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Exploiting A Priori Time Constant Ratio Information
in Difference Equation Two-Thermocouple

Sensor Characterization
Seán McLoone, Senior Member, IEEE, Peter Hung, Member, IEEE, George Irwin, Fellow, IEEE, and Robert J. Kee

Abstract—The characterization of thermocouple sensors for
temperature measurement in varying-flow environments is a
challenging problem. Recently, the authors introduced novel
difference-equation-based algorithms that allow in situ char-
acterization of temperature measurement probes consisting of
two-thermocouple sensors with differing time constants. In par-
ticular, a linear least squares (LS) λ formulation of the character-
ization problem, which yields unbiased estimates when identified
using generalized total LS, was introduced. These algorithms as-
sume that time constants do not change during operation and are,
therefore, appropriate for temperature measurement in homoge-
nous constant-velocity liquid or gas flows. This paper develops an
alternative β formulation of the characterization problem that has
the major advantage of allowing exploitation of a priori knowledge
of the ratio of the sensor time constants, thereby facilitating the
implementation of computationally efficient algorithms that are
less sensitive to measurement noise. A number of variants of the β
formulation are developed, and appropriate unbiased estimators
are identified. Monte Carlo simulation results are used to support
the analysis.

Index Terms—Sensor characterization, soft sensing, two-
thermocouple probe (TTP).

NOMENCLATURE

Tg(t) True gas temperature (in degrees Celsius).
Tm(t) Measured gas temperature (in degrees Celsius).
T1(t) Temperature measured by thermocouple 1 (in

degrees Celsius).
T2(t) Temperature measured by thermocouple 2 (in

degrees Celsius).
T k

1 Temperature measured by thermocouple 1 at the
kth sample instant (in degrees Celsius).

T k
2 Temperature measured by thermocouple 2 at the

kth sample instant (in degrees Celsius).
T k

g True gas temperature at the kth sample instant (in
degrees Celsius).

Ts Sampling period (in seconds).
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τ1 Time constant of thermocouple 1 (in seconds).
τ2 Time constant of thermocouple 2 (in seconds).
α Ratio of time constants, α = τ1/τ2, α < 1 by

definition.
v1 Variance of noise on measurements from thermo-

couple 1.
v2 Variance of noise on measurements from thermo-

couple 2.
φ Ratio of the noise variances, φ = v1/v2.
a1, b1 Parameters of the discrete-time model for thermo-

couple 1.
a2, b2 Parameters of the discrete-time model for thermo-

couple 2.
β Ratio of b2 and b1, β = b2/b1.
∆T k

i Change in measured temperature from the
(k − 1)th to the kth sample instant for the ith
thermocouple, i.e., ∆T k

i = T k
i − T k−1

i (in degrees
Celsius).

∆T k
ij Difference in temperature measured by the ith

and jth thermocouple at the kth sample instant,
i.e., ∆T k

ij = T k
i − T k

j (in degrees Celsius).
xk, yk, θ Generic regression, output vector, and parameter

vector in yk = xT
k θ.

X, y Matrix form of the equation y = Xθ.
C Noise covariance matrix.
TTP Two-thermocouple probe.
LS Least squares.
RTLS Restricted total LS.
GTLS Generalized total LS.
SVD Singular value decomposition.

I. INTRODUCTION

I F TWO dissimilar conducting wires are connected together
to form a junction, a small voltage may be observed across

the free ends, which is a function of the temperature of the
junction. This thermoelectric effect, which was discovered by
the Estonian physicist Thomas Johann Seebeck in 1821 (and
which bears his name), is the fundamental operating princi-
ple of the most widely used temperature sensing device in
commercial applications—the ubiquitous thermocouple. The
popularity of the thermocouple stems from its simplicity, low
cost, robustness, ease of manufacture, reliability, and wide
operating range.

However, due to their relatively slow response times, ther-
mocouples are only appropriate in applications where the
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temperature changes relatively slowly (< 1 Hz). For higher
frequency temperature fluctuations, fast response measurement
systems, such as coherent anti-Stokes spectroscopy, laser-
induced fluorescence, and infrared pyrometry, can be used, but
such systems are expensive, are difficult to use and maintain
in harsh environments, lack robustness, and are not practical
for most commercial applications. An attractive alternative is
to increase the effective bandwidth of thermocouples using
software-based compensation techniques. Such techniques rely
on having a dynamic model of the sensor whose inversion
allows the true signal to be estimated from the measured output.
For example, a linear first-order model with time constant τ is
generally assumed in the case of temperature measurement in a
gas or liquid flow [11], i.e.,

τ
dTm

dt
+ Tm(t) = Tg(t) (1)

where Tg is the true gas temperature, and Tm is the measured
temperature.

Determining the time constant τ , which is referred to as
sensor characterization, is a critical step in the application
of compensation schemes. This is normally achieved through
an initial calibration procedure, where the thermocouple is
heated by passing a current through it and then allowed to cool
down in the environment in which it is being used. The time
constant can then be estimated from the resulting cooling curve.
The difficulty with this type of approach to calibration is that
the time constant is strongly dependent on the physical and
mechanical properties of the thermocouple and its environment,
and therefore, a priori characterization is only applicable when
these conditions do not change during sensor operation. In
many situations, such as the measurement of temperature in
a varying-flow environment, this is not the case. Here, the
time constant of a thermocouple is related to its diameter
according to

τ = kd2−mv−m
g (2)

where k and m are constants, approximately, arising from
thermodynamic considerations, d is the diameter of the ther-
mocouple wire, and vg is the velocity of the gas/liquid medium
in which it is placed.

