully transmitted and received over
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limited spectrum. The access strategies used varies depending on the generational

standard and are:

1 Frequency Division Multiple Acees(FDMA) Individual channels (unique

frequency bands or spectrum slicas showrin Figure2.3) areassigned to each
MS on demand. During this tirm® other MS may use the channel.

i Time Division Multiple Acce$$DMA} TDMA divides theadio channelp into

time slots. Similarly to FDMA, each slot is assigned to an MS on demand and is
allocated to the MS for the entire transmissian illustratedn Figure2.3.

1 Code Divisin Multiple Access (CDMATDMA is an example of multiple access,

allowing several transmitters to send information simultaneously over a single
communication channel. To facilitate multiplaccesswithout debilitating
interference, CDMA employs spread spem technology with a coding
scheme. CDMA multiples the narrowband message signal by a wideband signal
known as the spreading signal. The spreading signal is a pseisk code
sequence with a chip rate orders of magnitude greater than the message
signaRD a R I [33]. Eand-MB$s assigned a spreading code which is orthogonal
to all othercodes, and may transmit simultaneously using the same carrier. To
recover the originally transmitted information, the receiver mustcode the
spreading code applied to it. Decoding is carried out using a time correlation
operation with all the other codevords appearing as noise due to decorrelation
[33].

1 Orthogonal Frequency Division MulgpAccess (OFDMAPFDMA uses time

sharing coupled with dynamically assigned orthogonal subcarriers to provide
multiple access to MS. MS that require high data rates may be assigned a higher

number of subcarriers than those with lower data rate requirensent
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Figure2.3: FDMA v TDMA v CDMA

For a more detailed exposition of all the above access techniqudS2&4].

2.4 Coverage

Transmission between RAN elements communicating @gsty with connected devices
in the subscriber layer suffer from path loss. Path loss is the energy lost between the
transmission and reception of a signAl.transmission from an isotropic antenna will

expand over a spherical wavefront, with the receiatkrgy a distancel away being

AYOSNBESE 8

given by the Frsi Formula

where B and P are the received and transmitted powers respectiveldyis the

wavelength,G is the receiver gain an@ is the transmitter gain.

As a result of the path loss, reliable communication is only possible over a limited
distance for a defined maximum transmit power. Therefore, transmitters may operate

using the samérequencies at the same time if spatially isolated. Thus, the spatial area

LINE L2 NI A 2 Y | £~ d*({B2]. ThieKr& spatPKtISIOER i &

2.1)

a dzNJ

serviced by a cellular network is subdivided into smaller spatial regions. These smaller

spatial regions are known as cells and contain a single Base Statiom ¢B8nimise

—

13

A



interference between adjacent cells, the transmit power of each transceiveulghme
configured to ensure that the signal strength is just strong enough at the cell
boundaries.The same frequency channels may be reused in different, spatially isolated
cells which greatly increases the available bandwidth. Thus, one way to inclease t
available bandwidth is to reduce the cell sifes reducing the transmit powexyhile
increasing the number of cells. This results in many small densely packed cells in areas
of high demand such as citiezs discussed further i@hapter 4 In practise, however, it

is not possible to eliminate interference by selecting a transmit power that leads to
perfect isolation between proximate cells. Thus, tamount of frequency reuse is
selected to keep interference between cebislow an acceptable threshol®3]. This
intercell interference is referred to as OtheerlCInterference (OCI) and negatively
impacts performance. A commonly used technique to reduce OCI is to sectorise cells,

where the sectorisation is carried out via directional antenf3.

A typical cell layout is presented kigure2.4; the hexagonal shapes presented on the
LHS ofigure2.4 represent the idealised version of cell coverage. However, in practise,
this does not accurately reflect real cell boundaries. The RHSgafe2.4 is a truer
reflection of a realworld scenario where thgeometrically irregulashape leaves some

areas lacking coverage for a variety of reasons ranging from interference to obstructed

signal propagatiotc.[34® ¢ 2 FdzNIKSNJ AYONBlFasS (GKS ySiag2

a region a network operator may also use a hierarchical cell structure as depicted in
Figure2.5. In such scenarios, a large macro cell may provide coverage to a spatial area
as a whole while small cells service demand in smaller areas of particularly high demand

within the larger area.
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Figure2.4: Typical cell layoutLHS shows the idealised version while the RHS shows the

practical reality AG are the frequency channels used by each base station.

Macro Cells

Small
Cells

Microcells

A directed high-capacity
Macrocell covering a
motorway

Figure2.5: Simplified hierarchical cell structure

Aseach cellular network standard operates on different frequency ranges within the
NI RA2 aLISOGNMYzYEI ySihGg2N] LI nefiork dblierageSa A 3y S|
layout independentlyThus, a BTS, Nodis and eNodd3 may all broadcast from the

same tower and seiwe overlapping spatial areas.
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2.5 Mobility Management

As the network needs to be able to forward incoming communications, the location of
GKS &ddzoaONROSNNa RSGAOS Ydzald oS 1yz2éy (2
switched on it registers with the networklhus, the network is made aware of the

current location of the device. However, this location can change at any time as the user

Y2@¢Sa GKNRdzZAK (G(KS ySig2N]1 Qa O2@SNI IS | NBI @

area covered by a different cell, it mayeatkto report this change to the network. To
reduce the signalling load on the network, several cells are grouped into a larger
location areaWhen a mobile device connects to a new céie nhetwork informs the
Y20AfS RSOAOS adthelLoc§ob ArealCdde (LAGHI]. THe mbbile
device will then only report its location if the wecell belongs to a different locating
area from the previous celbeeFigure2.6). One disadvantage of this method is that the
network operator is only aware of the current location area of a mobile device and not
the exact cell Thus, the networkmust search for the mobile device in all cells of a
location area for an incoming call or SM®is searching procedure is known as paging.
If the location areas are very large, there will be many mobile devices operating
simultaneouslywithin the area. This will result in a large amount of paging traffic, as
every paging requesinust be broadcast to every BS in the location area. Wastes

both bandwidth and also power in the mobile devibg requiring it to listen to too
many broadcat messages. However, if the location areas are too small, the mobile
device must contact the network more frequently for location changes, which can also
drain it KS RS @A O%ha &ize of thell@alidndarea can be configured by the

network operator ad is typically 2680 cells.
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Figure2.6: Cells in different location areas

For the packeswitched portion of the network, cells asggregatednto Routing Areas

(RA). An RA is a subset of a location dneayever, most network operators only use a

single RA per location ar¢d3]. Achange2Y 2y S w! (2 |y20KSNJ 01 Y7z
I NBIF ! LIRFGS¢é0 A& ltyz2ald ARSyGAoOrt G2 GKS L
to another. The primary difference is that due to the involvement of pasketched

data, the Serving GPRS Support Node (SBSMed.For newer networks supporting

LTE, the equivant of the location area and RA is the Tracking Area (TA). Again, the

basic concepts behind the TA are very similar to those of the location area and RA. The

network element involved in this case istMobility Management Entity (MME).

2.6 Data Source

The network under investigation in this work is the Meteor mobile phone network,
which is a nationwide network operating in the Republic of Ireland. The network has

over one million subscribers, which represe approximately one quarter of the

—
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both 2G and 3G services. The primary data source is Call Detail Records (CDR); CDR are
primarily used as billing records feelecommunications transactiosipassing through

the network. CDR are collected at the MSC and SGSN and contain records of all data
transfers, voice calls and Short Message Service (SMS). The available ctataistsof
approximately four months of data collectein 2011. The BS information provided
includes geespatial coordinates in the Irish Grid Coordinate Reference Sy&&mThis
coordinate system is the default system used, unless otherwise stated throughout this
work. This coordinate system uses Easting and Northing gifojes which are defined in

meter units from an origin point located at a latitude of°631 Qnn b YR f 2y =
8nnQnn 2® hGKSNI AYF2NXYIGA2Y |o62dzi GKS . { A
serving the BS, and the transmitter azimuBormore informaton onthe topography of

the network see sectiod.2. The information provided for each subscriber contains their
anonymisedMobile Station International Subscriber Directory NumgeSISDIN their

subscription type (prepay/b)l, year of birth, place of residence (town level), what their

previous network was (if any), and how many upgrades they have availed of.

Records of SMS and voice calls are divided into originating and terminating files with

data logs provided on cellulaiata sessions. The originating and terminating log files for
G2A0S OFrffa LNROARS AyF2NNIGAZY 2y 020K (K.
time and duration of the call, the sectorised cell of both parties to the call when the call

starts and alsdhe respective cells when the call terminates. Note, the sectorised cell
information is only available for Meteor subscribers. Similar information is provided for

SMS in both the SMS originating and terminating log files. The cellular data log contains
information on each data connection including: information on the anonymised

MSIDSN, Access Point Name (APN), session start time, duration, amount of data
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uploaded and downloaded, connected cell at the start and end of the connection, and

the servicing SGSN.

The CDR data is processed via a repository server and three SFTP servers. The data is
received in raw format as a CSV file from the Meteor server to the repository server.
The repository server holds all the unprocessed data while the SFTP serversdiferus

data analysis. The data is transferred, precessed and then loaded into MySQL
databases on the relevant servers where each table is suitably optimised to allow for
parameter extractionA database table is a set of data elements (values) usingdsel

of vertical columns (identified by name) and horizontal rows, the cell being the unit
where a row and column intersect. A table has a specified number of columns, but can
have any number of rowsThe data can then be accessed directly on the prangss

server or remotely. An overview of the system architectanel some data examples are

provided inFigure2.7, while the table structures are displayedrigure2.8-Figure2.12.
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Mobile Operator

Data Collection

Telephony Senver
MNetwork
o e _
Raw CDR / Repository MySQL Database

Server Call_Org_2011_01_01
Call_Ter_2011_01_01
Call_Org_2011_01_01 SMS_Org_2011_01_01
Call_Ter_2011_01_01 SMS_Ter_2011_01_01
SMS_Org_2011_01_01 DD
SMS_Ter_2011_01_01 :

Data_2011_01_01

Cell_Info
User_Info
Call_Org_2011_01_01
id realTi userlD CalleduseriD | celliDStart | cellDEnd
o 2011-01-01 00:00:00 8610 =l i 75
1 2011-01-01 00:00:00 2451 546 546 546
2 2011-01-01 Q0:00:00 35241 513 i 548
3 2011-01-01 00:00:00 454 854 12 1048
n 2011-01-01 23:59:59 565445 84 546 604
Cell_Info
id CelllD Easting Northing type
Q 25640 2610 s1 2G -
1 25841 2451 548 26
2 25642 35241 513 2G
3 25643 454 a54 26
n 65484 SESL4G 24 3G
User_Info
id msisdn msisdn_no& Type
(1] 000007 AZEEEBD3E93B20E65B45105554 01001DEOBTCEEFSL Bill Pay
1 000007A2EBBZIZESIB208698451D5555 00231DEORTCEEFS2 Bill Pay
2 Q00007AZERBED 3ESZBA0BEEBASIDEE5E Q020312298495560 Fay As You Go -
3 0000074 ZEBBRDIESIB20BE0BA51ZE557 OORO1DEORTCHEFL Bill Pay
n 00000204080E6TEEGFIBTFE02D539TAZ 0030422082 DAF80C Pay As You Ga

Figure2.7: CDR processing architectureerview with some example table relationships
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Field Description

id Unique table row index

realTimeStamp | Formatted start time of the call

userlD Index link to the registration information for the subscriber making the
call

CalledUserID | Index link to the registration information of the subscriber receiving
the call

cellIDStart Index link to the cell tower information of the cell servicing the caller
when the call was initiated

cellIDEnd Index link to the cell tower information of the cell servicing the caller
when the call was terminated

TAC The Type Allocation Code (TAC) of the mobile device making the call

callerMsisdn The caller anonymised MSISDN

calledMsisdn The called subscriber’s anonymised MSIS

callTime Un-formatted start time of the call

duration The duration of the call

startCell Cell tower ID of the cell tower which serviced the subscriber who made
the call when the call was initiated

endCell Cell tower ID of the cell tower which serviced the subscriber who made
the call when the call was terminated

Figure2.8: CDR call originating table structure

Field Description

id Unique table row index

realTimeStamp | The formatted time at which the SMS was sent

userID Index link to the registration information for the subscriber sending the
SMS

CallerUserID Index link to the registration information of the subscriber receiving
the SMS

celllDStart Index link to the cell tower information of the cell servicing the
subscriber who sent the SMS

TAC The Type Allocation Code (TAC) of the mobile device sending the
SMS

callerMsisdn The anonymised MSISDN of the subscriber sending the SMS

calledMsisdn The subscriber’s anonymised MSISDN who is receiving the SMS

callTime Un-formatted time when the SMS was sent

startCell Cell tower ID of the cell tower which serviced the subscriber who sent

the SMS

Figure2.9: CDR SMS originating table structure
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Field Description

id Unique table row index

realTimeStamp | Formatted start time of the call

userID Index link to the registration information for the subscriber receiving
the call

CalledUserID | Index link to the registration information of the subscriber making the
call

cellIDStart Index link to the cell tower information of the cell servicing the
subscriber receiving the call when the call was initiated

cellIDEnd Index link to the cell tower information of the cell servicing the
subscriber receiving the call when the call was terminated

TAC The Type Allocation Code (TAC) of the mobile device making the call

callerMsisdn The caller anonymised MSISDN

calledMsisdn The called subscriber’s anonymised MSIS

callTime Un-formatted start time of the call

duration The duration of the call

startCell Cell tower ID of the cell tower which serviced the subscriber who
received the call when the call was initiated

endCell Cell tower ID of the cell tower which serviced the subscriber who
received the call when the call was terminated

Figure2.10: CDR call terminating table structure

Field Description

id Unique table row index

realTimeStamp | The formatted time at which the SMS was received

user[D Index link to the registration information for the subscriber receiving
the SMS

CallerUserID Index link to the registration information of the subscriber who sent
the SMS

cellIDStart Index link to the cell tower information of the cell servicing the
subscriber who received the SMS

TAC The Type Allocation Code (TAC) of the mobile device receiving the
SMS

callerMsisdn The anonymised MSISDN of the subscriber sending the SMS

calledMsisdn The subscriber’s anonymised MSISDN who is receiving the SMS

callTime Un-formatted time when the SMS was received

startCell Cell tower ID of the cell tower which serviced the subscriber who

received the SMS

Figure2.11: CDR SM&iminating table structure
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Field Description

id Unique table row index
realTimeStamp The formatted time at which the data session started
userlD Index link to the registration information for the subscriber

who is active

celllDStart Index link to the cell tower information of the cell servicing
the subscriber when the session started

msisdn The anonymised MSISDN of the subscriber who is active
datetime Un-formatted start time of the session

apn Access Point Name (APN) used by the mobile device
systemType The system (2G/3G) the device is connected to

nodeid SGSN id used in the session

accessPointNameNIapn | The Access Point Name (APN) used to identify an IP Packet
Data Network (PDN), that the mobile data user communicates
with

pdptype The Packet Data Protocol used to transfer data, entry is empty
for all CDR

uplinkBytes Quantity of bits uploaded

downlinkBytes Quantity of bits downloaded

duration The duration of the session

TAC The Type Allocation Code (TAC) of the mobile device active
during the session

cellid Cell tower ID of the cell tower which serviced the start of the
session

Figure2.12: CDR Data Session Table Structure

2.7 Privacy

The anonymity of subscribers is addressed by a hashing of the subdQrib&rse
MSISDN code. A MSISDN is a uniquely fentt 6 f S O2RS gKAOK f Ay
ddz0 AONALIGAZ2Y 2y | Y20AtS OStfdzZ I NJ ySlig2N] @

is not directly observable.

