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Abstract—In this paper and its companion [1], the identifica-
tion of mathematical models describing the behaviour of wave
energy devices (WECs) in the ocean is investigated through the use
of numerical wave tank experiments. When the wave amplitude
and the WEC displacement are not negligible with respect to the
WEC dimensions, nonlinear hydrodynamic effects may appear,
and the accuracy of linear hydrodynamic models is reduced, lead-
ing to the necessity of introducing some nonlinearities in the
model structure. This paper proposes, for WEC modelling, the
use of discrete-time nonlinear autoregressive with exogenous input
(NARX) models, as an alternative to continuous-time models.
Techniques of model identification are also explained and applied
to a case study.

Index Terms—System identification, numerical wave tank, wave
energy, discrete-time modelling, NARX model, ARX model, artifi-
cial neural network, Kolmogorov–Gabor polynomial model.

I. INTRODUCTION

M ATHEMATICAL modelling of wave energy devices has
many uses, including the simulation of device motion,

power production assessment and as a basis for model-based
control design. In all these cases, it is important to describe how
the body moves in the water, interacting with the waves prop-
agating on the fluid surface. From a modelling point of view,
this corresponds to the description of a mathematical relation-
ship between the free surface elevation (FSE) of the water, η,
(a model input) and the body displacement from an equilibrium
position, y, (the model output). In the present paper, the fam-
ily of all models having η as input and y as output is indicated
with the symbolism η → y. In a previous study, [2] employed a
state-space structure for a model belonging to η → y.

A large number of models employed in the simulation and
analysis of WECs are based on the Cummins’ equation [3].
Cummins’ equation is based on Newton’s second law, describ-
ing the motion of the device of mass M , floating in water,
subject to fluid, gravity and other external forces (such as a
mooring force, fM , and a PTO force, fPTO). The fluid force
is derived under the simplifying hypothesis of linear potential
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theory, which allows the total fluid force (applied from the fluid
to the floating body) to be written as the summation of the exci-
tation force, fE , the radiation force, fRAD, and the buoyancy
force, fBU , and to express the radiation force as a convolution
integral. The Cummins’ equation can be written as:

(M+m∞)ÿ(t)+

∫ t

−∞
hRA(t− τ)ẏ(τ)dτ+Ky(t)=fIN (t)

where fIN =fM+fE+fPTO represents the model input, y the
model output (see Fig. 1), fE the excitation force from the fluid,
hRA the radiation impedance impulse response function minus
m∞ (the infinite frequency added mass), and K the restoring
coefficient.

In this paper, the family of all models having fIN as input
and y as output is indicated with the symbolism fIN → y.
Different studies have been already conducted for the fIN →
y model family, with [2] utilising a linear state-space, while
[4] and [5] provide both frequency- and time-domain descrip-
tions. These previous studies utilise models characterized by
a linear relationship between input and output. Linear mod-
els have very desirable properties, such as superposition or a
frequency domain description, but they are based on the hypoth-
esis of small waves, ideal fluid (inviscid and incompressible)
and small body displacement, which are not usually satisfied in
reality. Consequently, when the wave amplitude and the body
displacement increase (becoming of the same order of mag-
nitude of the dimensions of the body), some nonlinear effects
may appear. Examples of nonlinear hydrodynamic models have
been developed by introducing an additional viscous nonlinear
term [6], nonlinear Froude-Krylov force modelling [7] [8] [9]
or nonlinear restoring force representation [10].