In 1936, a German engineer, Hans Pfreim, discovered that by
using a probe consisting of two thermocouples with different
time constants, it is possible to identify both time constants
in situ and subsequently reconstruct the input temperature [13].
The underlying assumption is that due to their close proximity,
both thermocouples are subject to the same environmental
conditions; hence, they have the same temperature Tg(t) and
medium velocity vg. Under these circumstances, it follows from
(2) that the ratio of the time constants, which is given by

α =
τ1
τ2

=
kd2−m

1 v−m
g

kd2−m
2 v−m

g

=
(
d1

d2

)2−m

, α < 1 (3)

is a function of thermocouple geometry only and, therefore,
approximately invariant. Here, the subscripts 1 and 2 are used

to distinguish between the two thermocouples, and the corre-
sponding thermocouple models are given by

τ1
dT1

dt
+ T1(t) =Tg(t) (4)

τ2
dT2

dt
+ T2(t) =Tg(t) (5)

respectively. Assuming knowledge of α, in situ instantaneous
estimates of the time constants are given by

τ2(t) =
T1(t) − T2(t)
Ṫ2(t) − αṪ1(t)

τ1(t) = ατ2(t). (6)

This novel idea was rediscovered by Strahle and Muthukrish-
man in 1976 and then again by Cambray in 1986. Strahle and
Muthukrishman [14] developed a procedure for estimating the
time constants in situ by analyzing the cross and auto power
spectra of the probe signals, whereas Cambray [1] exploited the
invariance of the time constant ratio α to reduce the problem
to one of a priori ratio estimation. In particular, Cambray
observed that α can be computed as the ratio of the slopes
of the temperature responses T1(t) and T2(t) at crossover
points, i.e.,

α =
Ṫ2(t)
Ṫ1(t)

, when T1(t) = T2(t). (7)

In recent years, these concepts have been developed further to
produce more robust TTP in situ characterization and signal
reconstruction algorithms. In [10]–[12], [16], and [17], time-
domain methods have been developed, whereas in [2]–[4]
and [15], the problem has been transformed to the frequency
domain using the fast Fourier transform, thereby avoiding the
numerical drawbacks associated with the estimation of deriva-
tives. Tagawa et al. [15]–[17] have the added advantage of not
requiring a priori time constant ratio information. All of the
proposed methods give improved performance, but they have a
number of weaknesses. Their performance deteriorates rapidly
as the signal-to-noise ratio decreases. Some require accurate
a priori estimation of the time constant ratio and are susceptible
to numerical issues such as singularities. They are also sensitive
to offsets and are not guaranteed to produce unbiased estimates
in the presence of measurement noise.

Recently, the authors proposed a novel difference equation
formulation of the TTP characterization problem that does not
require the invariant α assumption and allows the problem to
be cast as a linear input–output system identification problem
whose parameters are algebraically related to the desired time
constants, subject to a zero-order-hold (ZOH) approximation
[6]–[8]. In particular, a linear LS formulation of the char-
acterization problem, which yields unbiased estimates when
identified using GTLS, was introduced.

A weakness of the new difference equation approach is that
the model parameters have no physical meaning, hence, a priori
knowledge of α and its invariance cannot be exploited. In this
paper, an alternative β formulation of the characterization prob-
lem, which has the major advantage of allowing exploitation of
a priori knowledge of α, is described. A number of variants
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Fig. 1. Simulated gas temperature Tg and thermocouple measurements T1

and T2.

of the formulation are developed, and appropriate unbiased
estimators are identified. The issue of temperature offsets is also
addressed. Monte Carlo simulation results are used to support
the analysis.

A simulated TTP with 0.02 and 0.1 s time constant ther-
mocouples measuring a broadband temperature signal is used
throughout this paper as a benchmark problem to demonstrate
the properties of the various algorithms developed. The input
temperature fluctuations are modeled as band-limited white
noise (0–1 kHz) and sinusoidal tones at 15, 20, 25, 30, and
35 Hz. A segment of the signal and corresponding thermo-
couple measurements is illustrated in Fig. 1. The thermocouple
signals are sampled at 1 kHz and zero-mean normally distrib-
uted random numbers added to the samples to simulate white
measurement noise. The noise level, which is defined as

Noise level =

√
Noise power
Signal power

× 100 (8)

is used to quantify the amount of noise introduced.
The remainder of this paper is structured as follows:

Section II introduces some preliminaries on LS optimization
focusing on the problem of bias-free estimation. The TTP
discrete-time characterization approach and linear LS λ formu-
lation are then outlined in Section III. Section IV develops the
novel β formulation and an extension to address temperature
offsets. Monte Carlo simulation results are given in Section V,
and finally, conclusions are presented in Section VI.

II. LS PRELIMINARIES

A. LS

In the conventional LS formulation, we have a linear model
of the form

yk = xT
k θ (9)

where xk is the p× 1 regression vector, yk is a scalar output,
and θ is the p× 1 vector of unknown parameters. For a set of n

samples, the regression matrix and corresponding output vector
can be defined as

X = [x1 · · ·xn]T y = [y1 · · · yn]T (10)

leading to the matrix equation

y = Xθ. (11)

Here, X is an n× p matrix, and y is an n× 1 vector. The LS
estimate of θ is then given by

θLS = [XT X]−1XT y = X†y. (12)

Due to numerical issues, the pseudoinverse (X†) is seldomly
computed directly. Instead, robust procedures such as SVD are
employed [5].