2.8 Conclusion

This chapteprovided a general introduction to some of the technologies used on the

network where the dataset was generated. Specific information on the network at the
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time of data collection was also provided. The steps taken to extract, transform, and
load the dataset to facilitte analysis weralso providedAs in any research endeavour,
the type and scope dhe dataset does impose some restrictions on the type of research
that it can be effectively applied to. For example, as discussselcition2.6, the dataset
provides details on the start and end cell @ich communication event. However, it

does not provide location details of devices/subscriberhatween communication

puji
w»

events. ThereforeA G 2y f & LINRPQGARS& | alYLXS 2F |
samping rate determined by how often the dewd¢subscriber communicates. As
discussed in2.5, a fuller dataset of a devices/subscribers location while not
communicating is available to the network operator but unfortunately is difficult to
obtain from network operators dudo lack of incentive for long term storage. In
contrast, activity based call detail records such as those used in this work are stored for
longer and with greater care as they are required for legal compliance and pabhg
ResearchMB I & 6 KAOK NBIljdzANBE RSGFAT SR (y2e¢fSR3S
all times, such as modelling the instantaneous signalling load in a specific cell/area,
while still possible with this dataset may benefit form additional data. This dataset also

does not provide IP packet headers which could be used to identify the specific
application/website being used. This precludes research that requires a detailed analysis

of these features such as[i&7] (however, a broader categorisation of application usage

is possible and introduced @hapter 3. While bearing these shortcomings in mind, the

dataset described in this chapter is one of the largest and most complete (an entire

nationwide network) ever used for a work of this kind.
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Chapter 3 Analysing Cellular Network

Load

3.1 Intro duction

In the past twodecadesmobile phones and devices utilising the mobile phone network
have become ubiquitous in modern society. Mobile phone penetration has approached
and, in some nationgxceedsl00%[38]. Cellular network®re continuingto experience

a large and suained increase in demand for network resourd®8]. As operators
move to add capacity, a detailed understanding of the underlying dynamics of resource
usage is incresingly important.Some previous works have attempted to provide this
understanding, such akrge a scale study of voice calld2] or the study of user
dynamics[15]. However, the practical usefulness of these studies is limited by several
important factors. For examplg12] focuses on voice calls over the network which, as
will be demonstrated in this chapter, are already a small fraction of network load and
are projected to diminish further in the coming ye$d§)]. Although[15] focuses on the
data service, the dataset employed predatthe widespread adoption of smartphones

on the network and, thus, is of limited modern relevance.
This chapter has three main contributions:

1) The primary aim of this chapter is to provide empirically created foundational
models of how the network expemiees load i.e. models of arrival rates,
connection durations and data consumption. These models are provided at a
fine grained level broken down by connecting device type and contract type.

The models presented in this work allow an interested third ptotgreate their
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own models of the most important factors of how the network experiences load
at a fined grained level.

2) To provide an empirical measurement of network load and its constituent parts
both at the network level anthe level of the individudbase station/cell

3) To use quantitative and qualitative analysis of the network including both its
load and topography to identify trends and possible opportunities for resource

rationalization.

The primary novel feature of this chapter is the prowvisif empirical models of the
fundamental network usage metricEhefirst novel feature of these modelstise scope

and relevance of the dataset used to create these models. The dataset used comprises
the entirety of a nationwide network and spans sevearainths after the widespread
adoption of smartphones. This is crucial, as previous work focused on the creation of
empirical models in the premartphone era[12]. The second novel feature of the
models provided idhe degree to which they are broken down by devigpd and
contract type.All necessary parameters are provided to allow an interested party to
recreate the source distributions. Thus, they will allow for the creation of more accurate
models of network usage which will respond to changes in the mix of éetice and
contract types. The final novel feature of this chapter is thsolutionto which the

network load is quantified and qualified, both in spatial and temporal terms.

Section 3.2 provides an empirical examination dhe total network load with a
particular focus on the cellular data loagl3 provides an empirical examinatiaf how

the network load is serviced locally at the level of individual base stations/Galls.
provides empirically derived models of network usage broken down by device type,

time of day and contract type.
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3.2 Total Network Load

3.2.1 Introduction

This section provides an empirical measurement of the network load and its camtitu

parts at the rtwork level. Section3.2 is broken down as follows: firstlysubsection

3.2.2 proposes and defines a metric to allow for the accurate comparisons of data
volumes and load across disparatengeesand technologies. Nex8.2.3 presents and
discusses the aggregatetetwork wide daily load curve3.2.4 discusses how the

network load breaks down between the three main constituenttpae. voie, data and
SMSSubsectior8.2.5implements a classification system to categorise data connections

into one of several diffemt types. 3.2.6 provides a concluding discussion of total
network loadAy {1 SSLIAY3I GAGK FAY H LINBaifeiiySR Ay

trends and possible opportunities for resource rationalizatidn

3.2.2 Total Equivalent Data (TED)

For the purposes of thisork voice and SMS are expressed in terms of equivalent data
services ¢ asthey are treated as such in a pure pack&witched network, for example

Long Term Evolution (LTE)pice is encoded in mobile phone networks using adaptive
multi-rate (AMR) codecs. In GSM and wCDMA, a narrowband AMR scheme is used with
a typcal dan rate of 12.2 kbp§1]. A higher quality wideband AMR is usad_TE and

offers superior qualityat a data range of 12.5 kbjpél, 42]. Higher and lower data rates

are possible, but for this work rate of 12.5 kbps will besed in converting voice
channels to an equivalent data session. Text messages will be treated as a 200 byte
message with 1 second duration. Multimedia messaging has not been included as it is

negligible since the advent of 3G networks.
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3.2.3 Total Network Load

IS

TED (Bytes)

%1011 Total load over one week
I—Total Equivalent Data (TED)I
°°§2§88@3%88&&588§§§§§§§§§§§§
Hour of the week

Figure3.1: Total network load expressed as Total Equivalent Data (TED) in bytes over

the course of oneepresentativeweek.Note that hour zeras @00 on Monday morning.

Figure3.1 illustrates the total aggregated network load across the entire netwavdr

one representative weekThe first and most striking feature of noteRigure3.1 is the

rhythmic diurnal pattern othe load. Each day the load follows a similar trend with the

peak occurring during the evening/nigtime and the trough falling in the early morning

hours. The peak network load is consistently an order of magnitude greater each day

than the minimum loadn the network.This highlights the classical peaking problem in

resource distribution and shows that for much of the day large amounts of resources

(spectrum

, power etc.) are going to waste.

Interestingly, the peak hour of load shifts as the days ofwkek progress. On Mondays

the peak load occurs between®p.m. and shifts slightly later each successive day until
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it occurs between 141 p.m. on Friday and Saturday before moving # @.m. on
Sunday. Intuitively this would appear to match up with pkeogoing to bed early on
work nights and staying out late when the next day is a day off. This is also seen when
public holidays are considered. For example the day before a public holiday generally
resembles a Friday while the public holiday resemblesral&y (providing the next day

is a working day). Interestingly, despite the shifting hour of peak load, the temporal
location of the lowest load remains constant throughout the week, occurring between 6
and 7 a.m. each dayistorically, load forecasting ithe electrical network has received
more attention than data load and is consequently more advarjd&l The two fields
however share some similarities derived from the diurnal pattern of human actigity.

uses a similar approach to electrical load forecasting to madel forecast the
aggregated networklataload for an entire US state. As in electrical load fasting the
authors of[27] proposed the use afvo separate models, one for weekdays and one for
weekend days. Examininigure 3.1, the data suggests that on this network when
modeling the total aggregated network load a better approach is to individualbtesiae
Monday-Thursday model, a Friday model, and a weekend model. Further investigation
suggests that public holidays should be modeled as a weekend day. This will allow for

greater nuance in the created model to capture different daily patterns.

3.2.4 Total Network Load by Service Type

Figure3.2 (a) showsthe number of usage events broken down into the three main
services provided by the network operator: voice calls, SMS, and mobile data. The
respective totals are: 8 of communication events on the network are SMS, 20% of
events are cellular data usage while the remaining 17% are traditional voicd-glise

3.2 (a) clearlyshows the predominance of SMS events on the nekwbloweverFigure

3.2 (b) plots the distribution of load atouted to each service typand gives a very
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different picture.Figure3.2 (b) clearly demonstrates that frorthe perspective of data
volumes transferred acrodhe network that cellular data is the dominant service type.
Despite cellular data connections accounting for only 20% of all communication events
on the network, they are responsible for over 90% of tlaadvolume on the network.
Conversely SMS accounts for 63% of the connection events on the network but transfers
less than 1% of the data on the network. This is in keeping with projections s{#t] as
which shows the network moving away from SMS and voice towards a more data

centric paradigm.

(a) Usage Events (b) Usage by TED volume

® Voice

SMS

Figure3.2: (a) The number of usage events broken down byise type over a typical
day. (b) The total volume of data transferred over the whole network expressed as TED

broken down byservice type.

As the dataset employed in this work is mainly from 2011 it spans a time when
smartphones were becoming widespreagh the network. The results of this

investigation will quantify the trend of smartphone users moving away from voice/SMS
services towards alternative communication methods. This change from a voice/SMS

centric network to a data centric network is forcingngce providers to shift pricing
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models from being call/SMS centric to data cenfd&]. From the service priders
perspective this can be partially blamed for reduced Average Revenue Per User (ARPU)
but is good news from a consumer perspective as the price per byte transferred is

greatly reduced46].

Figure3.3 shows how the total load on the network varies by service type over the
course of a typical Monday. As in the aggated usage mode case presentedrigure

3.1, the general trend is for traffic to be light during the early morning hours and then
peak in the 8 p.m. to midnight period. This trend is driven by the predominandataf
traffic on the network but interestingly masks a difference between voice/SMS and
data. The peak hours of the former generally occur earlier than for the network as a
whole, specificallyduring the 4 p.m8 p.m. slot. However, the call/SMS volume is
relatively stable in the preceding and succeeding hours. Interestingly, this earlier peak
hour better matches works such 4%2] which relied on older datasets before the
predominance of data seices.3.2.3RA & Odza & SR (i K & ¢ & LASfAethidikySa LINE ¢
i.e. how the network igesourced for performace at peak hours of load and tisus
consequently underutilised during the rest of the ddgigure 3.3 suggests that this
problem is exacerbated funer by the move towards cellular data. For example, for
mobile data the ratio between usage during the middap.m. period and the 8 p.m.
midnight period is 1:1.55 while for voice it is almost 1:1. Thus, as the network becomes
ever more data centric itsireasonable to assume that the peaking problem and the
commensurate underutilisation of resources will become more acute. This is in keeping
with findings produced if40] which suggest the peaking problem is being exacerbated
in both fixed line and mobile contexts due to the growth of data usage, particularly
video applications. As will be demonstrated3r2.5 63% of mobile data usage on this

network is related to video applications. Tackling this problem will require more
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advanced models of load and more active/automatic networknagement practices,

many of which are developed in later chapters.

2.5E+12

2E+12
% DataUL
1.5E+12
3 # Data DL
£
)
1E+12 _
= Calls
5E+11 & Total Equiv
Data

Figure3.3: The total load on the network for a typical Monday broken down by traffic

type and four hour period.

3.2.5 Qualifying and Quantifying Cellular Data Usage

Subsectior.2.4 demonstrated the crucial role of cellular data usage when examining
the total load present on the network. This subsectimiroduces a method to qualify
cellular data usage into its consient parts and then proceeds to quantify the
contribution of each part. The dataset employed in this work is limited to CDR as
discussed irChapter 2and, thus, does not directly contain information on what the
purpose of eacldata session was. If packet header information was available, such as in
[15], the purpose of each data session would be clearer. To overcome this limitation in
the available data a classification step is required to classify #t@ asage into broad
constituent parts.Figure 3.4 displays the clustering of activities according to: data

volume, duration, and download to upload ratio. The plot suggests that there are a
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number of clusters re@senting usage modeBromFigure3.4 the following categories

of usage can be identified:

9 Short _rapid communications (AppsThese activities correspond to small

quantities of data used over short durations, gealr less than 10 kB and for
less than 60 seconds. This is representative of GPS updates, app interactions,
advertising updates etc.