An alternative modelling approach, utilised in this paper for
both η → y and fIN → y model families, is that of system
identification, where models are determined from input/output
data, measured from the system under study [11]. Such meth-
ods are particularly useful where the system to be modelled is
very complex and/or does not easily lend itself to first principles
modelling. However, one major difficulty in system identifica-
tion is ensuring that the input/output data, used to determine
the model, is sufficiently representative of the system dynam-
ics and, in particular, must cover the range of frequencies and
amplitudes likely to be encountered during system operation.
In the WEC case, such a range of excitation signals are not
likely to be available in the open ocean (at least not in a reason-
ably short time frame) and, even more importantly, there is no
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Fig. 1. Block diagram for the fIN → y family model.

external control of the excitation. An alternative possibility is to
employ tank tests. However, in addition to the significant cost
and the need for a physical prototype, there may be limitations
on the range of excitation signals available and tank wall reflec-
tions may further limit the range and duration of viable tests.
A different option for generating suitable input/output data is to
use a numerical wave tank (NWT), as explained in a companion
paper [1].

In the current paper, for simplicity, the general 6 degree
of freedom (DoF) problem has been reduced to a heave sin-
gle DoF. However, the illustrated methods and procedures can
be extended to the full 6 DoF, obtaining identified paramet-
ric models, which are computationally efficient in subsequent
simulation and control design use. Indeed, the parametric
model structures are able to capture the essential nonlinear-
ities, remaining, simultaneously, with a sufficient simplicity,
that allows the models to be run in real time. The price of the
demanding NWT computation time is paid only once, for the
simulation of the identification experiments.

The paper is laid out as follows; in Section II, the struc-
ture of the proposed linear and nonlinear models is outlined.
Section III then briefly explains the NWT experiments used
to produce the system identification data (with a fully detailed
description available in [1]). Section IV describes the process
of identifying the model parameters from the NWT generated
data. Some illustrative examples demonstrating these methods
are then given in Section V, and the results of the different
models compared. Conclusions are drawn in Section VI.

II. MODEL PARAMETRIC STRUCTURES

The choice of the parametric structure of the model is very
important, in the identification of the relationship between the
model input and output. The model structure may be inspired
from physical system knowledge and considerations (white-
box modelling) or completely based on the recorded data
itself (black-box modelling). There are also many possibilities
within these two extremes which are denoted by shades of
grey e.g. off white, slate grey, smoke grey, etc [12]. In general,
whether the model structure is inspired by physical phenomena
or purely derived from the data, it is necessary to determine
a parsimonious structure for the model [13], which will work
well with the training data, but also generalise well to other
data. A compatible requirement is that it is not desirable to
add complexity to the model for little gain. The identified
parametric model should also be able to capture the essential

Fig. 2. Block diagram for a general NARX discete-time model.

nonlinearities, but retain sufficient simplicity that allows the
model to be run in real time.

In recent years, a number of continuous-time models have
been developed [14] [15], but, in this Section, a family of
discrete-time models are proposed as a new alternative for WEC
modelling.

A. Discrete-Time Models

Considering the discrete time nature of sampled data from
experiments, the majority of system identification techniques
are based on discrete time models [11]. Discrete-time mod-
elling uses signals only specified at the discrete time instants
t = kTs, where Ts is the sampling period and k is an integer.
For example, the values of η, fIN and y at the time instant
kTs are represented with the symbols η(k), fIN (k) and y(k),
respectively. In the NWT, little ’noise’, barring some small
numerical error, is present; therefore, there is no reason to
provide a coloured noise model structure.

The relationship between η and y is non-causal [16], there-
fore, noncausality has to be introduced into the structure of the
identified model. In this paper, nonlinear autoregressive with
exogenous input (NARX) models [17] are utilized. In NARX
models, the present value of the output y(k) depends on the
past values of the output y(k − 1), . . ., y(k − na) and the input
values u(k − nd), u(k − nd − 1), . . ., u(k − nd − nb). If the
system is causal, the output does not depend on future values
of the input and nd ≥ 0, otherwise, if the system is noncausal,
nd < 0 and the present value of the output is influenced by
future input values. The NARX model is summarized with the
following equation:

y(k) = g[y(k − 1), . . ., y(k − na),

u(k − nd), u(k − nd − 1), . . ., u(k − nd − nb)] (1)