B. Statistical Properties of the LS Estimate

To evaluate the statistical properties of the LS solution in
the presence of noise, it is useful to express the solution in
terms of the sample covariance matrix Rn and the sample cross
correlation vector pn as

Rn =
XT X

n
pn =

XT y

n
. (13)

By definition, as the number of data points n tends to infinity,
we obtain the true correlation matrix and cross correlation
vector, i.e.,

R = lim
n→∞

Rn = E
(
xkxT

k

)
p = lim

n→∞
pn = E

(
ykxT

k

)
.

(14)

Using these definitions, the least square estimate (12) can
now be expressed as

θLS = R−1
n pn. (15)

If the regressor (i.e., xk = [x1
k · · ·x

p
k]T ) and output (i.e., yk)

measurements are subject to zero-mean random noise, i.e.,

x̃i
k = xi

k + ni
k ỹk = yk + wk nk =

[
n1

k . . . np
k

]T
(16)

where

E
[
ni

k

]
= 0 E

[(
ni

k

)2] = vi E[wk] = 0 E
[
w2

k

]
= vy

(17)

then analysis of the LS estimate shows that its expected value
is given by

E[θ̃LS] = [R + CXX]−1(p + cXy) (18)

where CXX = E[nknT
k ] and cXy = E[nkwk]. Thus, in this

general case, the LS estimate is strongly biased. In fact, the only
situation where LS produces unbiased estimates is when zero-
mean noise is present on the output only, and the regressors are
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noise free. However, an alternative approach known as GTLS
can be used to get an unbiased estimate of θ when noise is
present on both the regressors and output, provided the overall
noise covariance matrix

C = E

[[
nk

wk

]
[nT

k wk ]
]

=
[
CXX cXy

cT
Xy vy

]
(19)

is known up to a factor of proportionality, i.e., C = vC0. Given
C0 and the noisy regression matrix and output vector data X̃
and ỹ, the GTLS solution θGTLS can be computed in a robust
fashion from the generalized SVD [18] of the matrix pair [X̃ ỹ]
and

√
C0, i.e.,

gsvd
(
[X̃ ỹ],

√
C0

)
→


[X̃ ỹ] = UΣXyG−1
√

C0 = VΣCG−1

Σ2 = ΣT
XyΣXy

[
ΣT

CΣC

]−1
.

(20)

Here,
√

C0 denotes the Cholesky decomposition of C0,
ΣC ∈ 	(p+1)×(p+1), and ΣXy ∈ 	(p−1)×(p+1) are diagonal
matrices with singular values on their diagonals, Σ contains
the generalized singular values and matrix G = [g1 · · · gp+1]
contains the corresponding generalized singular vectors. The
GTLS solution is then given by

θGTLS = −
gp+1

gp+1,p+1
(21)

where gp+1 is the generalized singular vector associated with
the smallest generalized singular value.

III. DIFFERENCE EQUATION TTP TECHNIQUE

A. Basic Principles

For a given sampling interval Ts, the thermocouples consti-
tuting a TTP can be modeled as first-order difference equations
of the form

T k
1 = a1T

k−1
1 + b1T

k−1
g (22)

T k
2 = a2T

k−1
2 + b2T

k−1
g . (23)

These can be related to the continuous-time equations de-
scribing the TTP [i.e., (4) and (5)] under the assumption of ZOH
on the input signal Tg , i.e.,

ai = exp
(
−Ts

τi

)
bi = 1 − ai, i = 1, 2. (24)

While ZOH is clearly not true for a continuously changing
gas temperature, it becomes a valid approximation, provided
the system is sufficiently oversampled. Thus, if the parameters
of the discrete model equations can be determined, the thermo-
couple time constants can be estimated as

τi =
Ts

ln(ai)
, i = 1, 2. (25)

Fig. 2. TTP characterization cost function Ja(a1, a2).

Unknown signal T k−1
g can be eliminated from the simulta-

neous equations formed by (22) and (23) to give the difference
equation TTP model as

T k
2 = a2T

k−1
2 +

(
1 − a2

1 − a1

)
T k

1 − a1

(
1 − a2

1 − a1

)
T k−1

1 . (26)

This is a nonlinear in the parameter model and must be solved
using nonlinear methods. This typically involves minimizing an
MSE cost function of the form

Ja(a1, a2) =
1
n

n+1∑
i=2

[(
T i

2 − a2T
i−1
2 −

(
1 − a2

1 − a1

)
T i

1

+ a1

(
1 − a2

1 − a1

)
T i−1

1

)2]
. (27)

A plot of this cost function for the simulated TTP benchmark
is given in Fig. 2. Note that the cost function is highly nonlinear
with a singularity at a1 = 1. While there is only a single global
minimum, minimization by iterative gradient-based methods is
poorly conditioned, leading to slow convergence and numerical
issues. In addition, minimization in the presence of noise is
biased, but there is no systematic approach for dealing with
this in a nonlinear setting. Consequently, alternative linear
formulations are needed.

B. λ Formulation

In [7], the authors proposed a linear three-parameter λ for-
mulation of the problem, where (26) is written as

T k
2 = λ1T

k−1
2 + λ2T

k
1 + λ3T

k−1
1 . (28)

This corresponds to identifying the discrete-time model
given in Fig. 3. Following identification of the linear model
parameters λ1, λ2, and λ3, the desired coefficients a1 and a2

can be determined according to

a1 = −λ3

λ2
a2 = λ1. (29)
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Fig. 3. Discrete-time TTP formulation.