1 Long duration, large volumes, mostly downlsgtraditional): This consist of

connections where large quantities of datxe transferred asymmetrically
(several Mbytes with large download to upload ratio) over an extended period
of time. This is the traditional asymmetric usage mode of downloading
webpages and other media consumption.

1 Similar download/upload ratios, signiict data volumes, less than 20 minutes

(P2P_Video/Voice)This suggests 1:1 communication with roughly equal data

upload and downloaded. The average data rate for this category is 120 kbps.
Alternatively,it could be file sharinghowever, in that case # download to
upload ratio would normally favour downloads.

i FEast, high data rates, mostly download, medium duration (Vidddlese

sessions are classified by short bursts of high speed data usage with a large
download to upload ratio.

9 Longtime connections low data volumes, similar upload/download ratios

(Instant Messaging (IM) thesesessionsthe download to upload relationship

is more symmetric with the connectiomot regularly timing out This is
indicative of two users communicating with one anethout with insufficient

data rates for voice or video which suggests text based instant messaging.
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The bulk of the mobile data used can be broadly separated into the five categories
which are quantified in Table 3.1. The categories outlined above and ihable 3.1

represent 84% of data connection evenEgure3.5) and 89% of data volumeEi§ure

3.6).

Dwration (sec)

Figure3.4: Plot of the data usage characteristics for one day (sampled 1:1000).

Table3.1: Data usage categories

Ratio (D/U)

Time | D/U Ratio| Volume
Apps <1Ds < 256kB
Traditional >300s >5 >1MB
Peer2Peer <1200s| >0.5, <1.5 > 256 kB
Video <300s >5 >4 MB
Instant Messaging (IM > 600s <2 < 256 kB
[ 34)




Figure3.5 shows that the majority of connections to the network ardl 8MS, followed

by data connections and then voice. However, as show7h SMS is projected to
shrink while data connections grow in impanice. Thedata portion of the connections

is further broken down into the categories listed wrable 3.1. Interestingly, app
connections account for a plurality of data connection events, follolsedideo, IM and
traditional browsing.Figure3.6 displays the breakdown of cellular data usage volume
into the categories presenteith Table3.1. Figure3.6 cleaty shows the predominance of
video on network load; video accounts for the majority of data used on the network at
63%. Interestingly, despite accountirfgr a majority of data volumes video only
represents 17% of data connections. When one considers ust fnobile data
connections but connections regardless of service type (only 20% of which are mobile
data igure 3.2 (a))), videos proportion of all connections falls to 3.4%. From the
perspective of total networkoad, including all service types, video accounts for 63% of
the 90% that is mobile dataFigure3.2 (b)). Thusvideo accounts for 56.7% of total
network load regardless of service type while only being 3.4% ofhexdions. This
compares to a global average of 53% reported 38} in 2013. Video clearly places a
largely disproportionate load on network resources and manading & key task for
network operators. Upgrading the network to newer technology such as LTE is one step
although, as discussed in the following sections, when users get more capable devices
they tend to consume more. Other options to curtail demand arailable to operators

such as pay per MB, usage caps, fair usage policies, etc. These features are already
common on networks and all are employed on the network studied in this work.
Tweaking these pricing instruments to balance quality of service whkiteaining
O2YLISGAGAGS A& 1S@& G2 Fy 2LISNFG2NDRDa GAlF oA
operators is differential pricing bands for highly demanding video applications, receiving

fees from preferred video content providers, throttling certain servieds, However,
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net neutrality regulations would currently prevent many of these options from being

implemented[48§].

ComparingFigure3.5 and Figure3.6 one seeghat although app connections account
for a plurality of data connections on the network (45%), they account fertlesn 1%

of the total data volume. Amstablished conectionbetween the User Equipment (UE)
and the network consumneea larger amount of energy in the UE than when the UE is not
connected while also consuming network resources. Thus, after a period aiivitya
from the UE the network ends a connection; this amount of time is usually a few

aS02yRa&a YR A& &aLISOATFTASR [83 FranmKtBe nghviotkg 2 NJ Q&

(0p))

2LISNF 62NRa LISNARLISOGAGS:E SIOK OKFy3aS o0Sias
causes a signalling load in the network. This load, if great enough, can cause network
disruptiors as discussed i#9]. These app connections disproportionately affect the
signalling load on the network by constantly sending kelye messages, polling for
data, etc. As discussed [A9] network operators can alter network parameters to
ameliorate the deleterious effect of these repeated app connections. Of course a
balance must be found between managing the signalling load on the network and a
possible resultant deterioration in usekgerience[49]. App creators could also help by
being mindful of the implications of their design decisions on the wireless network
resource. For example, in 2013 Facebook released a software update to its Android and
iIOS @p which singlédhandedlydrove up signalling load and airtime consumption on
some networks by A0% [50]. Better app design would benefit network operego
through lower capital expenditure, users through better battery life, the environment
through lower energy consumption from both the UE and network equipment and the

app designer by making their apps more attractive to end ugklis
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EVOICE mSMS mApps mTraditional mPeer2Peer mVideo mIM m Other

Figure3.5: The pie chart on the left shows the total proportion of usage events by
service type on a typical day. The pie chart on the right shba/breakdownof the

cellular data segmennto its constituent parts.

mVoice mSMS mApps HTraditional m Peer2Peer mVideo mIM m Other

Figure3.6: The pie chart on the left shows the total volume of data transferred over the
whole network expressed as TED broken down by usage owdeypical dayThe pie
charton the right showshe breakdown of the cellular data segment into its constituent

parts.
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3.2.6 Conclusion

This sectiorprovidedan empirical measurement of the network load and its constitiu

parts at the network levelSubsection3.2.2 proposed and defined a novel metric to
allow for the accurate comparisons of data volumes and load across disparate services
and technologiesSubsection3.2.3 presented and discussed the aggregated network
wide daily lad curve.Subsection3.2.4 discussed how the network load breaks down
between the three main constituent parts i.e. voice, data and S$fhsection3.2.5
implemented a classification system to cabeige data connections into one of several

different types.

This section alsadentified and quantifiedsome of the main trends and opportunities
related to overalhetwork load. For exampl&.2.3identified and quantified thgpeaking
problem on this network which is the source of much of the networks underutilisation
of resources.Subsection3.2.4 identified the trend that the problem is likely to be
further exacerbated by more data usage in thetufe. 3.2.5 identified the
predominance of video data on the network and some of the challenges it poses.
SubsectiorB.2.5also identified the vastly disproportionate signaling load placed on the

network by apps and discussed some ways to ameliorate this problem.

3.3 Local Load Distribution

3.3.1 Introduction

I tA&G 2F GKNBS YIAYy O2y(GNRXodziAzy,dhe sl &
second2 ¥ ¢ KA (providég Bndempgirical measurement of network doand its
constituent parts both at the network level and the level of the indivichade

station/celE ®his sectioncompletes this objective (which was started &2) by

(=]

LIN



providingan empirical measurement of the network kband its constuent parts at

the level of individual base stations/cetl KA & OK | IndéirScbidRiBution dd USdR
gquantitative and qualitative analysis of the network including both its load and
topography to identify trends and possible opportigstfor resource rationalizatién A a
also completed in this sectioby identifying and quantifying some of the main trends
and opportunities relatedto the topography of the network and localized load

demands.

3.3.2 Local Load Distribution

Figure3.7 (a) shows the distribution of daily loads (TED) serviced by base stations across
the network broken down by dawhile Figure3.7 (c) presents the same information
broken down by basstation sector (cell)Theamount of load serviced varies by several
orders of magnitude from a few megabytes up to tens of gigabytes. The key parameters
of the distributions are presented imable3.2. These highlight the greatariability in

load serviced by different portions of the network; the busiest base station handles
2000 times the load of the least used base station. Comparing the base station loads
presented inFigure3.7 (a) with the data presented ifil5] highlights the massive growth

in data usage in the intervening years (the dataseflf is from 2007, predating the
widespread adaption of smartphones). The median load onasebstation in the
network presented ir{15] is approximately 15MB or one hundred times less than the
median base station load of 1.5 GB as outlined@able3.2. The distribution of load has

a positive skey of 2.25 at the base station level and 2.9 at the individual cell |&keiw

is defined as the difference of a distributions mean and median divided by the
RAAGNRAOdzZO A 2Y Q& A Ppasitivg RhkewRieari? Sh@tt tileArighy @il of the
distribution islonger i.e. there are more base stations/cells with below average loads

and a smaller amount with much larger loads. This is a common feature of cellular
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networks and a natural consequence of the network topography. Smaller cells (capacity
cells) cover desely populated urban regions with high data demands while larger cells
(coverage cells) provide mainly call and SMS coverage in sparsely populated rural areas
(seeChapter 4for a more detailed discussion). The individual ®lel has a higher

skew value than the base station level with a higher coefficient of variatioi he

coefficient of variation is defined as:

© = 3.1)

GgKSNBE °~ A& GKI G2 74 dd YRS NRO IREBAAY iG 2yt 21 R |
station/cell load. Working out,dor the base stations giveseg= 2.8/2.5 = 1.12, while

the equivalent value for cells&isis Geens= 1.2/0.8& = 1.41. Thus the cells have a higher
variability relatve to their mean than base stations. This makes their load harder to

predict and will be discussed in further detailGhapter 5

Table3.2: Descriptive statistics of BS andteeised cell load for typical weekday.

Min Max | Median | Mean SD Skewness

© 6>0 64 610

Base Statios | 14 MB | 29GB| 15GB | 25GB| 2.8GB| 2.25

Celb 0.5KB| 14 GB| 400 MB | 850 MB| 1.2 GB 29
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Figure3.7: (a) CDF of the daily traffic (batiplink and downlink incl. cellular data, SMS
and voice calls) per base station broken down by day of the week. (b) Zoomed in version
of (a). (c) CDF of the daily traffic per cell broken down by day of the week. (d) Zoomed in

version of (c)Note the similaty between MonrThur on all figures

Figure3.7 (a) andFigure3.7 (c) show the large variation in the daily traffic load serviced

by individual base stations and individuzlls on the networkFigure3.8 & Figure3.9
further demonstrate this by presenting the percentage of total network load serviced by
a given percentage of the base stations/cebggure3.8 shows that the most heavily
loaded 1% of base stations service 12% of all network load. This is less than the
equivalent figure of 20% from a 2007 dataset reportedllif] but larger than projected

values in the futee [51]. It appears that as total network load increases the load on the
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network begins to spread Ip@een base stations and cells more evenly. This makes
intuitive sense¢ due to economic factors, as the network grows the more densely
populated areas receive the newest and most capable technology first. The less
profitable areas are left with older leggpable technology, discouraging or stifling use
(e.g. areas with only GPRS/EDGE for data as opposed to HSDPA/LTE etc.). In time
however, the networks capability to handle data spreads more evenly and the disparity
begins to reduce. The imbalance is moceit@ at the level of specific sectorised cells as
seen when comparingigure3.8 and Figure3.9. For example 20% of network traffic is
serviced by 1% of cells while at the base station level the top 19asef stations service

only 12% of the network load. Examining the usage patterns of individual subscribers
reveals that a relatively small number of subscribers are responsible for a
disproportionately large portion of the ovdianetwork traffic. InChapter 4the home

and work locations of these subscribers are derived from a novel analysis of the data
set. Doing so reveals that the presence of these heavy users in certain cells is an

important factor in the disparity of cdibads.

100%
90% [
80%

70% [

60% [
42% of all network

50% I traffic is serviced by
10% of base stations

40% [

30%

% of Network Traffic (TED)

12% of all network
20% traffic is serviced by
1% of base stations

10%

1% 1% 10% 100%
% of BS

Figure3.8: The percentage of total network traffic (TED) serviced by a given percentage
of base stations
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Figure3.9: The percentage of total netwk traffic (TED) serviced by agi percentage

of cells.
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Figure3.10: The load broken down by traffic type for three groups of BS as a percentage

of overall traffic volume TED.
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Figure 3.10 shows the load broken down by traffic type for: the top 10% of heavily
loaded base stations, the bottom 10% of base stations by load and finally the load on
the mean base stationgigure3.10 clearly shows that the highly loaded cells are almost
exclusively loaded with cellular data while in the least loaded cells voice calls
predominate. This is in keeping with the distinction between coverage and capacity cells

as discussed previously.