which can be represented with the block diagram of Fig. 2.
na and nb represent the dynamical order of the model, and by
increasing them, the model becomes more flexible and able to
show more complex dynamical behaviour but, at the same time,
unnecessarily high orders can make the model less able to gen-
eralise on new data (overfitting). nd is the input delay time and
it represents the number of samples before the output reacts to
the input (for nd ≥ 0) or the number of future input steps that
influence the present value of the output (for nd < 0).
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In equation (1), the generalised input u is replaced with η,
for a model belonging to the model class η → y, and with fIN ,
for a model belonging to fIN → y. The output y, in the present
paper, always represents the body displacement.

In the current paper, three model structures are investigated:
A linear autoregressive with exogenous input (ARX) model,
the Kolmogorov-Gabor polynomial (KGP), which is a natural
polynomial extension of the ARX model and an artificial neu-
ral network (ANN) model, which provides a structure-free form
with further nonlinear modelling freedom (though with a non-
convex optimisation problem). Linear ARX models provide a
reference linear model, with which nonlinear KGP and ANN
models can be compared.

B. Linear ARX Model

The first parametric model examined is the autoregressive
with exogenous input model. It is a well-known black box
model with a linear input/output relationship [11] and it is linear
in the parameters ai and bi. For the ARX model, equation (1)
becomes:

y(k) =

na∑
i=1

aiy(k − i) +

nb∑
i=0

biu(k − nd − i)

and the number of parameters to be estimated is Npar = na +
nb + 1.

C. Nonlinear Kolmogorov–Gabor Polynomial Model

The second model considered in this paper utilises a poly-
nomial nonlinearity, which results in a Kolmogorov-Gabor
polynomial model [17]. In this case, equation (1) becomes:

y(k) =

na∑
i=1

ai1y(k − i) +

nb∑
i=0

bi1u(k − nd − i)

+ . . .

+

na∑
i=1

aipy
p(k − i) +

nb∑
i=0

bipu
p(k − nd − i)

+

na∑
i=1

nb∑
j=0

cijy(k − i)u(k − nd − j)

+ . . . (2)

where p is the maximum polynomial order for the terms
involving u and y alone, as well as the cross-product terms.

The KGP model is a black box model having a nonlin-
ear input/output relationship, but is linear in the parameters
aij , bij and cij . However, the presence of the cross-product
terms (between u and y) in the KGP model structure can
lead to potential, and unpredictable, stability problems. In
essence, cross-product terms introduce input-dependent terms
into the (notionally linearised) model Jacobian, which make
the stability properties dependent on the input used. In fact,
some experiences with cross-product terms showed the model
response on validation data to be clearly unstable, even though
the model response on training data was stable, in spite of the

fact that the spectral and distribution characteristics of training
and validation data were similar. For this reason, the cross-
product terms in the model of equation (2) have been removed,
obtaining the simpler model:

y(k) =

p∑
j=1

[
na∑
i=1

aijy
j(k − i) +

nb∑
i=0

biju
j(k − nd − i)

]

In the presence of no cross-product terms, the number of
parameters to be estimated for the KGP model is Npar =
p(na + nb + 1).

D. Artificial Neural Network Model (Nonlinear)

The final parametric model utilised is a multi-layer percep-
tron (MLP) artificial neural network, [17], which is a black
box model having a nonlinear input/output relationship and is
nonlinear in the parameters. While one hidden layer of nonlin-
ear neurons can give an arbitrary approximation capability, two
hidden layers usually requires a lower total neuron count, for a
given level of approximation accuracy. The overall model com-
plexity is determined by n1 and n2, the number of neurons in
the hidden layers 1 and 2, respectively, in addition to na and
nb. The feedforward MLP is defined by y(k) = g [V (k)] as in
Fig 2, where:

V (k) = [v1(k), v2(k), . . ., vnv
(k)]