If the measured temperatures T1 and T2 are subject to zero-
mean identically distributed white noise with variances v1 and
v2, respectively, then unbiased estimates of the parameters
can be obtained using GTLS, provided the ratio of the noise
variances, i.e., φ = v1/v2 is known. Under these conditions, the
required noise covariance matrix, as defined in (19), is given by

Cλ3 = diag(v2, v1, v1, v2) = v2diag(1, φ, φ, 1). (30)

This approach introduces an extra degree of freedom into
the estimation process, leading to increased estimation variance
and the possibility of inconsistent time constant estimates at
high noise levels.

However, noting that the constraint on the extra degree of
freedom can be expressed as

λ1 + λ2 + λ3 = 1 (31)

substitution of the constraint into the identification model in
(28) reduces parameter estimation to a two-dimensional linear
optimization problem, the exact form of which depends on
which of the three unknown parameters is eliminated. For
example, if λ3 is eliminated by substituting

λ3 = 1 − λ1 − λ2 (32)

then (28) becomes

T k
2 − T k−1

1 =λ1

(
T k−1

2 − T k−1
1

)
+ λ2

(
T k

1 − T k−1
1

)
(33)[

T k
2 − T k−1

1

]
=
[
T k−1

2 − T k−1
1 T k

1 − T k−1
1

] [λ1

λ2

]
. (34)

The form of the bias in the LS solution is more complex in
this formulation due to the multiple occurrences of T1 and T2

in the regressor and output. If we assume zero-mean noise with
variances v1 and v2 as before, then the resulting estimates of
the correlation matrix and cross correlation vector are

E[R̃n] = R +
[
v1 + v2 v1

v1 2v1

]
E[p̃n] = p +

[
v1

v1

]
(35)

and the overall noise covariance matrix is given by

Cλ2 = v2

φ + 1 φ φ
φ 2φ φ
φ φ φ + 1

 . (36)

Thus, provided the noise variance ratio φ is known or can
be estimated, GTLS can be used to obtain unbiased parameter
estimates.

Linear two-parameter equations can also be obtained by
eliminating λ1 or λ2, but since the different formulations are
related algebraically in a manner that is independent of the
measurements, it follows that the statistical properties are not
affected by these transformations. Hence, the bias and covari-
ance of the time constant estimates obtained is the same for all
the two-parameter formulations.

IV. β FORMULATIONS

Now, consider the scenario where the ratio of the time con-
stants α is known. This cannot be exploited in the discrete-time
formulations considered thus far, as they are not parameterized
in terms of time constants. However, an equivalent discrete-time
parameter ratio β can be derived as follows.

If Ts/τi 
 1, a situation that is desirable for the validity of
the ZOH approximation underpinning the difference equation
characterization methods, (24) can be approximated as

ai = exp
(
−Ts

τi

)
≈ 1 − Ts

τi
(37)

and since bi = 1 − ai, it follows that

bi ≈
Ts

τi
. (38)

Hence, the discrete-time parameter ratio β, which is defined
as b2/b1, is approximately equal to the time constant ratio, i.e.,

β =
b2
b1

≈ Ts/τ2
Ts/τ1

=
τ1
τ2

= α. (39)

It is important to note that while α may be constant, β does
vary as a function of time constants, i.e.,

β

(
Ts

τ1

)
=

1 − exp(−αTs/τ1)
1 − exp(−Ts/τ1)

. (40)

This is illustrated in Fig. 4(a), which shows a plot of β as a
function of τ1 for different sampling intervals when α = 0.2.
The corresponding sensitivity function, which is defined as the
ratio of the relative change in β to the relative change in τ1 and
is given by

Sβ
τ1

(
Ts

τ1

)
=

Ts

τ1
·
[
a1

b1
− α

a2

b2

]
=

Ts

τ1
·
[

exp(−Ts/τ1)
1 − exp(−Ts/τ1)

−α
exp(−αTs/τ1)

1 − exp(−αTs/τ1)

]
(41)

is also displayed in Fig. 4(b). An examination of these graphs
shows that the error in the β approximation to α is less than
0.5%, provided Ts/τ1 < 0.1 and that the variation in β is
negligible when Ts/τ1 < 0.01. Note that for a given α, the
sensitivity of β to variations in τ1 depends only on the ratio
Ts/τ1; hence, Sβ

τ1
is plotted as a function of Ts/τ1 rather than

τ1 in Fig. 4(b).
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Fig. 4. Plots showing the insensitivity of β to time-varying time constants.
(a) β as a function of τ1 with α = 0.2 for different sampling intervals Ts.
(b) Sensitivity of β to changes in τ1 as a function of Ts/τ1 (α = 0.2).

A. Two-Parameter β Algorithm

Given this useful link between β and α, it is prudent to
express the TTP characterization problem in terms of discrete
parameters b1 and b2 instead of a1 and a2. Thus, substituting
for a1 and a2 in (26) yields

T k
2 = (1 − b2)T k−1

2 +
b2
b1

T k
1 − (1 − b1)

b2
b1

T k−1
1 . (42)

Again, this is nonlinear in terms of b1 and b2 and can be
solved by minimizing a cost function of the form

Jb(b1, b2) =
1
n

n+1∑
i=2

[(
T i

2 − (1 − b2)T i−1
2

− b2
b1

T i
1 + (1 − b1)

b2
b1

T i−1
1

)2]
(43)

Fig. 5. Graphical illustration of relationship between Ja and Jb.

using nonlinear optimization methods. However, there is no
benefit to be gained from this reformulation since the resulting
cost function is simply a reflection of Ja(a1, a2) about the point
(1/2, 1/2), i.e.,