3.3.3 Conclusion

This section providedn empirical measurement of the network load and its cdnstit

parts at the level of individual base stations/cells. This section igentified and
guantified some of the main trends and opportunities relatexlthe topography of the
network and localized load demands. A great disparity in network load was identified at
the individual base station and cell level. For example, the base station with the heaviest
load handles approximately two thousand times the traffidted base station with the
f2gSad t21FR® hy GKS ySig2N)] fS@St wmw: 27
the base stations. This result is even more extreme at the level of individual cells where
1% service 20% of the total network load. Thgpdrity between cells coupled with the
temporal peaking problem identified 3.2 make clear the potential for greater
resourcerationalisation Several methods of achieving this are possible, ranging from
dynamic spectrum aess where valuable spectrum is shared between licensed primary
and unlicensed secondary usdi&?], to the dynamic switching off of equipment to

conserve energy asill bediscussed iltChapter 7
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3.4 Models of Network Load

3.4.1 Introduction

Giwen the importance to overall network load of dataessionsKigure3.2) this section
provides empirically created models for the three most important aspects of data

sessions:

1. Interarrival times of data sessions
2. Daa session durations

3. Mean data session throughputs.

With these empirically created models the data usage on this network can be modelled
by interested parties. This section also provides a novel breakdown of the models both
by access device class and cantrtype. Voice and SMS have been modelled in previous

works and the results produced on this network are similar, so to save space and avoid

replication they are omitted. For empirical models of voice and SMS usaf&Xee

3.4.2 Modelling Interarrival Time

Models of theinterarrival times/arrival rates are important for creating accurate usage
scenarios of how subscribers request network resourtég. arrival rate is the number

of arrivals per unit of time while thterarrival time is the time between each araiv

into the system and the nextWhen modelling time series data an important
consideration is the timescale over which the data to be modelled is stationary i.e. the
timescale over which the model parameters such as mean and variance do not change.
However,when modelling onealso wisles to aggregate over timescales that are as
large as possible to reduce the standard error (this becomes more of a problem when
examiningindividual base stationswith low arrival rates). To aid in the choice of an

aggregation timecale Figure 3.11 shows howthe network wide normalised average
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data session arrival rate varies over four days, two representative weekdays and two

representative weekend days.

Figure3.11 demonstrates sme keyaspects of theetworkQad | NNRA @ £ NI (S

1. There are two distinct periods which approximate day and night times. The
daytime period has high arrival rates in comparison to the night time period.

2. The greateschange in arrival rates occuturing the laenight/early morning
hours and the late morning hours. These intervals coincide with the transition
from the day to night period and vice versa.

3. Apart from thetransitional periods, the meaarrival rates appear (relatively)
stationary over the course & minutes

4. Weekdays and weekends appear to show different trends in arrival rates over
the course of the day. This is to be expected due to the change in many

4dz0 AONAOSNBRQ &AOKSRdzZ Sa 0a$disouSsSid.2&SS 1 Rl & a

Taking the aforementioned points into consideration an aggregatior3Gfminutes

approximates the stationary behaviour degire
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Figure3.11: Normalised arrivalate bytime of day
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Figure3.12: CDF of interarrival time over whole day

Figure3.12 shows the empirical CDF of data sessierarrival times on the network

for an entire day. The CDF of a rgalued stochasticariableXis the function given by:

—
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~ " ~

OCw L wh (3.2)
where the right hand side gives the probability that the stochastic varidbiags a value
less than or equal tx. The empirical CDIR for n independent idenically distributed
(iid) observationsX is defined as:

O w

(3.3)
P
€

wherel. x igethe indicator function which equals D¢ or O if X >x

The Interarrival time in cellular netwks has traditionally been modelled as an

exponential distributior{12] such as:

Ow p Q (3.4)
where x is the inter arrival time ands is the adjustable weight parameteHowever,
these models were primarily for calls and SMS, predating the widespread adoption of
smartphones and the moventa more data centric network4]. Figure3.13 plots the
interarrival time for two different periods of the day with theiespective exponential
fits (via nonlinear least squares) of the forgiven in(3.4). Thereis a large difference in
the interarrival time distributions between these distinct periods as would be expected
given their differing arrival rates as plotted Figure3.11. Visually the fits are quite
accurate with low respecte RMSE as shown ihable 3.3, suggesting that the
interarrival process for data can be modelled in a similar fashion to calls and SMS. These
empirically crated models of the interarrival times are important for creating accurate
usage scenarios of how subscribers request network resources. They will allow the
interested reader to recreate the data connection request process without access to the

original dataset.
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Figure3.13: CDFof interarrival timefor a period of low usage (06:615:30) and a period
of high usage (18:008:30) with their respective exponential fits of the form given in

(3.4) and with the parameters provided Trable3.3.

Table3.3: Interarrival time fit parameters by time period

Time Period U RMSE
00:00:00:30 72.49 .0060
06:0006:30 22.35 .0099
12:0012:30 75.99 .0051
18:0018:30 90.23 .0047
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3.4.3 Modelling Connection Duration
Thissubsectiorexamines the distribution of data session durations and how they can be
modelled Initially results arepresened for a general modelthen, more detailed

models brd&en down by the devicebntract type are provided

0.4

0.35

0.3

0.25

0.2

Probability

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60+
Duration (Minutes)

Figure3.14: Histogram of data session durations. Each bin representsronete,

N

SEOSLII F2NJ GKS FAylLf oAy NBLNBaSyidAy3

Figure3.14 plotsthe histogram of data session dions with each bin represeimg one

minute (except for the final bin which represents all times greatemn one hour).
Figure3.14 A f f dzZA GNJ 6Sa GKIFG &K2NI RdN} GA2y REGIE
accounting for approximatel$0% of all connections he predominance of these short
connections is no surprise given that short aggnnections form a plurality of data
connections as demonstrated Figure3.5. Longer durations are much scarcer with only

approximately 20% of data sessions lasting one hour or more.
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These values are broken down further Figure 3.15 which shows how the CDF of
duration varies by the connecting device type. For exampigure3.15 showsthat a
disproportionate amount of the connection durations over 60 minutes long are from
mobile internet USB dongles. Conversdfjgure 3.15 revealsthat a disproportionate

number of the short connections come from feature phones.

Comparing smartphones with feature phorgsowsthat feature phones connect to the
network for much shorter periods. Their median connection time (160s) is less than half
that of prepay smartphones (350s) and under a thifdbill pay smartphones (550s).
Interestingly at the time of data collection feature phones were much more likely to be
on prepay price plans than smartphones. This coupled with a poorer interface and

experience could partially explain the difference.

Empirical CDF
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Figure3.15: CDF of data session durations broken down by connecting degee t

As seen irFigure3.1 there appears to be approximately two distinct periods of usage

during the dayq a early morningperiod and a daytim@ight-time period. Also [12]
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reported that there are two distinct call duratiodistributions, one for the night time
and one for the daytimeTo investigate if this is also the case for the durations of data
sessionsthe variation in theempirical CDF of the howvise durationsis compared to

the overall daily empirical CIA5 was gggested for call durations [i12]. To do this the
KolmogorovSmirnov statist [52] is computed. This is the maximum fdience
between the overall empirical CDF andethourly empirical CDF. The kKolgorov

Smirnov statistic for two samples is defined as:

Op -A@x ® "Op @ (3.5)
where knand F s are the empirical CDFs (seguation(3.3)) of the first and second

samples respectivg while sup is the supremum futian.

However, on repeating the methodology 2] and comparingthe variation in the
empirical CDF of the howvise durationgo the overall daily empirical CD¥6 significant
distinct daily periods of data session durations were found. Thus, it appears that unlik

call durations, the distribution of data durations is not broken into distinct daily periods.

Figure3.16 shows the empirical CDF of data session duration distribuNote that the
duration value for a particular sessios asignedto the time period in which it was
initiated. Theduration distributions resemble a lognormal distribution and are modelled
as such inFigure 3.16. The Probability Density Function (PDF) of the lognormal

distribution of thedata session durations can be reproduced via:

p

N —
w Mg"

(3.6)

where x is the data session durations,are the data sessi®@mean duration and is
the standard deviation ofhe data sessions duratiori84]. The fit applied to the data
session drations inFigure3.16 can be reproduced from the PDF described in equation

(3.6) using the input parameters ihable3.4 and themethod of CDF calculation used in

[=2])




(3.2) and(3.3). Visualinspection of the goodness of fit iFigure3.16 coupled with the
small RMSE reported Table3.4 supports the efficacy of log normal fits for cellular data

session durations.
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Figure3.16: Data session duration didtition and lognormal fit

Table3.4: Parameters for lognormal modef data session duration distributions.

Distribution I ’ RMSE

Data Session Duration 6.01894 2.49531 .0396

Figure 3.15 demonstrated that the digsibution of connection durations is highly
dependent on the type of device connecting to the network and to a lesser extent the
type of contract the user has with the network (bill pay v prepay). TRigre3.17
illustrates some of the results for modelling the distribution of data session durations
broken down by connection type and contract type. The complete list of parameters
used to produce fitted models similar to those Kkigure 3.17 for all the distinct

device/contract type identified ifrigure3.15are presented irmable3.5.
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Figure3.17: Data session duration distributions for: (left) bill pay smartphone

connections and their lognormal fits, (right) prepay smartphone connections and their

lognormal fits

Table3.5: Parameters for logormal models of data session duration distributions.

Distribution M RMSE
Bill Pay Smartphone 6.17992 2.65923 .0451
Prepay Smartphone 5.87245 2.30635 .0236
Feature Phone 5.19 2.39028 .0373
USB Dongle 6.64844 2.44977 .0874

—

54

A




3.4.4 Modelling Mean Throughput
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Figure3.18: Empirical Mean Throughput peession (bit/s) & lognormal fit

Figure 3.18 shows the empirical CDF of the thghput per session distribution; the
throughput distributon resembles a loghormal distribution and is maalled as such in
Figure 3.18 in a similar fashion to the models i18.4.3 The distributionsmay be

reproduced as lognormal distributions with the follmg input parameters:

Table3.6: Parameters for lognormal modef mean throughput per data session

Distribution K ’ RMSE

Daytime/Nighttime 6.92205 4.19348 .0034

Figure 3.15 illustrated that device type played an important role in determining the
mean duration of a data session connectiédnnatural followon from this is to explore
the role played by device type in the mean throughpeigure3.19 demonstatesthe

great disparity that exists in mean throughput between the different connecting
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devices. USB dongles have a much larger mean throughput than the other devices
connecting to the network with a median value of 75kbps versus just 10bps for prepay
smartphones. Interestingly, the mean throughput of feature phones is on par with bill
pay smartphones and greater than that of prepay smartphones. It is worth reiterating
here that this refers tomean throughput for each session and not instantaneous
throughput. This gives users who stay connected for a long pgdidle functionally
inactive or passively consuming tiny amounts of data through small app updatga etc.
greatly diminished mean throughputhe large disparity between mean throughput for

bill pay and prepay is also a striking feature of the results with bill pay users having a
median throughput ten times greater than their prepay counterpaf®ne possible
explanation for this disparity in mean throughput is that bill pay customers may be more
likely to use data intensive applications such as video streaming given they have a set
amount of cellular data allocation each month. Prepay customers oottiner handpay

per byte and thusnay bemore likely torestrict data intensive high usage applims

such asvideo streaming or offload this to WIFI networKshis disparity underlines the
importance of also considering contract type when producing models of usége. T
parameters of thdognormal fits by device typand contract typeare providedn Table

3.7 allowing the interested reader to reproduce the distributions.
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Figure3.19: Mean throughput per data session broken down by device

Table3.7: Parameters for lognormal models of mean throughput per session

Distribution M RMSE
Bill Pay Smartphone 4.32686 2.8086 .0027
Prepay Smartphone 2.43485 2.69727 .0053

Feature Phone 4.33676 3.48404 .0089

USB Dongle 10.5527 2.06099 .02 69

3.4.5 Models of Network Load Conclusion

This section provided foundational, empirically created models of how the network

experiences load. Théhree fundamental aspects of data sessions from a network

operator perspective were

modelled:

1. Interarrival timesof data sessions.

2. Data session durations

—
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3. Mean data session throughputs

These empirically created models of data usage on this network will allow other
interested parties to recreate these adels for their own use. This subsectialso
provided a novel brakdown of the models both by access device class and contract
type. It was shown that short connections (<3 minutes) predominate on the network
accounting for approximately 50% of all connections (primarily comprised of app
interactions as discusd in 3.2.5. A difference in median connection time was
discovered between smartphones depending on the nature of the contract with the
median prepay smartphone connection lasting approx. 400 seconds compared to
approx. 500 seconds fdmill pay smartphones. However, the longest connections by far
came from USB dongles with a median connection time of approx. 1500 seconds. Unlike
call durations, the time of day was not found to have an impact on data session
durations. Empirically creattmodels were provided for all possible permutations of
connecting device type and contract typEinally,the mean throughput of all data
connections was modelled and then this was further broken down by connecting device
type and contract type. Interestgly, contract type was found to be of crucial
importance when considering mean throughput with bill pay smartphone connections
having a median mean throughput ten times greater than prepay smartphone
connections. These empirically created models wilballor the accurate recreation and
modelling of these key network features, not only at the general level but crucially at

the device and contract specific level.

3.5 Conclusion

The introduction of this chapter identified its three main contributicrnsach ofthese
aims was accomplished in the succeeding sections. For example, the primary aim of this

chapter was toprovide empirically created foundational models of how the network
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experiences load i.e. models of arrival rates, connection durations, and data
consumption. These models were to be provided dine-grainedlevel broken down by
connection time, connecting device type arfohally, contract type.3.4 achieved this
objective byproviding empirically created models for thigree most important aspects

of data sessions: (i) Interarrival times of data sessions, (ii) data session durations and (jii)
mean data session throughputs. This section also provided a novel breakdown of the
models by access device class and contract.tfjmese empirically created models will
allow for the accurate recreation and modelling of these key network features, not only

at the general level but crucially at the device type and contract specific level.

¢tKS aS02yR 02yl NR o dziioApfoyide anfempirikah raieasOr&mentofS NJ & |
network load and its constituent parts both at the network level and the level of the
individual base station/céll® ¢ KA & 61 & | OKASOSBRand atthd KS y Si
level of the ndividual base stations/cell B.3. 3.2 provided a network wide examination

of network load and introduced a classification system for CDR to allow for a detailed
breakdown of data usage3.3 provided a morefine-grained approach to examining

network load and focused on the local disparities between individual base stations/cells.