= [y(k − 1), . . ., y(k − na),

u(k − nd), u(k − nd − 1), . . ., u(k − nd − nb)]

nv = na + nb + 1 is the number of variables. In this way, the
input/output relationship of the ANN model can be written
[17] as:

y(k) =

n2∑
i=0

w
(out)
i Ψi

⎛⎝ n1∑
j=0

w
(2)
ij Ψj

(
nv∑
l=0

w
(1)
jl vl(k)

)⎞⎠
where v0(k) = 1, w

(1)
jl , w

(2)
ij , and w

(out)
i are the unknown

parameters of hidden layer 1, hidden layer 2 and the output
layer respectively, and Ψi is a tan-sigmoid function defined as:

Ψi(z) =

{
1 if i = 0,

2/(1 + e−2z)− 1 if i �= 0.

For the ANN model, the number of parameters to be estimated
is Npar = (na + nb + 2)n1 + (n1 + 1)n2 + n2 + 1.

It is important to underline that, the nonlinearity in the
parameters is a significant disadvantage of the ANN model
compared to the ARX and KGP models, as it makes the
determination of the optimal parameters considerably more
difficult.

III. NUMERICAL WAVE TANK

A NWT is the generic name for numerical simulators of non-
linear free surface waves, hydrodynamic forces and floating
body motions. NWTs can be implemented using boundary-
element methods or computational fluid dynamics (CFD).
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Fig. 3. System identification principle.

CFD-based NWTs offer fully nonlinear hydrodynamic calcu-
lations and solve the Navier-Stokes equations, which govern
the transfer of mass, momentum and heat, by discretizing the
domains of space and time to form a system of linear alge-
braic equations, which are computer implementable. The NWT
utilised in the present paper is implemented using CFD and is
detailed in [1].

A. NWT Experiments

1) Wave Excitation Experiments (η → y): In this case, the
excitation on the body is provided exclusively by the waves
generated in the NWT, no PTO force is applied (fPTO = 0),
no mooring is present (fM = 0) and the body displacement is
measured. Two data vectors are produced by this experiment
for model identification, one containing the FSE, {η(k)}, and
the other the body displacement, {y(k)}.

2) Input Force Experiments (fIN → y): In this case, the
only excitation on the body is the force applied by the PTO
(fIN = fPTO), no waves are generated in the NWT (fE = 0),
no mooring is present (fM = 0) and the body displacement is
measured. Two data vectors are also produced by this experi-
ment for model identification, one containing the PTO force,
{fIN (k)}, and the other the body displacement, {y(k)}.

For the details regarding the NWT experiments [1].

IV. MODEL IDENTIFICATION

A. System Identification

The fundamental idea of system identification is represented
in Fig. 3. The identification procedure is based on the following
sequence of steps:

1) A parametric structure is chosen for the model,
2) A suitable input signal, u, is synthesised and input to the

system,
3) The input signal, u, and resulting output signal, y, are

recorded,
4) An identification algorithm is used to determine the opti-

mal parameter vector, θ, which minimises some error
metric between the actual measured output y and that
produced by the identified parametric model, ŷ.

B. Linear Regression and Least Squares

Consider a model with an output, ẑ, which is a linear
combination of q variables, xj :

ẑ = θ1x1 + · · ·+ θqxq

where the coefficients, θj , are the unknown parameters. It will
be assumed that, N data samples have been measured so that
the difference at each sample between the measured data and
the model prediction is:

ε = z− ẑ = z−Xθ

where:

ε =
[
ε(1) ε(2) . . . ε(N)

]T
,

z =
[
z(1) z(2) . . . z(N)

]T
,

ẑ =
[
ẑ(1) ẑ(2) . . . ẑ(N)

]T
, (3)

X =

⎡⎢⎢⎢⎣
x1(1) x2(1) . . . xq(1)
x1(2) x2(2) . . . xq(2)

...
...