Jb(x, y) = Ja(1 − x, 1 − y). (44)

This is illustrated graphically in Fig. 5.
However, introducing the ratio β into (42) and noting that

b1β = b2 allows the problem to be cast as a two-parameter
linear equation, i.e.,

T k
2 = (1 − b2)T k−1

2 + βT k
1 − βT k−1

1 + b2T
k−1
1 . (45)

Collecting terms and expressing in matrix–vector form gives

∆T k
2 =

[
∆T k

1 ∆T k−1
12

] [β
b2

]
. (46)

Here, the notation ∆T k
i = T k

i − T k−1
i and ∆T k

ij = T k
i − T k

j

is used for conciseness. Again, conventional LS estimation is
biased with

E[R̃n] = R +
[

2v1 −v1

−v1 v1 + v2

]
E[p̃n] = p +

[
0
v2

]
(47)

but GTLS with

Cβb2 = v2

 2φ −φ 0
−φ φ + 1 1
0 1 2

 (48)

will give unbiased estimates. Note that the LS solution corre-
sponds to minimizing

Jb2β(b2, β) =
1
n

n+1∑
i=2

[(
∆T i

2 − β∆T i
1 − b2∆T i−1

12

)2]
(49)

which is a nonlinear transformation of the cost function
Ja(a1, a2), i.e.,

Jb2β(b2, β) = Ja

(
1 − b2

β
, 1 − b2

)
. (50)

The significance of this transformation is that a nonquadratic
cost function has been converted to a quadratic one (see Fig. 6),
allowing the application of powerful linear optimization meth-
ods as well as a framework for unbiased estimation.

This two-parameter β formulation is algebraically related to
the λ2 formulations described in Section III-B and, therefore,
has equivalent numerical and statistical properties. Thus, all
the two-parameter algorithms are of equal merit when no
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Fig. 6. Plot of Jb2β(b2, β) for the simulated benchmark problem.

assumptions are made about the time constant ratio. However,
when operating in a time-varying environment with real-time
constraints, there may be scope for exploiting the invariance
of β to provide more stable and efficient recursive estimation
algorithms. This is explored in [9], where a robust sliding
window algorithm for estimating time-varying time constants
is developed on the assumption that β is constant over the data
window and that the variation in b2 can be approximated by a
polynomial expansion.

B. One-Parameter β Algorithm

The major benefit of the β formulation arises when the
time constant ratio α and, consequently, β, is known a priori.
This allows TTP characterization to be reduced to a single
parameter estimation problem, leading to a significant reduction
in computational complexity. Collecting the known terms on
the left-hand side, (46) can be rewritten as

∆T k
2 − β∆T k

1 = b2∆T k−1
12 . (51)

This is now a univariate linear optimization problem of the
form yk = xkb2, where

xk = ∆T k−1
12 yk = ∆T k

2 − β∆T k
1 . (52)

Given n + 1 successive samples of T1 and T2, a computa-
tionally efficient LS estimate of b2 can be derived as

b̃2 =
z̃T ỹ

z̃T z̃
(53)

where z̃ = [x̃1 · · · x̃n]T and ỹ = [ỹ1 · · · ỹn]T are the noise-
corrupted regression and output data, respectively. Following a
similar analysis to that outlined in Section II-B, it can be shown
that the expected value of b̃2 is given by

E [̃b2] =
p + βv1 + v2

R + v1 + v2
(54)

where R and p are the scalar equivalent to the covariance matrix
and cross correlation vector. Since the true parameter value

b2 is given by p/R, it follows that LS estimation is strongly
biased even in this univariate case. A compensated estimate
can be computed if the variance of the measurement noise is
known, i.e.,

b∗2 =
z̃T ỹ − n(βv1 + v2)
z̃T z̃ − n(v1 + v2)

. (55)

Alternatively, at the expense of increased computational
complexity, GTLS may also be used to obtain an unbiased
estimate of b2. The required noise covariance matrix has
the form

Cb2 =
[

v1+v2 βv1+v2

βv1+v2 2β2v1+2v2

]
=v2

[
φ+1 βφ+1
βφ+1 2β2φ+2

]
.

(56)

An added advantage of employing the one-parameter formu-
lation is that with only one degree of freedom, the estimation
variance due to noise will be significantly reduced when com-
pared to the two-parameter and three-parameter formulations.
This is illustrated in Fig. 7, which shows the results of a 100-run
Monte Carlo simulation analysis of GTLS estimates obtained
using the one-parameter fixed-β, two-parameter β − b2, and
three-parameter λ formulations for the simulated benchmark
problem when the noise levels on thermocouples 1 and 2
are set at 2% and 4.2%, respectively (i.e., φ = 2). Plots are
given for the β − b2 parameters and the corresponding time
constants τ1 − τ2. Covariance ellipses are included to highlight
the distribution of the estimates.

1) Sensitivity to Errors in β: An evaluation of the sensi-
tivity of the b2 and time constant estimates to errors in β is
presented in Fig. 8. The results are for the simulated example
described earlier with the noise level on the measurements
from thermocouples 1 and 2 set at 5% and 10.5%, respectively
(i.e., φ = 2). The plots show the mean estimates and 95%
confidence intervals computed on the basis of a 100-run Monte
Carlo simulation. A number of significant patterns are evident.
Parameter b2 is relatively insensitive to errors in β with an error
of less than 2.5% introduced on average for a 50% error in β,
i.e., Sβ

b2
< 1/20. A similar trend is observed with the larger

of the time constants τ2. However, in sharp contrast to this,
time constant τ1 is very sensitive to errors in β with Sβ

τ1
≈ 1.