¢KS FAYylLf O2ydNX O ddbuskuatithtiveiakdi ghalit@ivelahdlysssNI & | &
of the network including both its load and topography to identify trends and possible
opportunities for resource rationalitiore ® CANBRGE &> | YSGUNRO F2NJ
service type was introduced. Then the peaking problem on the network was intrdduce

and discussed. This is where peak time loads are an order of magnitude higher than
trough time loads. This peaking problem was found to be getting relatively worse as

more and more mobile data was being used on the network. When the mobile data
connections were further analysed and classified it was found that the primary driver of

mobile data usage on this network was video streaming. However, despite the
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importance of video to the total volume of data transferred, when considering signalling
overhead @p connections were found to be having a vastly disproportionate impact.
Some of the problems caused by this and possible solutions to this were discussed and
identified. 3.3identified the great disparity in load at the lodaVel with the most highly
loaded base stations having a load two thousand times greater than the least loaded
base stationshy G KS ySiG¢g2N] fSOSt mw:r 2F (GKS ySig?
the base stations. This result is even more extremthatievel of individual cells where

1% service 20% of the total network load. This disparity between cells coupled with the
temporal peaking problem identified i13.2 make clear the potential for greater
resourcerationalisaton. Several methods of achieving this are possible, ranging from
for example dynamic spectrum access where valuable spectrum is shared between
licensed primary and unlicensed secondary ugé&g to the dynamic switching off of

equipment to conserve energy as disasinChapter 7
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Chapter 4 Spatial Usage in Cellular

Networks

4.1 Intro duction

The precedingOK I LJG SNJ SELX 2NBR GKS ySiég2N] Qa f
perspective. Although that exploration was important and useful, it did notréxe the
highlylocalisednature of cellular networks; any examination of cellular networks is not
complete without reference to their defining characteristic, spatial subsidiaffity this
thesisto complete its task of providing and examining practidabr Horizon Localised
LoadForecasting models for cellular networks then a strong understanding of network
spatiality is crucial. To that end this chapter focuses on the spatial properties and causal

relationships present in the network. The primary cdmtitions of this chapter are:

1. The creation of a spatial representation of the entire network to allow for the
association of load with defined spatial ared$iese defined coverage areas for
both base stations and sectorised cells are the spatial buildiogks of the
network. In later chapters they will be modelled and their Igaedicted both
individually and in larger spatial amalgamations.

2. A novel procedure is introduced to clean inaccuracies in the spatial coordinates
of cell towers Due to the impdance of the spatial locations of base stations
and sectorised cells in the following chapters, it is imperative that every effort is
made to identify and exclude inaccuracies.

3. A method to visualise how the load is distributed spatially across the network

both as a whole and across various servidéss provides an important network
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wide view of the load distribution which is a crucial element in understanding
how the load varies spatially.

The provision of a novel method to discover who lives and waitkinvthe
defined spatial coverage areas introduced in point 1 and how they interact with
other network users spatiallyt is axiomatic that thenumber of subscribers in

an area will influence the load of that area. It is therefore useful from a network
OLISNI 62NDa LISNELISOGAGB®S G2 dzy RSNREGF YR
throughout the network. However, cell phones are also knownnasbile
phones for a reason, and thus it is not enough to simply know where subscribers
live. It is also important to werstand where they spend large amounts of their
time such as where they work.

An examination of the degre@r lack thereofof spatial correlation in load
across the networkThe previous chapter already highlighted that there is a
large disparity in loadicross the network at the level of the individual base
station/cell. Using the coverage regions introduced in this chagbterdegree or

lack thereof spatial corration in load across these coverage regions is
explored.

A novel exploration of the preseedack of causal influencebetween
neighbouring cells within the netwotk S ® 'y SEF YAYI GA2Y
load has any influence on neighbouring cells. The causality present in the
network can be used to aid localised prediction of load, the idieatibn of key
cells/base stations whose failure would be particuladgleterious to user
experience, travel mode discovery (paths taken by subscribers as they move

throughout the network) etc.

The above contributions are valuable to network providers aakbvant to many

advanced network management techniques. They are particularly important to those

(2]
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techniques which rely on a strong spatial understanding such as dynamic spectrum
allocation [12], reduced sampling techniquefb5], fault detection, and spatially
influenced power saving schem§s6] such as the one presented @hapter 7 The

remainder of this chapter is laid oas follows:

1 4.2examines the spatial representation of the netwo#k2.2 explains how the
dataset presented ilfChapter 2can be represent& by spatial coverage regisn
4.2.3provides a novel algorithm to identify odiated spatial information in the
dataset andexclude it from further study4.2.4presents a method of network
wide load visualisation based onettspatial regions presented in thpeeceding
sections.

1 4.3 provides an examination of how users communicate over spatial distance.
4.3.2introduces a novel algorithm to calculate the home and waokulations
of each cell in the network4.3.3 4.3.4 and 4.3.5 respectively introduce,
implement, and test one possible model of spatial communication distance.

1 4.4 examines the spatial relationships and dependencies present within the

network structure. 4.4.2 explores the spatial correlations present in the

4 A

YSig2N4a3-4423 R0 2 NBa (K Ol dza I £ & G NHzO G dzN
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4.2 Spatial Representation of the Network

4.2.1 Introduction

Thissection focuses on #hcreation of spatial representations tiie network firstly at
the localisedbase station and sectorised cell coverageel, then the aggregated
network level The spatial coverage region representatiomsoduced in4.2.2are the

foundational step in beginning to examine the network spatially. Much of the later work
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and many of the techniques introduced later require the use of these spatial coverage
regions. Given their importancg2.3introducesa novel method to identify and remove
errors in their positioningd.2.4providesa method to visualise the spatial distribution of
cellular load across the network. The techniques employeddicould be generalised

to not only represent load distribution but also other properties of interest such as

connection events, subscriber distribution etc.

4.2.2 Base Station and Cell Coverage Regions

As discussed i€hapter 2BTS NodeB and eNodeB mayall be mounted on thesame
tower, with each servicing various spatially overlapping geographical regloris.
possible to approximatédealised cell site coverage areas via Voronoi tesselld&@h

by wsing the geespatial coordinates andhe network type of each cell, where each
cerire represents a base statiaite location.A Voronoi tessellations a partitioning of

a plane into regions based on distance to points in a specific subset of the [plgne
Figure4.1 depictsthe base statiorsite Voronoi tessellations areas fohe 2G and 3G
base station®n the network under examinatiofnote Figure4.1 - Figure4.3 are placed
together at the end of this subsection to facilitate their comparisadi)s important to
note thatthe accuracy of the tessellation in approximatingse station coverage areas
is affected by channelcharacteristics, topography of the area and physical layer
parametes which include transmittefrequency, tilt, height, and tramsission power
[34]. The collection of this information is prohibitively expensive and, as such, is not
factored into this analysisThus,it should be noted that the estimation technique

applied does introduce some approximatierror at a local level.

Figure 4.1 was created with the MATLAB plotting functiomhe MATLAB function
VORONOWas used to create th¥oronoi tessellatios using the site locations as inputs.

A polygonis returnedfor eachunique site locationthus base stationsvith matching
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site locatiors on the same network share the samsite polygon. The county
geographical regions polygons presented are sourced from Ordin&noeey Ireland
[58]. Note that the coordinate system used Kigure4.1 - Figure4.3 is the lIrish Grid
Coordinate Reference Systef5]. This coordinate systenuses the projections of
Eastingand Northing, which are imnits of metersfrom an originpoint located at

latitudep o c o N QR YpIALGYIBRSW.2 F ycnnQnn

The polygors presented ifFigure4.1 are a reasonable approximatiaf inland coverage
regions and covege regions not adjacent to the border with Northern Ireland
however, the absence of a limiting threshold fpolygon size means that coverage
regions along the coastare less accuratelyapproximated. Thus, to improve costal
accuracy a maximursite radius Snax, of 20 km and 15 km is introduced for 2G and 3G
networksrespectively.These limits reflecthe realistic limis of communication withn
each standard giventhe network topology[33]. The site radiusS for each site is

calculaed by

LY
Y | ET —RY (4.1)

where'YA d GKS O2@SNY 3IS FNBI 2F GKS olasS adld

Yo = Ww W W (4.2)

where N is the number of points in the coverage polygon amg)(are the spatial

coordinatesof each point.

Figure4.2 shows the effect of introducing the base station coverage radius lifhie
difference is particularly evident along the coast and border with Northern Ireland.

Along these areas iRigure4.1 the coverage regions stretched to infinity but are now
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more realistically limited irFigure4.2. The limited base stationboundary isfound by
extracting the polygon of the spatiaitersectionof the idealised site coverage polygon
with the circle of the maximum sitesize This intersection is carried outvia the
POLYBOGnction fromthe mapping toolboof MATLABSectoriseccoverage regions
of the larger base stations may lextracted byusingthe transmitter azimuth angle
information in the tessellation. These sectorised coverage regions are shoWwigune
4.3; the restricted coverage regions displayedFigure4.2 are now subdivided into
individual sectorised cells figure4.3. To generate the coverage regionsHigure4.3
each coverage polygon ifigure4.2 is subdiviced by the unique transmitteazimuth
angles of cells associated with the siteis important to note that sectorisecellsat the
same site sharing theame azimuth agle willshare the same cell coverage polygdD,
TheCell radius @) andCellarea () iscalculatedvia equation (4.1) and equation(4.2)
respectivdy. An individual celd &entroid Eating and Northing location, G, G), is

calculated byequations(4.3) and (4.4), respectively

O O 0 @ 6 (4.3)

O B wd © @ (4.4)
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4.2.3 Data Cleaning

As part of the routine operation of a large scale cellular network, operators sometimes
relocate hardware around their network. Consequently, through time if the network
operatordoes not keep up to date records on the movement of all hardware within the
network the spatial locations of hardware such as cells may become outdated. This can
introduce errors in analysis where the spatial locations of cells are impofganh as in
localised load forecasting schemes as introducedClmpter §. For example, the
switching technique introduced i@hapter 7relies on the spatial redundancy between
proximate cells. If these cells wenot in fact proximate then this would invalidate the
entire switching process. Thus, validating the hardware location information received
from the network operator as discussed@mapter 2s a vital step in any spatial alysis

of the network. Somerrors can be clearly seen when examining the distance travelled
between certain cells in a given time. A subscriber serviced bg.clitime tx and who

is subsequently observed in c€}) at time t, is assumed to have travetl from the
coverage polygon of cell, Gy, to cellGQa 02 @S NIG. She lujghér dairdyon

the journeytime 6 SG 6 SSy (KS Gg2 OStf Qi cQTeANIaaS
distance travelled by the subscriber will depend on the particgi@e of the cell
coverage polygons involved ranging frofh to Q . Figure 4.4 illustrates the
maximum possible distance travell& , the average distanc® hand finally the
minimum distanceéQ . As illustratedn Figure4.4 the maximum distance in any two

cell coverage polygons will blee distance betweetwo vertices giving
Q adow o 0 (4.5)
where G is thej" vertex of celiQad O2 @SNI IS LRfed2yd ¢KS

coverage polygoiGxis denoteda = [LTHA], where A« is the total number of vertices

used to define the cell coverage polyg@. Similarly, the number of vertices in the
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coverage polygoit,y is denotedb = [1HBy], whereB, is the total number of vertices
used to define the cell coverage polyg@y. However, agslemonstrated inFigure4.4

the minimumdistance between two coverage polygons can be between a vertex and a
side. This, in theory, makes the calculatiorbf more complicated as every point in
every coverage polygon musthcompared with all points in every other polygon
(unless the polygons are found to be overlapping or adjacent). Also, as the coverage
polygons are defined by their vertices locations, it necessitates the interpolation of the
points between each vertex ain arbitrary granularity. However, in practice as coverage
polygons are only an approximation of actual cell coverage regions which vary due to
topography, load etc. this is needlessly complex. A simpler solution is to use a heuristic
that the minimum poskble distance between two noeadjacent/noroverlapping

polygons is
Q Q 0 0 (4.6)
where’Q is the Euclidia distance between centroids o&ll coveraggolygonsGxand

Gy, 6 ando denote the maximum distance between the coverage polygon

centroids and their respective farthest vertex.
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i

Figure4.4: The range of possible distances trid@@ in a transition from cellto G in

time txto ty ThedistanceQ) , is given by the distance between the centroids of the two
cell coverage polygons. The maximum distance is givé&h by with the minmum

distance beind2

When the transitions between coverage regions are examined, a small proportion are
found to occur in impracticablysmalttime periods given the supposed distance
between the coverage regions. Thus algoritAm is used to identify out of date cell
2@SNI IS NBIAZYyao LRy O2YLX SGrazy 2F GKS
geographic locations were found to be out of date and excluded from further

examination in this work.
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Algorithm 4.1

Thegeographic data cleaning algorithm

1: Let D = (d;) be a two dimensional distance
array fnxm) where m is the number of cells in
the network and;ds minimum distance
between cell polygonandj i.e. dj="Q

2: Let T = (§) be a two dimensional transitig
time array (nxm) where m is the number of ce
in the network andjtis minimum observe(
transition time between celland;.

3. Let F = () be a two dimensional flag arrg
(mxm) where m is the number of cells in t
network and ifis = 1 if the transition betwee
cellsi and | is flagged as infeasible and
otherwise.

4: lterate through eacbolumnof D, di,d2,..dm
(i.e. the distance between celland all other
cells). For eah element check the correspond
element in Tt;. If dj > 0 but § = 0 flag the cell
pair in F & F(fj) = 1. If dj / t; > 120 kph (the
motorway speed limit is used as an upper bo
on expected transition speed) flag the cell pa
F at F(f) = 1. Otherwise set F{f=0

5: Calculate the sum for each row in F (givi
the number of infeasible pairs the cell
involved in).