. . .
...

x1(N) x2(N) . . . xq(N)

⎤⎥⎥⎥⎦ , (4)

θ =
[
θ1 θ2 . . . θq

]T
. (5)

X and z are called the data matrix and the observation vec-
tor respectively. It’s well known that the estimated parameters,
which minimize the least squares (LS) error, are [17]:

θ̂ = argmin
θ

(εT ε) = (X TX)−1X Tz. (6)

The least squares problem is not calculated directly from
equation (6), because the use of X TX increases the possibility
of obtaining an ill-conditioned problem (the condition number
of X TX is approximately the square of the condition number of
the data matrix X). Instead, a QR factorization method is imple-
mented, which computes the least squares solution directly
from X without forming XTX [18] [19].

C. Time Delay and Dynamical Order Estimation (nd, na, nb)

An important part of the model structure selection is the
choice of the delay nd and the dynamical orders na and nb.
As equation (1) suggests, y(k) is a function of na output and
nb + 1 input values, taken at different time instants. Once na,
nb and nd are selected, it is possible to obtain the different
model structures (for this paper ARX, KGP and ANN) by
changing the function g[]. The time delay and dynamical orders
are estimated by implementing a systematic trial and error pro-
cess on several ARX models, with varying na, nb and nd, and
selecting the values which give the best model performance,
as measured by a loss function (a measure of the modelling
error). For each ARX model estimation, independent training
and validation data sets are utilised. At the end, the simplest
ARX model able to repeat the validation data with a sufficient
accuracy is selected (parsimonious model) [20].

In general, there are not straightforward methodologies to
calculate the dynamical order and delay time of a nonlinear
models (while relatively straightforward procedures exist for
linear models). Therefore, the estimated na, nb and nd for the
ARX model, are also utilised with the KGP and ANN models.
Maintaining the same dynamical order and delay time for the
linear and nonlinear models provides the possibility to isolate
the comparative linear/nonlinear structure performances.
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D. ARX Model Identification

Performing the NWT wave excitation experiment (see
Section III-A), the signals {η(k)} and {y(k)} for k = 1. . .N ,
are generated, and are utilised as input and output for the iden-
tification of the ARX model belonging to η → y. Defining
τ = max{na, (nb + nd)}, the first possible predicted model
output is for k = τ + 1 (the first τ values of the data are utilised
as initial conditions). Defining:

Ñ =

{
N if nd ≥ 0,

N + nd if nd < 0.

the last possible predicted model output is for k = Ñ .
Therefore, for an ARX model belonging to η → y, equa-
tions (3), (4) and (5) become:

z =
[
y(τ+1) y(τ+2) . . . y(Ñ)

]T
,

X =⎡⎢⎢⎢⎣
y(τ) . . . y(τ+1−na) η(τ+1−nd) . . . η(τ+1−nd−nb)

y(τ+1) . . . y(τ+2−na) η(τ+2−nd) . . . η(τ+2−nd−nb)
...

. . .
...

...
. . .

...
y(Ñ−1) . . . y(Ñ−na) η(N) . . . η(N−nb)

⎤⎥⎥⎥⎦
θ̂arx =

[
a1 a2 . . . ana

b0 b1 . . . bnb

]T
.

As explained in Section IV-B, the estimated parameters are
determined by employing a QR factorization [18], [19].

Similarly, utilising the NWT input force experiment
(see Section III-A), the signals {fIN (k)} and {y(k)} for
k = 1. . .N , are generated, and are utilised for the identification
of the ARX model belonging to fIN → y.