Noting the approximate relationship between time constants
and b parameters (38), an analysis of the error propagation
shows that

Sb1
τ1

= Sb2
τ2

= 1 (57)

and since b1 is computed as b2/β, it follows that

Sβ
b1

= Sβ
b2

+ Sβ
β = Sβ

b2
+ 1. (58)

Therefore, the time constant sensitivities to errors in β can be
expressed as

Sβ
τ1

= Sb1
τ1

· Sβ
b1

= Sβ
b2

+ 1 Sβ
τ2

= Sb2
τ2

· Sβ
b2

= Sβ
b2

(59)

indicating that τ2 errors are due to deviations in b2, whereas β
inaccuracies are the dominant contribution to errors in τ1.
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Fig. 7. Monte Carlo simulation GTLS parameter estimates and covariance ellipses for the one-, two-, and three-parameter TTP characterization formulations
(2% and 4.2% thermocouple noise levels; φ = 2). (a) Monte Carlo time constant estimates. (b) Monte Carlo β and b2 estimates.

Fig. 8. Plots of the mean percentage error in parameters b2, τ1, and τ2 due to errors in the assumed value of β in the one-parameter β algorithm. The shaded
regions indicate the 95% confidence intervals for the estimates. (a) Percentage error in b2 versus percentage error in β. (b) Percentage error in τ1 and τ2 versus
percentage error in β.

Fig. 9. Sensitivity of the one-, two-, and three-parameter discrete-time formulation time constant estimates to errors in φ. The shaded regions indicate the 95%
confidence intervals for the estimates. (a) Percentage error in τ1 versus percentage error in φ. (b) Percentage error in τ2 versus percentage error in φ.
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Fig. 10. Statistical comparison of algorithms in the presence of measurement noise. (a) Covariance ellipses, noise level = 3%. (b) Percentage error due to
estimation bias. (c) Percentage error due to estimation variance. (d) Overall percentage root mean square error (RMSE).

2) Sensitivity to Errors in φ: The other parameter of interest
is the noise variance ratio φ. All GTLS algorithms rely on
a priori knowledge of this value. The sensitivity of time con-
stant estimates to errors in φ is illustrated in Fig. 9 under similar
experimental conditions to those described in the previous
section. It is clear that all formulations are relatively insensitive
to errors in φ, with the fixed-β implementation being the least
sensitive (Sφ

τ < 1/100).

C. Dealing With Offsets on the TTP Measurements

Analysis of the characterization problem in the presence
of offsets on T1 and T2 reveals that it is the relative offset
that is significant. It appears in the regression equations as an
additional constant term c, i.e.,

Xθ + c1n = y (60)

where 1n is an n× 1 vector of 1s. This relative offset can be
identified as part of the LS identification process by augmenting
the regression matrix with a vector of 1s and rewriting the
equation as

[1n X]
[
c

θ

]
= y. (61)

The only difficulty that arises when doing this is that the
artificial data 1n introduced into the data matrix is error free
with the result that it no longer meets the conditions required
for unbiased estimation with GTLS. In these circumstances a
variation on GTLS known as RTLS can be employed [19]. This
method can handle problems where some of columns of the data
matrix are error free and some are not.

Taking the two-parameter β formulation (46) as an example
and denoting the offset on T1 and T2 as χ1 and χ2, respectively,
the offset-data-based model can be written as

∆T̄ k
2 = β∆T̄ k

1 + b2∆T̄ k−1
12 (62)

where

∆T̄ k
i →

(
T k

i + χi

)
−
(
T k−1

i + χi

)
= ∆T k

i (63)

and

∆T̄ k
ij →

(
T k

i + χi

)
−
(
T k

j + χj

)
= ∆T k

ij + (χi − χj).
(64)

This reduces to the biased model

∆T k
2 = β∆T k

1 + b2
[
∆T k−1

12 + (χ1 − χ2)
]

(65)
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and, consequently, yields invalid parameter estimates. If, how-
ever, a model of the form

∆T̄ k
2 = β∆T̄ k

1 + b2∆T̄ k−1
12 + c (66)

is identified, then (65) becomes

∆T k
2 = β∆T k

1 + b2∆T k−1
12 + c + b2(χ1 − χ2) (67)

allowing the true β and b2 to be estimated with c = −b2(χ1 −
χ2). Note that the relative offset can also be estimated as

∆χ = χ1 − χ2 = − c

b2
. (68)

A similar offset extension can be derived for each of the other
model formulations considered.

V. RESULTS

In this section, the overall noise performance of the different
algorithms is investigated using the benchmark problem de-
scribed in Section I. One hundred run Monte Carlo simulations
were performed on this benchmark, with the noise variance
ratio φ = 2 and used to compute the statistical properties of
the parameter estimates for thermocouple 1 noise levels rang-
ing from 0% to 10%. These were expressed in terms of the
corresponding percentage errors in the parameter estimates and
are plotted as a function of noise level in Fig. 10. Results are
presented for the one-parameter fixed-β, two-parameter β − b2,
and three-parameter λ formulations estimated using GTLS. For
comparison purposes, results for conventional LS identifica-
tion are also included for the two-parameter β − b2 and the
three-parameter formulations. As an example, the distribution
of parameter estimates and corresponding covariance ellipses
(two standard deviations) are plotted in Fig. 10(a) for the 3%
noise level.