6: lterate through the flag array F. For ead
transition pair flagged as infeasiplmark the
cell with the most infealsle transitions
calculated in the previous step as out of d
Decrease the infeasible value for the of
member of the pair and continue until all ce
are assigned as either up to date or out of
geographically.
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4.2.4 Usage Visualisation

Temporalvariation in cell load was explored in the previous chapter; however, this
examination made no reference to the spatial structure dfe t network. As
demonstrated i4.22S OK OSf f Qa aLJ GAFf &dnpbeddpdNSE O y
the entire network. Thus, a spatiemporal load map can be constructed for the entire
network by combining the matial structure visualised id.2.2 with time series data
representing cell load as presented inetlprevious chapter. A spatial smoothing
function is required to enable the visualisation of a spatimporal load map for a
network comprising many overlapping cell coverage regions of various sizes and shapes.
The spatial smoothing function utilises amdividual Gaussian function for each cell
OSYGNBR 2y (K Sgiod Sentfoid &s didcB&INI2.3 FachNGaussian
Fdzy OliA2yQa &aLINBIFIRAY3I FIFOG2N Aa || TFTdyoOliArzy
over a sp#al lattice,t (x,y). The weighted spreading function for a cell is given by:

0 ®w 0

1 o | 6ADD = B 4.7)

where G is the cell radius,&G) I NB GKS O22NRAY Il 0S&y) &F (KS
coordinates of points in the spatial lattice, ahddenotes the scaling weight which
ensures the combined weights in 6 Estim® ®© G.. Each latticgpoint may extend to a
temporal horizont by in@rporating the parametert representing the desired time

sample. The resultant lattice 6 [) Eah then be combined with other lattices to view

the spatial distribution of activities in a desired area for time sanmpléhe combined

weighted lattice, (x,y,t), is given by:

R 1 ot 4.8)
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where (X,y,t) is the lattice representing calland N; is the total number of cells in the

spatial region of interest.

Figure4.5, Figure4.6 and Figure4.7 illustrate representative sample cell load maps for
data load, call load, and SMS load respectively across the network for both peak and
minimum load.To create these visualisations the spatial extent of the network was
divided into 200x200 meter squares indicating an individual pixel. Each pixel was
assigned a load intensity via equatio®%7) and (4.8) with a temporal bin of 300
seconds. The visualisations were completed using the built in MATLAB plotting
functions. To smooth out high frequency temporal variations in load, a temporal

smoothing function was employed. &function is defined as:

—iffp £ —afio 4.9)

This is a moving average filter which averages the current temporal sample over five
temporal samples. Interestingly, the plots show the strong spatisvenness in the
distribution of load across the network. The relationship between population density
and load is evident across all service types and for hours of maximum and minimum
load. For example, compare the densely populated greater Dublin regtbrthe more
sparsely populated and hence lower usage North West of Irelaidgimre4.5 - Figure

4.7. Figured.5, Figure4.6 and Figure4.7 also indicate spatial correlation between the

loads on the three different service types.
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Figure4.5: Visualisation of data load on the network. On the Left the load at its daily

maximum ad on the right the load at its daily minimum.

Figure4.6: Visualisation of voice call load on the network. On the Left the load at its

daily maximum and on the right the load at its daily minimum.
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Figured.7: Visualisation of SMS load on the network. On the Left the load at its daily

maximum and on the right the load at its daily minimum.

4.2.5 Conclusion

This section focusedn the creation of spatial represeniahs of the network firstly at

the localised base station and sectorised cell coverage level, then the aggregated net
work level. The spatial coverage region regmmstations introduced iM.2.2 are the
foundational step in beghing to examine the network spatially. Much of the later work
and many of the techniques introduced later require the use of these spatial coverage
regions. Given theimportance4.2.3introduceda novel method to identify athremove
errors in their pogioning. Subsectiord.2.4 provideda method to visualise the spatial
distribution of cellular load across the network. The techniques employed2id are
generalizableto not only represent load distribution but also other properties of

interest such as connection events, subscriber distribution etc.
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4.3 Communication Distance

4.3.1 Introduction

This sectiomprovides an examination of how users commiate over spatial distance.
Subsection4.3.2 introduces a novel algorithm to calculate the home and work
populations of each cell in the networKhis algorithm allovs for the creation of
accurate maps othe network®@ subscriber base for different classof cells. 4.3.3 -
4.3.5examines and modelsow subscribers communicate with one another spatially.
Theclassic gravity model of spatial communication distasepplied in a novel manner
to cdlular networks utilising the cellular coverage regions identifiedl.ia.2 and the

novel cellular population estimation techniques presented.i®.2

4.3.2 Cell Populations

One of the defining featuresf a cellular network is the population density of the spatial
region that the network services. Two popular methods of estimating population
density when examining a network are the use of census records or the address
information provided by the customeupon signing up to the network59]. Both
methods have their shortcomings. In the case of censfigrmation, it cannot be
assume that the network of interesthas equal penetition across all areas studied. A
large drawback of using address information provided by the subscriber is its lack of
accuracy. Subscriberdten provide unreliable information to service providemdis is
seltevident in the customer datprovided for prepay customefseeChapter 3. Many

of these prepay customers have blank address information or simple placeholders such
I & a1 1Gustom&sivitida bill phone are obliged to submit correct home address

details but there is no sudjuaranteewith pre-pay uses. This is particularly challenging

due to the growth in popularity of prpay plans[60]. Billpay customers currently
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account for just approximately 10% of thuserson the network under investigation
Apart from the lack of accuracy of home locations inherent in both methods, neither
takes account of the daily movement of people throughout the network. For much of
the day a large proportion of the people living incartain area will not be there
further reducing the usefulness of address or census information. A more useful dataset
would include for example, the home and work/study locations of the subscriber base
without recourse to seffeported address or censusformation. Such a data set was
created with the use of four months of CDRs as outlined in Algor&i2n& Algorithm

4.3.
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Algorithm 4.2:

The home location estimation algorithm used.

1: Extract all events over the study time per
and group them bglay of the week. Exclude ar
events that occur on Friday, Saturday or Sung

2: For a day in the study peri@ktract all events
whi ch occur ad 8pi-Ganane
group them by user id.

3: Load list of cell towers irthe area of interest

4: For eachsubscribercount how many event
occur within each ce
(seess.2.2

5: Iterate through alsubscribersand determing
the most frequent cell for eashibscribeffor the
dayof interes.

6: Assign the subscriber to the cell found in s
5 for that particular day.

7: Repeat steps 2 to 6 for each day of inte
and find the cell the subscriber is assigned tg
the largest amount of days. Set this cell as
subscri ber @s If Acudsribdr @
associated with two or more cells for the sg
amount of days, pick one at random.

8. Sum all the subscribers assigned to each
tower and set the re
home population.
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Algorithm 4.3:

The work lo@tion estimation algorithm used.

1: Extract all events over the study time per
and group them by day of the week. EXxcly
any events that occur Gaturday or Sunday.

2: For a day in the study period extract
events whiwdr loc e fsns
4pmand group them by user id.

3: Load list of cell towers in the area of interes

4: For each subscriber count how many evg
occur within each q
region (se&4.2.29

5: lterate through lasubscribers and determir
the most frequent cell for each subscriber for
day of interest.

6: Assign the subscriber to the cell found in s
5 for that particular day.

7. Repeat steps 2 to 6 for each day of inte
and find the cell the subscebis assigned to fg
the largest amount of days. Set this cell as
s ub s c rwork Beatios. If a subscriber i
associated with two or more cells for the s3
amount of days, pick one at random.

8: Sum all the subscribers assigned to each
towe and set the resu
work population.

Both algorithm4.2 and 4.3 were implemented in a mix of C and SQL for the entire
network. Figure4.8 shows the CDF of the home and work populations calculated for
each cell on the network as calculated using Algoritdri2sand4.3 respectively. A wide
range of both home and work populations are evident in each cell ranging from a
minimum of 1 to a maximum of 1000. The median home population is 38 while the

median wok population is 40. However, the mean home and work populations are

(o)




more than double their respective medians at 84 and 91 respectively. This indicates that
there are many cells with low home and work populations while a disproportionate
amount of subscriers live/work in a relatively small cohort of heavily loaded cells. This
is consistent with both the findings presented in the previous chaptet subsection
424 The CDF of home and work populations look very similar bubedrs
remembering that they are not necessarily for the same cells (see the comments in
Figure4.9). For example, a cell covering an industrial park may have a large working
population with much a smaller residential populatiofhe home population to work
population ratio for each cell is displayedRigure4.9. Generally the two are similar

with the home population ranging from half to twice the work population for 85% of
cells. However, in some casélse home population can be one tenth the work
population at one extreme or ten times greater than the work population at the other

extreme.
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Figure4.8: CDF of the home population and work population focteaell on the

networks
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Figure4.9: CDF of the home population of each cell divided by eac cefipective

work population.

4.3.3 The Gravity Model

Interestingly, having accurate home and work locations fobieosubscribers allows

for, in some respects, the treatment of cellular networks like old fixed line connections.
This permits the revalidation of fundamental laws of fixed line communications such as
the gravity law in a cellular network context.nasbeen previously demonstrated that
various systems can be represented as a network of nodes, connected by weighted or
unweighted links[61]. It is a common technique to represent social networks as a
network where each nodeepresents a person and links between the nodes indicated
social iteractions.[62] utilises a dataset similar to CBRo highlight the importance of
weak ties to the propagation of information through a communication network. Several
other authors have made use of large recently available phone and email datasets to
study human onnections and behaviouf$3-66]. Geographical information allows for a

more detailed and interesting exploration of group and individual interactions. For
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exampe, [67] uses a mobile phone dataset to show that the probability of a call

between wo people decreases be square of their distance

Interurban connections such as passenger flows and phone messages and their
dependence on separation distance have been studied for a considerable amount of

time [68, 69]. In various econmic and social networksnteractions between actors

4dzOK a NBIA2ya FyR O2dzyiNASa Kla tSR G2 Y
the size of the actor plays the role of mdg6]. These Gravity models take the following

form:

Q (4.10)
where W; is the weight of the link between nodeand nodej, d; is the distance

between nodedM; and M;, nis the exponent of the distance, akds a castant.

Studies have also been carried out on road and airline networks between cities [9, 10].
In the case of road networks it appears that the gravity model holds for the strength of
interactions.[71] analysisa CDR dataset but unlik&2] it associats users with locations

and aggregate links between users to links between locatif#§. explores how the
strength of thelinks between locations varies relative to separation distance and
population.It findsthat the strength of the link between locations is proportional to the
populations at the locations and inversely proportional to the distance between the
locations. Hace, [71] concludes that the inter-city communication intensity is

characterised by a gravity model.

4.3.4 Estimating population size and communication link s

One limitation of[71] is that it relies on the billing addresdpZcode provided by the
subscribers to the network operator. All users in a spefificcode are aggregated and

Zip codes are aggregated to form cities. However, this introduces a potential source of

(o]




error as users often provide unreliable information to service providargliscussed in

4.3.2

As can be seefrom equation(4.10) it is important that an accurate estin@ of the
population of the twocities/areasbe made. The populatioM of cityi is calculated as

follows:

0 Q V) (4.12)

wherecis a cell with all or part of its coverage region contained withini€itft 6 2 dzy R NEB >
andnc is the number of cells with all or part of their coverage regions contained within
cityiQa o0 2 dzy R Naindarieb Kré defingédia8 thedboundaries employed by the

Central Statistics Office for the 2011 Irish cer3@%.

Equation(4.11) provides an accurate estimation of the subscriber population of cities
i.e. Mi and M; in equation (4.10). However, verification oéquation (4.10) alsorequires
values for the Ilink weightW between cities To generate the interurban
communications network link weight the total communications originating and
terminating in a city are aggregated togeth@he weightof the link V) between two

cities andi can thus be defineds:

4.12)

where wj is a link between individual users in the respective cities. The weight of the
links betweentwenty-five cities/towns is thus calculated for each of the seven days
week including workdays and weekend days. The weight of the links between the
cities/towns is also calculated for two times of interest during each gdapork times
(9am4pm MondayThursday and 9arBpm Friday) and home times (8priam Monday

¢ Thursday).Additionally,the weight of the links is calculated for daytime weekend
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(7am Saturday & Sunday to 8pm Saturday and Sunday) and night time weekend (8pm

Saturday and Sunday #&am Sundayand Monday).

All the above calculations are performed for three different metrics of link weght
number of calls between cities, total call time in seconds between cities and number of

SMS between cities.

4.3.5 Testing the gravity model

[73] performed a high levelinvestigation of the gravity model on Irely R Q&
communication network[73] found that the gravity model approximates the actual
data under their specific aggregatiori3.3] aggregated results over the ped of one
week and were dealing witmuch larger regional aggregatiarisquation(4.10) canbe
rearranged as follows:

VIV

Q " (4.13)

Using equatior(4.13) the results obtained can be tested for degrees of compliance with
the gravity model usingriear regression. Two different measures of distance were used
when testing the gravity model. The first was the spatial travel distance between the
centres of two cities and the second was the travel time by road betweencities.
Figure 4.10 compares one week of data plotted for both travel distance by spatial
distance and by travel timeFigure4.10 illustrates that the gravity model performs
better when distances are easured in spatial distance. This result is repeated for all
the cities examined in the study with the agreement between the gravity model and the

results being on average 15% less when travel time is used.
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Figured.10: One full week of data plotted with two different measures of distance.