E. Kolmogorov–Gabor Polynomial Model Identification

Utilising the NWT wave excitation experiment signals for
the identification of the KGP model belonging to η → y,
equations (3) and (5) become:

z =
[
y(τ + 1) y(τ + 2) . . . y(Ñ)

]T
,

θ̂KGP = [a11, . . ., ana1, b01, . . ., bnb1, . . ., a1p, . . ., anap,

b0p, . . ., bnbp]
T

For the KGP model, each of the (Ñ−τ) rows of the data matrix
(4) has the form: [y(k−1), . . ., y(k−na), η(k−nd), . . ., η(k−
nd−nb), . . ., y

p(k−1), . . ., yp(k−na), η
p(k−nd), . . ., η

p(k−
nd−nb)], where k = (τ + 1), . . ., Ñ . The estimated parame-
ters are determined by utilising a QR factorization algorithm
(see Section IV-B). In similar way, the models belonging to
fIN → y are identified from the NWT input force experiments.

F. Artificial Neural Network Model Identification

Unlike the ARX and KGP models, the ANN model is non-
linear in the parameters; therefore, it is not possible to use
the procedure, developed for linear regression in Section IV-B,

Fig. 4. 2D test device geometries (circle with 50% draft). The dotted line
represents the mean free surface elevation (MFSE).

for parameter identification. The nonlinear optimization prob-
lem, in this case, is solved utilising a scaled conjugate gradient
algorithm [21]. Starting from a random initial value of the
parameters, at each iteration (also denoted epoch), all of the
training set is utilised to calculate the updated value of the
parameters (batch training method). The solution is strongly
dependent on the initial value due to the nonconvexity of the
optimisation problem; therefore, 100 different initial conditions
are employed to help determine an appropriate local minimum.
The ability of the identified ANN model to generalise on new
data is degraded in the case of training data overfitting; con-
sequently, an early stopping technique is utilised, halting the
training as soon as the error on the validation data begins to
rise [22]. The numbers of neurons, n1 and n2, are determined
by growing the network incrementally, until a good balance
is achieved between approximation of the training data and
generalisation capability.

V. CASE STUDY DESCRIPTION

The case study considers a two dimensional (2D) NWT
(see [1] for details); therefore, the equivalent geometry of the
test device is an infinitely long horizontal bar, having a verti-
cal cross-section of a 2m diameter circle, with a 1m draft, as
shown in Fig. 4. The variable cross-sectional area of the device
geometry makes its hydrodynamic description challenging. The
implemented NWT is a 50m deep tank with walls 100m from
the device and with wave creation/absorption implemented via
the waves2FOAM package utilising two 90m long relaxation
zones situated 5m either side of the device [1].

As explained in the companion paper [1], in the experiment
design, care must be taken to use excitation signals which pro-
vide an adequate distribution across the amplitude/frequency
space. For the identification of models belonging to η → y and
representative of a specific location, an excitation which cov-
ers the range of possibilities at the specific location should
be chosen. However, the focus of the paper is to show the
new methodology, rather than provide a complete description
of any particular location/device combination and, for simplic-
ity, two different NWT wave excitation experiments W1 (for
training) and W2 (for validation) have been created, where the
input wave signals are two different realizations of a commonly
occurring sea state at the reference European Marine Energy
Centre (EMEC) test site (significant wave height Hs = 0.6m
and peak period Tp = 8s) [1]. The input wave signals are mul-
tisine signals, consisting of 100 equally spaced frequencies
in the range 0.005-0.995Hz, with randomly assigned phases
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Fig. 5. 100 second portion of the 600 second input force signals used for model
identification.

and amplitudes determined from a JONSWAP spectrum with
peakiness γ = 2 [1].

The identification and validation of the models belonging
to fIN → y, are carried out using different NWT input force
experiments:

- Two different Chirp signals C1 (for training) and C2 (for
validation) with a maximum force amplitude of 1kN/m.
C1 sweeps the frequencies from 0Hz up to 1.5Hz and
C2 sweeps the frequencies from 1.5Hz down to 0Hz
(Fig. 5-(a)).

- Two different random amplitude, random period
(RARP) signals R1 (for training) and R2 (for validation),
with maximum allowable switching period of 0.67s
and maximum allowable force amplitude of 1kN/m
(Fig. 5-(b)).