As expected, the LS estimates are strongly biased, whereas
the GTLS results are unbiased. Looking at the overall percent-
age RMSE, it can be seen that the bias error dominates in the LS
implementations, whereas the variance error dominates in the
GTLS implementations. Since the bias is the main contributor
to parameter error, it follows that the GTLS algorithms are
superior.

It is also clearly evident in Fig. 10(c) that formulations with
fewer degrees of freedom produce parameter estimates with less
variance. Consequently, when the time constant ratio is known,
the fixed-β algorithm is the optimum choice; otherwise, the
β − b2 formulation (or equivalently one of the two-parameter
λ formulations) is optimum.

VI. CONCLUSION

This paper has presented a discrete-time formulation of the
TTP characterization problem that can be related, through the
discrete-parameter ratio β, to the ratio of thermocouple time

constants α. This allows a priori knowledge of the time con-
stant ratio to be exploited to obtain characterization algorithms
that have low computational complexity and are more robust
to measurement noise. Estimation bias is a major source of
error in TTP characterization when employing conventional LS,
and consequently, methods that can exploit GTLS or equivalent
to obtain unbiased estimates are of great value. Unfortunately,
the variance of estimates generated by GTLS increases rapidly
with noise level limiting direct application to problems with
relatively low noise levels. Variance decreases with the number
of free parameters, and hence, the availability of the one-
parameter fixed-β formulation extends the application range
when a priori time constant ratio estimates are available.

REFERENCES

[1] P. Cambray, “Measuring thermocouple time constants: A new method,”
Combust. Sci. Technol., vol. 45, no. 4, pp. 221–224, 1986.

[2] L. J. Forney and G. C. Fralick, “Two-wire thermocouple: Frequency
response in constant flow,” Rev. Sci. Instrum., vol. 65, no. 10, pp. 3252–
3257, Oct. 1994.

[3] ——, “Three-wire thermocouple: Frequency response in constant flow,”
Rev. Sci. Instrum., vol. 66, no. 5, pp. 3331–3336, May 1995.

[4] ——, “Multiwire thermocouples in reversing flow,” Rev. Sci. Instrum.,
vol. 66, no. 10, pp. 5050–5054, Oct. 1995.

[5] G. H. Golub and C. F. Van Loan, Matrix Computation, 3rd ed. Baltimore,
MD: John Hopkins Univ. Press, 1996.

[6] P. C. F. Hung, S. McLoone, G. Irwin, and R. Kee, “A novel approach to
two wire thermocouple temperature reconstruction,” in Proc. Irish Signals
and Syst. Conf., Cork, Ireland, Jun. 2002, pp. 193–198.

[7] ——, “A total least squares approach to sensor characterisation,” in
Proc. 13th IFAC Symp. Syst. Identification, Rotterdam, The Netherlands,
Aug. 2003, pp. 337–342.

[8] ——, “Difference equation approach to two-thermocouple sensor char-
acterisation in constant velocity flow environments,” Rev. Sci. Instrum.,
vol. 76, no. 2, p. 024902, Feb. 2005.

[9] ——, “Unbiased thermocouple sensor characterisation in variable flow
environments,” in Proc. 16th IFAC World Congr. Autom. Control, Prague,
Czech Republic, Jul. 3–8, 2005, CD-ROM.

[10] K. Kar, S. Roberts, R. Stone, M. Oldfield, and B. French, “Instantaneous
exhaust temperature measurements using thermocouple compensation
techniques,” in SAE Transactions, SAE 2004 World Congr. Exhibition,
Detroit, MI, Mar. 2004, SAE Paper No. 2004-01-1418.

[11] R. J. Kee, P. G. O’Reilly, R. Fleck, and P. T. McEntee, “Measurement of
exhaust gas temperature in a high performance two-stroke engine,” SAE
Trans. J. Engines, vol. 107, no. 3, pp. 2413–2423, Sep. 1999.

[12] P. G. O’Reilly, R. J. Kee, R. Fleck, and P. T. McEntee, “Two-wire ther-
mocouples: A nonlinear state estimation approach to temperature recon-
struction,” Rev. Sci. Instrum., vol. 72, no. 8, pp. 3449–3457, Aug. 2001.

[13] H. Pfriem, “Zur Messung veränderlicher Temperaturen von Gasen und
Flüssigkeiten,” Gen. Ingen., vol. 7, no. 2, pp. 85–92, 1936.

[14] W. C. Strahle and M. Muthukrishman, “Thermocouple time constant mea-
surement by cross power spectrum,” J. AIAA Tech. Notes, vol. 14, no. 11,
pp. 1642–1644, 1976.

[15] M. Tagawa, K. Kato, and Y. Ohta, “Response compensation of temper-
ature sensors: Frequency-domain estimation of thermal time constants,”
Rev. Sci. Instrum., vol. 74, no. 6, pp. 3171–3174, Jun. 2003.

[16] M. Tagawa and Y. Ohta, “Two-thermocouple probe for fluctuating tem-
perature measurement in combustion—Rational estimation of mean and
fluctuating time constants,” Combust. Flame, vol. 109, no. 4, pp. 549–
560, Jun. 1997.

[17] M. Tagawa, T. Shimoji, and Y. Ohta, “A two-thermocouple probe tech-
nique for estimating thermocouple time constants in flows with combus-
tion: In situ parameter identification of a first-order lag system,” Rev. Sci.
Instrum., vol. 69, no. 9, pp. 3370–3378, Sep. 1998.

[18] S. Van Huffel and J. Vandewalle, “Analysis and properties of the gener-
alised total least squares problem AX = B when some or all columns
in A are subject to error,” SIAM J. Matrix Anal. Appl., vol. 10, no. 3,
pp. 294–315, 1989.