The model was tested for three different types of communications lgikgal number

of call connections made, total connection time of all calls and total number ofsS8MS

and received. The greatest agreement with the gravity model was found when total
number of SMS was used. This result is repeated for all the cities examined in the study
with the agreement between the gravity model and the results being on average 17%
less when total number of connections or total call time is used. It iSmmediately

clear why this is;it could represent an underlying difference in communication
behaviour between calls and SMS. It cohlowever, also be a result of users sending o
average over 4 times more text messages than making callshaven inFigure4.11,

smaller town to smallecity/town i.e. communicatiors with few links disproportionality
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affects the results This smallecity/town to smallercity/town effect is reduced when

dealing with SMS as the number of links is greater

250000
(a) Small Town: Pop 20K 3
200000 -~
§‘ 3
2 150000 * s
Vo—
b3 o s ¥
o <&
= 100000 - P *
£ $
A | ¢ ot & - 0007
50000 - ‘
$
G
¢

Travel Distance (km)

Figure4.11: Small town to small town communication over one week

The agreement between the results ancetinodel vary both with the day of the week
and the time of theday.Figure4.12 showshow the results change between the working
week and the weekendOnaveragethe gravity model performs worse for cities during
the weekend (on average approximately 10% less agreement between observation and
the model) when compared with the working week. One possible explanation is the
large amount of Irish people who work/study in the cities during the week and move
back to thesmall towns/rural areas where they grew up on the weekefideere is also

a small change in the agreement with the model based on the time of day. During the
daytime/evening there is a slightly larger agreement between the gravity model and the
results than at night. The effect is smaller than the weekday/weekend shift and is
probably a result of nomesidents being present in the city during daytime hours on

weekdays and returning home outside the city at night.
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Figure4.10 andFigure4.12 seem to indicak a value ok=1 inequation(4.13). There are

several possible reasons for this. For exampl& S wSLJdzo f A O 2 FsateNBf | y R
separated by relatively small distances. This allows people to work/study in one part of

the country while maintaining strong links with their relatively close places of birth. This

large degree of mobility between urban areas would not be possibdelarger country.

The relevance of the model greatly depends on having at least one large population
centre on either end of the communication link. There are two main interurban
communication scenarios considered. The first is when a large populatjgresent on
either side of the link (large population communicating with small, small to large and
large to large). This always provides the best fit i gravitymodel (seeFigure4.10

(a)) even when takingnio account variations due to the time of the wedkigqure4.12)

or time of the day.

The second population scenario is where there is no large population centre on either

side of the link (smaller town to smalleswn). This primarily affects the smaller towns

with populations of less thaB0,000inhabitants Figure4.11). This scenario is prevalent

Ay LNBflIYyR RdzS (2 YlIyeé 2F LNBf | t¢rrafaal dzND | y
standards. The Republic of Ireland only has five cities with a population greater than
50,000 inhabitantsThus,F 2 NJ 6§ KS NBYFIAYRSNJ 2F (GKS wSLJdzo €

model is a poor choice for modelling interurban communication.

Thisis a key difference between this study and that{ @8] which shows an approximate
national agreement Wh the gravity model. Theonclusionof [73] states i K G & KA &
work has focused on couty S@St Ay GSNI OQlA2yed hdzi 27F (K

Republic Of Ireland covered in theirudy only two have a population déss than

50,000 with moshaving significantly morg/4]. Thus, the gravity model is only relevant
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when dealing with sufficiently large populations, either concentrated in a large urban

area or more widely spread out over a larger region.
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Figure4.12: Change in communication patterns (a) Mohurs (working days) (b)

Saturday and Sunday (weekend)

4.3.6 Conclusion

4.3.2 saw the introduction of novel techniques to ascertain the network subscriber
specific homeand work populations for each cell in the network. These techniques
allow for the creation of accurate maps of a networks subscriber base for different
classes of cellg}.3.2 focused on home and work cells but the techniquesoduced

could easily be generalised to build up maps of different cells e.g. socialising cells etc.

—
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4.3.3- 4.3.5examined how subscribers communicate with one another spatiatg.
gravity modelwas tested as one possible model fmmmunication distance in cellular
networks The performance of the model was found to vary largely based on the type of
link chosenthe time of the weekand to a lesser extent the time of day. TheuweabfK

in equdion (4.13) was also found to be 1 indicating a linear relagbip. The gravity
model may be more suited to static landlines than mobile phones. The simplicity of the
model does notconsiderthe highly mobile natte of the Irish population. This is
probably exacerbated by the relatively small size of the Republic. This small size
facilitates people working/studying in one area during the week while maintaining
strong links to their place of origifhe gravity modewas found to be only helpful
when dealing with large population centres of more than 50,000 inhabitants. As the
Republic of Ireland only has five cities with a population of 50,000 inhabitants or more
the gravity model is a poor choice for modelling intdban communication between the
O2dzy i NBE Q& &YLFffSNI dNBly OSyGaNBaod Ly 7TdzidzNB
should be amalgamated into larger groups or a more sophisticated model should be

employed.

4.4 Spatial Relationships

4.4.1 Introduction

In the prevous chapter3.3examined how network load varied between individual base
stations and sectorised cells. A large disparity in load was identified with some base
stations and cells servicing several orders of magnitude mord kb@n others.
Concomitantwith those findings4.3.2 identified a large variation in the amount of
people living and working in cells and the relevant ratios of both. Thus, it is already
known that there is a great diversityf cells present on the network. The question this

section explores is how do these differences manifest spatidl§y2explores the loads

(o)




serviced by cells spatially correlated whilg.3- 4.4.7 explores the causal structure of

GKS ySGé2N1 Qa t2FR®

4.4.2 Spatial Correlation

Thissubsection examines how spatially correlated load is across the entire network. The
load of each cell inow used toinvestigate the extent of thepatial correlation on the
network by crossorrelating pairs of base statiaf@ime series with one another. Crass
correlation is a widely used statisticakethod of measuring the similarity (the degree of
correlation) between two time serie§75]. Figure 4.13 shows the crosscorrelation
calculated at zero lag for atkellson the network and also forcellsbased on certain
distance ranges over two weeks of data at a granularity of one hour. Similar results were
also obtained for thel5-minute interval but are omitted due to their similarity. The
crosscorrelation betweencellswasfound to be quite high with thene-hour interval
displaying slightly higher values than tHé-minute interval. The median cross
correlation was approximately 0.65 for tlome-hour interval and 0.5 for thel5-minute
interval. 80% otellshad a crossorrelation greater than or equal to 0.5 for thene-

hour interval. Crossorrelation was also found to be dependent on the distance
between thecellsasshown by the groupim Figure4.13. For examplethe median cros
correlation between cells within 2km of each other was 0.8 falling to 0.7 for all cells

within 20km.
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Empirical CDF
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Figure4.13: CDF of the crossorrelation between all pairs of cells and also within

certain distance ands based on hourly load. The distancedfinedas®™ i|= asin4.2.3

To further examine the degree of spatial correlation identifieéigure4.13, a different
YSGNRO (y26y |4 az2Nly7Qd 42 Ndimfstcis aliegularly A a
employed measure of spatial autocorrelation. It quantifiéke correlation between
different measurements or observations based on their spatial locat@sographic
distance is used to indicate proximity and is employed as a weight in the formula.
a 2 NI gt@disticiddefined as:

0 1 ¢o6end  BBdusn 6@ o
BZB@') Q0 By ®° (4.14)

wherex s the random variable being studidflrepresents the sample mear@ are the
observationswj is the weight associated with each pai, ) andN is the number of
observations. In thisituation, the random variable being studied is the hourly load on
acell Similarly,i 2 2 ( K S Nstudigshildary Weightsy; = 1 are employeevhen the

cellsare in closeproximity Oxy = 2km), otherwisav; T n® ¢ KS @I f dzS8 2 F

azl

plotted in Figure4.14 for each hour of the weekFigure4.14 3 K2 ¢ & G KI 0 a2 NJ
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statisticvaries from a low of approximately 0.1 to a high of approximately 0.4 indicating
a varying degree of spatial correlation within the network. Interestingly, the periodic
pattern displayed irFigure4.14 is reminiscent of the diurnal archetype for cellular load
identified in3.2.3 This suggests that the degree of spatial correlation is greatest when
0KS ySig2 Nklitatits gréatesR THus, indicating a general tendency for the
load of proximate cells to be more correlated when their loads are higher. This
intuitively makes sense, as discussehmapter 5 when the load on a cell agroup of

cells is very low, for example in the early morning hours, one subscriber connecting to a
cell using a data intensive application may greatly increase the load on one cell in
percentage terms when compared to its barely used neighbours. Durings ludipeak

load however, the percentage increase will be diminished and also given the finite
YIGdzZNBE 2F OStfdzA N aLISOGNHzY GKS ySg KSI ge

limited reducing his/her distortive capacity.

045

0.05
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Figure4.14 Moran's | for each hour of the week for all cells on the network. The plot has
been smoothed to remove noise by using sliding window averaging with the window

size = 4 hours.
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4.4.3 Causal Structure

The previoussubsectionexamined orrelations in the spatial extent of network load;
this subsectiongoes beyond spatial correlation and examines the functional influence
present in the network. A key metric to understand the underlying functional
connectivity present in the network is theausal influence between cells. The causal
relationships present in the network have many uses, including load predigtign
travel mode discovery78], and identifying influential nodes to reduce loadmpling
overhead[13]. This section uses one popular measure of causality known as Granger
Causality[79] which is a statistical framework for measuring caitg between time

series.

4.4.4 Granger Causality

Granger causality establishes if one time series improves the forecas@mpthertime

series One stochastic variableg, Granger causes another stochastic variaKef

information in the past ok helps predict the future o with a better accuracy than is

possible with only the informatioin the past of alone[79]. Thus, Granger causality is

present in the direction to X;, provided that the inclusion of; in the model improves

the prediction ofX; by a statistially significant amount. However, this relationship is not
ySOSaal NAf & a8 XBéngNRhueedQ R2RS Al K3 Gnga:)t &8 (K|
causesXQ77]. For example, suppose there atwo time seriesX(t) and X(t), both

having a length DT. As in[8(] the two time sefes canbe describal using a bivariate

autoregressive model:

@ 0 0 @ 0 p 0O W 0 p - 08 (4.15)
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® o0 0 F 0 p O f O p - 08 (4.16)

where p < Tis the model order i.e. the maximum number of lagged observation$ of
used to predict the current value o or vice versa at timgt). The matrixA contains

the model coefficients whil&; & 8, are the residuals of the autoregressive modsl.
Granger cause¥ if all the coefficients ofA12 are nonzero i.e. if the residuals are
reduced by the inclusion of the second time seriethaamodel. In practice, a threshold

is set to determine if the relationship is statistically significant. One such method is the
Ftest; to be considered statistically significant thevdtue should be greater than a
desired significance tkshold rangingfrom O to 1[80]. The closer téa significance
threshold is to zero the greater the significance of the result. The Akaikemafion

Criterion (AlCyvas used to estimate the model ordg31].

Using the methods of80] the model orderwas found using the AIC as illustrated in
Figure4.15. The time sdes X andX in equations(4.15) and (4.16) are the cell loadn

pairs of cells with neighbouring or overlapping coverage grids, as defindd?ig
aggregated over 10 minute intervalShe model order is generally quite low with about

80% of pairings having an order of 8 or less. This suggests that in most cases only a small
number of previous samples from causally connected neighboursegngired. For the

Ftest of sigificance the significance threshold level was set to the commonly used
0.05 The causality is tested for every pair of neighboudalisin both directions. On

this network 38% ofcell pairs were found to have a statisticalkignificant causal

relationship in at least one direction at a granularityl6fminutes

96

—
A




CDF

S

YR I—
e

S

1 1 1 H

Figure4.15: CDF of the model order for each pair of neighbouring base stations using

the Akaike Information Critéon with a granularity of one hour.

To examine the network as a whotéecausality graphs createdusing the paiwise
causl relationships[75]. The resulting graph of Granger causality interactions is a
directed graph(a graph that is set of vertices connected by edges, where edges have a
direction associated with then( = (V, E) whereV is the set of vertices:is the set of
edges. Thus, eadellbecomes a node on the graph and there is an edge from adde

b (i.e. @b) B if there is a significant Granger causality interaction between them and
they are neighbours in terms of coveraggid. This causal graph lavs for the
exploration and quantification of some causal properties usefuleéntiflying influential

nodes[80]. These properties are outlined in the followisgbsection

4.4.5 Causal Density

Causal density is a global measure of the causal interactivity in a dynamic sgatesal
density shows the mean causality over the entire network. A high value of causal
density indicates that the constituent parts of the network are coordinated in their

activity [80]. It is the average Gausality over all the pairs afellsexamined. Causal
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density can take on a value betweendal and gives the average amount of significant
Granger causality interactions over the entire network. Granger causality is defined

using the causality graph:

T = S = O v O (4.17)
0 WO iIOXE | Q6 -
B.v 9 s

where N, is the set of neighbours ahe cell corresponding to nodea and | is the
indicaor function. Onthis network the causal density was found to be Oi@8licating

the presence of statistically sidicent Granger causality in the network.

4.4.6 Causal Flow

The causal graph representatioenables the examination of which celige the
influencers and which are theflnenced i.e. which cellsave a causal influence on their
neighbours and which exhibit theesults of this influence. Using the causal graph
representation, the influence emanating from nodss its outdegree (the number of
edges going from noda). The influence noda experiences from its neighbours is given
by nodeaQ a-defyrge (the numbenf edges going into noda). Figure4.16 illustrates

the out and in degree of every node on the network. Note that some nodes have a very
strong influence on their surroundings, for example, the top 5% of nodes Aa out

degree of 15 or greater.
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Figure4.16. CDF of the out and in degree of every node on the network.