[19] S. Van Huffel and H. Zha, “The restricted total least squares problem:
Formulation, algorithm, and properties,” SIAM J. Matrix Anal. Appl.,
vol. 12, no. 2, pp. 292–309, 1991.



McLOONE et al.: A PRIORI TIME CONSTANT RATIO IN TWO-THERMOCOUPLE SENSOR CHARACTERIZATION 1637

Seán McLoone (S’94–M’96–SM’02) received the
M.Eng. degree in electrical and electronic engineer-
ing and the Ph.D. degree in control engineering from
Queen’s University Belfast, Belfast, U.K., in 1992
and 1996, respectively.

He is a Senior Lecturer with the Department
of Electronic Engineering, National University of
Ireland Maynooth, Maynooth, Ireland. His research
interests are in the general area of data-based
modeling and analysis of dynamical systems. This
encompasses techniques ranging from classical sys-

tem identification, fault diagnosis, and statistical process control to modern
artificial-intelligence-inspired adaptive learning algorithms and optimization
techniques. His research has a strong application focus, with many projects
undertaken in collaboration with industry in areas such as process moni-
toring, control and optimization, time series prediction, and in-line sensor
characterization.

Dr. McLoone is a Chartered Engineer, a member of The Institution of
Engineers of Ireland, and a member of the Institution of Electrical Engineers.
He is currently the Chairman of the U.K. and Republic of Ireland Section of
the IEEE, a member of the International Federation of Automatic Control
Technical Committee on Cognition and Control, a member of the Machine
Learning for Signal Processing Technical Committee of the IEEE Signal
Processing Society, and a member of the Royal Irish Academy Engineering
Sciences Committee.

Peter Hung (M’06) was born in Hong Kong. He
received the M.Eng. degree in electrical and elec-
tronic engineering and the Ph.D. degree in electrical
and electronic engineering from Queen’s University
Belfast, Belfast, U.K., in 2001 and 2005, respec-
tively.

In September 2001, he was awarded a four-year
studentship to undertake research at the Virtual Engi-
neering Centre, Queen’s University Belfast, on ther-
mocouple sensor fusion and characterization. He is
currently a Post-Doctoral Research Fellow with the

National University of Ireland Maynooth, Maynooth, Ireland. His research in-
terests include system identification, online and offline signal processing, fault
diagnosis, pattern classification, and machine learning. His current projects are
in the research fields of fast temperature measurement and integrated circuit
testing.

George Irwin (M’83–SM’89–F’04) received the
first-class honours degree in electrical and electronic
engineering in 1972, the Ph.D. in control theory in
1976, and the D.Sc. degree in 1998 from Queen’s
University of Belfast, Belfast, U.K.

He is a Professor of control engineering and the
Director of the Virtual Engineering Centre, Queen’s
University Belfast. His research covers identifi-
cation, monitoring and control, including neural
networks, fuzzy neural systems, and multivariate
statistics. He is currently working on wireless net-

worked control systems, fault diagnosis of internal combustion engines, and
novel techniques for fast temperature measurement. Much of his work involves
industrial collaboration. He was the Technical Director of Anex6 Ltd, which is
a spinout company specializing in process monitoring. He has published over
350 research papers and edited six books.

Dr. Irwin is a former Editor-in-Chief of the IFAC Journal Control Engineer-
ing Practice and chaired the U.K. Automatic Control Council. He currently
chairs the IFAC Publications Committee and serves on the editorial boards
of several journals. International recognitions include Honorary Professor at
Harbin Institute of Technology, Harbin, China, (1999) and Shandong Univer-
sity, Shandong, China, (2005) and Visiting Professor at Shanghai University,
Shanghai, China, (2005–2008). His group has strong collaboration with the
Institute of Intelligent Machines, Chinese Academy of Sciences, Heifei, China.
He has been elected Fellow of the Royal Academy of Engineering and member
of the Royal Irish Academy. He is a Chartered Engineer, a Fellow of the Institu-
tion of Electrical Engineers (IEE), and a Fellow of the Institute of Measurement
and Control. He has been awarded a number of prizes, including four IEE
Premiums, a Best Paper Award from the Czech Academy of Sciences, and the
2002 Honeywell International Medal from the U.K. Institute of Measurement
and Control.

Robert J. Kee received the B.Sc. degree in mechan-
ical engineering in 1981, the Ph.D. degree in 1988
from Queen’s University Belfast, Belfast, U.K.

He spent three years in the aircraft industry before
returning to Queen’s University Belfast to complete
his Ph.D. study on stratified scavenged two-stroke
engines. He subsequently spent a year in Yamaha,
Japan, as a Visiting Researcher and is currently a
Senior Lecturer in engineering design in the School
of Mechanical and Aerospace Engineering, Queen’s
University Belfast. He has published/presented 40

papers in journals/international conferences. His initial research concerned the
improvement of fuel efficiency and emissions from small engines, which led to
a one-year appointment as a Visiting Researcher at Yamaha. Recently, he has
focused on the testing and simulation of engines under transient conditions,
coupled 1-D and 3-D CFD simulation of unsteady gas flow, fast response
temperature measurement, and controlled autoignition in internal combustion
engines.

Dr. Kee is a member of the American Society of Automotive Engineers
(SAE) Small Engines Technical Committee and the Advanced Powerplant
Transactions Selection Committee for the SAE Journal of Engines. He is the
recipient of the 2005 SAE Forest R. McFarland Award.