To get a more holistic view of the influence of a node while taking into account the
influence it periences, a metric known as the causal flow is employed. The causal flow
of a node (base statidoell) is the difference between the causal interaction it exerts on
its neighbours and the causal interaction its neighbours, in turn, exert on it. Thtise on

OF dzal £t AG& 3IANI LK GKS Oldalt Fft2¢ Aa GKS
in-degree. Nodes with positive causal flows are causal sources while nodes with
negative causal flows are causahks. The more positive or negative the flowthe
stronger the source or sink is respectivaiigure4.17 shows the CDF of the causal flow
for each cell on the network. The information presented-igure4.17 can beused to
identify causal sources and sinks in the network. For example, 1@¥Ishre causal
sources withcausal flows greater than or equal to five. Conversely, 10% of cells are

causal sinks with flows less than or equal to negative five. The stromgesoand sinks

identified inFigure4.17 will be further examined in the followingubsection
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Figure4.17: CDF of the causal flow of each cell on the network.

Another interesting causal metric to exploretlse causal path lengthpresent in the
network. These causal paths represent how the causal influence propagates or flows
through the nodes in the network. This indicates the spatial paths throughout the
network in which information can be gleaned from previous network states. Causal
paths are defined as continuously traversable paths fuamex to vertex via connecting
edges in the network grapts as defined iMd.4.4 Figure4.18 displays the CDF of the
causal patHengths present in the network and indicates the existence of a wide range
of causal path lengths present in the network. The median causal path length in the
network was found to be 15 with a 90percentile path length of approximately 50.
Preliminary investigations of these long causal path lengths indicate that when plotted
spatially many of them follow major transport infrastructure such as busy motorways
etc. h future work it would be interesting to more thoroughly investigate this and
examine if there is a relationship between any other geographical features and causal

paths present in the network.
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Figure4.18: CDF of the causal path lengths found in the network

4.4.7 Sources and Sinks

In the previous subsection cells that exert/experience influence on/from their
neighbours were identified. Thesellswere known as sources and sinks respectively. In
this subsectionthese sources and sinkse examined andomparel with each other
and the general network to see if they have any special properties that stanéigute
4.19 shows the CDF of each &ltotal equivalent data ugge grouped by their causal
flow. The three groupirgare strong surces (top 10% of celtanked by causal flow), all
cells and strong sinks (bottom 10% oéllsranked by causal flow). It is readily apparent
that the strong sources experience much highieage than the other two groups. For
example, the median total equivalent data usage of a strong saeites approximately

4.5 times that of the median for akllson the network.
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Figure4.19: CDF ofhe Total Equivalent Data used per cell ranked by their Causal Flow.

The top 10% represent strong sources while the bottom 10% represents strong sinks.

Figure4.20 shows the CDF of the total number of connections. (data connections,

voice or SMS) made per cell over one day as ranked by their causal flow. The top 10%
represents strong sources while the bottom 10% represents strong dhidpgre4.20
illustrates that stroig sources have a much larger amount of connections per day than
the other groups. The median strong sourcell has approximately 2.5 times the
number of connections per day as the median ofcallls Thus, strong sourceells

generally use the most datnd have the largest number of connections in a day.
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Figure4.20: CDF of the total number of connections made per cell over one day ranked
by their causal flow. The top 10% represent strong sources whalbdttom 10%

represent strong sinks.

4.4.8 Conclusion

Subsectiort.4 2 found that there is aignificant amount of spatial correlatidretween

cell coverage regioria close proximity, decreasing as the separation distance increases.
Interestingly, it was found that these correlations vary throughout the day in a similar
diurnal pattern to that identified for load in the previous chapter. Spatial correlation
increases during times of high load and decreases during times of lowdl@a8- 4.4.7
went beyond spatial correlation by examining the functional influence present in the
network. The methodology of Granger causality was employed to identify and
understand the underlyingunctional connectivity present in the network. Causal
influences were found to be common in the network with 38% of neighbouring cell pairs
experiencing statistically significant influence in either one or both directions. Long
chained paths of causal flaence were found to flow throughout the network.

Anecdotally these paths appear to follow significant transport networks. In future work
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a more rigorous examination of these causal flows and their spatial extent would be
interesting. Highly influentialfifluenced cells in the network were also identified and
examined. The main difference between these cells and cells with less extreme degrees
of influence appears to be how much load/many connections they service. This could

again indicate the presence tansport hubs, busy street intersections etc.

4.5 Discussion and Conclusion

The introduction to this chapter identified the importance of understanding the
network from a spatial perspective given the larger goal of creating near horizon
localised load forecsting techniques. This chapter started out with the creation of
spatial representations of base station and sectorised cell coverage regidris Tthese
spatial coverage region representations are the foundational step innbeg to
examine the network spatially. Much of the later work and many of the techniques
introduced later require the use of these spatial coverage regions. Given their
importance 4.2.3 introduced a novel method to identifynal remove errors in their
positioning.SubsectioM.2.4 provided a method to visualise the spatial distribution of
cellular load across the network. The techniques employetdicould be generided

to not only represent load distribution but also other properties of interest such as
connection events, subscriber distribution et4.3 saw the introduction of novel
techniques to ascertain the network subscriber speditome and work populations for
each cell in the network. These techniques allow for the creation of accurate maps of a
network@ subscriber base for different classes of cdlli3.2focused on home and work
cells but the techiques introduced could easily be generalised to build up maps of

different cell e.g. socialising cells etc.

4.3.3- 4.3.5 examined how subscribers communicate with one another spatially. To

explote this the classic gravity model of spatial communication distance was applied in a
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novel manner to cellular networks utilising the cellular coverage regions identified in
section 4.2.2 and the novel cellular population estimah techniques presented in
section4.3.2 The performance of the model was found to vary largely based on the
type of link chosen/the time of the week and to a lesser extent the time of day. The
gravity model was found to benty helpful when dealing with large population centres

of more than 50,000 inhabitants. As the Republic of Ireland only has five cities with a
population of 50,000 inhabitants or magrehe gravity model is a poor choice for
modelling interurban communic&iy 06 S 6SSy GKS O2dzy i NE Q&
future interurban work smaller population centres should be amalgamated into larger

groups or a more sophisticated model should be employed.

4.4 found that there is asignificant amount of spatial correlatiobetweencell coverage
regionsin close proximity, decreasing as the separation distance increlesestingly,

it was found that these correlations vary throughout the day in a similar diurnal pattern
to that identified for load in the previous chapter. Spatial correlation increases during
times of high load and decreases during times of low load. This intuitively makes sense,
when the load on a cell or group of cells is very low, for example in the early morning
hours, me subscriber connecting to a cell using a data intensive application may greatly
increase the load on one cell in percentage terms when compared to its barely used
neighbours. During hours of peak load however, the percentage increase will be
diminished ¥ R Ff a2 3IAGSYy (GKS FAYAGS ylrddaNB 27
bandwidth will be much more limited reducing his distortive capa@ignificant spatial
correlation indicates that for monitoring purposes it may only be necessary to monitor a
sulset of base stations4.4.3 went beyond spatial correlation by examining the
functional influence present in the network. The methodology of Granger causality was
employed to identify and understand the underlying functionahmectivity present in

the network. Causal influences were found to be common in the network with 38% of
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neighbouring cell pairs experiencing statistically significant influence in either one or
both directions. Long chained paths of causal influence wawed to flow throughout

the network. Anecdotally these paths appear to follow significant transport networks. In
future work a more rigorous examination of these causal flows and their spatial extent
would be interesting. Highly influential/influenced eelln the network were also
identified and examined. The main difference between these cells and cells with less
extreme degrees of influence appears to be how much load/many connections they
service. This could again indicate the presence of transport /hibosy street

intersections etc.

The above contributions are valuable to network providers and relevant to many
advanced network management techniques. They are particularly important to those
techniques which rely on a strong spatial understanding swuhdymamic spectrum
allocation [12], reduced sensing techniquefb5], fault detection, and spatially

influenced power saving schemggf] such as the onpresented inChapter 7
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Chapter 5 Local Traffic Load Predictability

5.1 Intro duction

Traffic modelling and prediction is a critical element in the performance, planning and
evaluation of telecommunications networks and has consequenttya@ed much
attention. However, most of this research has focused on traditional wired broadband
which has many different properties and needs in comparison to cellular networks.
What work has been carried out on cellular networks is mostly focused @ wdice
centric networks and datasetfl2, 21]. However, due to the increasing capabilities of
devices conneatig to the cellular network and the concomitant rise in data usage,
cellular networks have shifted from beingicecentricto data centric networkg24,

25]. This shift has resulted in an-going explosion of traffic on cellular networks at the
same time as Average Revenue Per User (ARPU) stagnates of4TallsThis
fundamental challenge has inspired research into new ways to more efficiently use
limited network resources such as spectrf?] or power [16] while still meeting
growing user Quality of Service (Qo0S) expectations. Much of the promising work in this
area involves Self Organising Networks (SON) that can dynamically manage their
resource usaggl?, 16, 82]. An important faet of many of these SON scenarios is the
accurate modelling and prediction of traffic load in locally contiguspetialareas.Up

until now, much of the focus on traffic load predictability has been concerned with
macro scale network wide predictions ofld such as if27, 83]. However, macro scale
predictions are of limited practical value for many SON applications such as green
networks [28] and spectrum sharin§l2]. For such apfcations, groupings with finer
spatial resolution are required. Thus, the central aim of this chapter is to identify smaller
subsets of the network that provide sufficient predictability to allow for their use in SON

techniques.Thesubsets must be suffiently small and spatiality continuos® as to be
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useful for SON techniques. These subsets provide network operators with new ways of
viewingtheir network as opposed to the more traditional macro whole network view or
the individual BS vieB3]. To that end this chapter aims to examine the predictability

of network load and also defiseand examina the predictability of threepossible
spatially contiguousoverage region aggregationd the network. InChapter 6these
coverage region aggregationsill be used to create localised priedve models of
cellular lad. Chapter 7will take these localised predictive models and lgpjhem to a

real world SON applicatioffhe main contributions of this chapter are

1) A novel examination of how different levels of load, service type, temporal
aggregation, and spatial aggregation affect traffic load predictability.
2) The creation and examination of practical real world spatially contiguous

aggregations of network coverage regions
The remainder of this chapterda & S O [aid Quyas follbowsB

1 5.2introduces concepts from information theory and applies these to the traffic
load across the various service types. This provides a framework for
understanding the relative predictability of the various service types, hasv th
varies between cells for the same service type, and an understanding of how
predictability changes with time of day and load.

1 5.3introduces some of the most practically useful levels of spatial aggregation
and examines houhey influence predictability.

1 5.4provides a concluding discussion to the chapter.
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5.2 Traffic Predictability

5.2.1 Predictability

This section will use concepts from entropy theory to examine the predictability of
network load.Swbsection5.2.2discusses entropy theofyom which concepts are taken
to quantify the predictability of data loadvhile 5.2.3introduces the methodology used
to apply it to this datasebutlined in Chapter 2 5.2.4 examines how entropy varies
across the various service typés2.5explores the relationship between predictability

and load.

5.2.2 Entropy

In recent yearsframeworks and tools from information theoif4] have been applied

to disparate fields of study from human mobilifg4] to the predictability of market
returns[85]. Information theory originated from the study of the digital transmission of
random variableg86]. The objective was to find the most efficient method/coding for
the transmission of these variables. It was found that the greater the uncertainty of a
random variable, the longer the most efficient possible smamission code would be.
This can be precisely quantified, and thus, provides a universal measure of the
uncertainty of a random variablB6]. This universal measure of the uncertaiofya
random variable is calledn&ropy. Entropy is employed in this work as it provides a
precise definition of the informational content of predictions via the appropriate
Probability Mass Functions (PMF¢Note that PMFs are employed as opposed to
Probability Density Functions due to the data being quantised into discrete levels).
Entropy also proves to be a generally applicable concept as it makes no assumptions
about the underlying model. Thus, entropyused in this work to provide a metric for

traffic predictability across disparate BSs/cells and utilising a variety of different prior
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and/or auxiliary information. For the interested read&?7, 88] provide a more detailed
discussion of the applicability of entropy as a predictability metric in different

application @mains.

5.2.3 Quantifying Predictability

The dataset discussed @hapter 2was processed with the traffic of the three services
(voice, data and SMS) sorted by time and cell ID. The traffic during a certain time period
i within agiven cell is quantized intQ quantisation levels. The quantisation level of the

traffic at timei, QuantLevel(i)is given byequation(5.1):

P X T oS
06meo0@O QA .-

o oh £®RI 0 Q0
where ObsTraf(i)s the traffic observed at timg ceil is the ceiling function which maps
a real numbeto the least succeeding integf89], andCapacityis the traffic capacity of
a given cell. The capacity of a cell varies depending on the technology(G&&RIS,
EDGE, HSDPA etcthe number of transceivers employeaktc. Approximation is
required as it is not possible to give an exigtire for the capacity of a cell; capacity
varies from cell to cell and throughout the day depending on local conditions such as
interference, the modulation scheme used, ef83]. Thus,for conveniencehe traffic
load in every cell iguantised intoQ = 10levels over the target period. From thihe
corresponding traffic distributions arobtained. For examp]erigure 5.1 depicts the
PMF in one cell derived from the quantised levels for the three servioeghe data
servicedepictedin Figure5.1 the cdl under investigation spends approximately 22.5%
of its time with a load in the loweddecile, approximately 2% of time in the highest

decile etc. This indicates better tharuniform predictability i.e. the cell spends a

disproportionate amount of time inthe lowest quantisation level meaning its
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quantisation level is easier to predict. If the cell spent an equal amount of time in every
quantisation level then it woulthe much harder to predict its quantisation level at any
given time.This is a common ptarn across the networks with most celipending a
large majority of the time in the lowest quantisation levels as depicteBigure5.2.
Thus,the presence of this identifiable patteindicatesthat useful load predictions can

be made for many cells on the network.

0.3
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Figureb.1: The Probability Mass Function of a representative cell
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Figureb.2: Themean PMF of the quantisation lelven all cells over one week.
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