- Two different multisine signals M1 (for training) and M2
(for validation), consisting of 900 equally spaced frequen-
cies in the range (1/600)-1.5Hz, with random phases and
flat amplitude spectrum (Fig. 5-(c)).

All the experiments utilised in this paper have a time length
of 600s and a sampling period Ts = 0.1s. For further details
regarding the utilised excitation signals, see [1].

A. Model Identification

Using the strategies illustrated in Section IV-C, the input
delay time nd and the dynamical orders na and nb are identified
for both the η → y and fIN → y model families.

In case of η → y class model, the loss function, calculated
for the different ARX models, has no significant reduction for
na > 8, using a wide variety of nb and nd values, indicat-
ing that na = 8 is the correct value to obtain a parsimonious
model structure. Fig. 6 shows the loss function for different
values of na, for the case of nb = 2 and nd = −7. Similarly,
given na = 8, the loss function has no significant reduction for
nb > 2, regardless of the value of nd. Fig. 7 shows the loss
function calculated for different nd, for the case of na = 8 and
nb = 2. It is possible to see that the loss function minimum
occurs for nd = −7 (describing a noncausal ARX model).

Plots similar to Figs. 7 and 6 are obtained for the fIN → y
class model, with the results are summarized in Table I.

Fig. 6. Determination of the dynamical order na = 8 in case of nb = 2 and
nd = −7, for the models belonging to η → y. The NWT experiment W1 has
been used for the identification.

Fig. 7. Determination of nd = −7 in case of na = 8 and nb = 2, for the
models belonging to η → y. The NWT experiment W1 has been used for the
identification.

TABLE I
na , nb , nd , p, n1 AND n2 UTILISED FOR THE MODELS BELONGING TO

η → y AND fIN → y

The polynomial order of the KGP model p = 2 is selected
observing that bigger values of p improve the training fitting
but degrade the quality of the validation fitting (overfitting).

For the ANN structure, a good compromise between com-
plexity and accuracy of the model has been found utilising
n1 = 10 and n2 = 10 for η → y and n1 = 3 and n2 = 5 for
fIN → y (see Table I).

The model prediction ŷ(k) is compared against the mea-
sured signal y(k) using the normalised root mean-squared error
(NRMSE) as a metric:

NRMSE =

√∑
k |y(k)− ŷ(k)|2√∑

k |y(k)|2

The NRMSE metric is selected over other metrics, such as the
mean square error (MSE) or the mean absolute percentage error
(MAPE), because the NRMSE is normalised with respect to the
magnitude of y(k) (unlike the MSE), and the NRMSE does not
give a distorted picture of the error for y(k) values close to zero
(unlike the MAPE).
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Fig. 8. Identified model performances (η → y model family) on the train-
ing experiment W1. The multi-step model predictions are compared with the
training data.

TABLE II
NRMSE MULTISTEP MODEL PERFORMANCE FOR TRAINING AND

VALIDATION (η → y MODEL FAMILY)

TABLE III
NRMSE MULTISTEP MODEL PERFORMANCES FOR TRAINING

(fIN → y MODEL FAMILY)

Fig. 8 shows, for the training experiment W1, the multi-step
predictions of the η → y class ARX, KGP and ANN mod-
els. All the fitting results on the training experiment W1 are
summarised in Table II. It is possible to observe only small
differences in the performance of the linear ARX model com-
pared to the two nonlinear models, indicating that the floating
body motion does not exhibit much nonlinear behaviour for
the geometry and wave conditions chosen in this case study.
However, even for more energetic sea states (and, in partic-
ular, longer wave periods), within power production ranges,
the device response to wave excitation alone does not tend to
become significantly nonlinear, as documented in [23].

For the identification of the models belonging to fIN → y,
the three different training experiments M1, R1 and C1 are
utilised. Table III reports the multi-step prediction performance
of the models on the different training experiments, showing
that the ANN models always performs the best for training
data fitting, followed by the KGP model. The ARX model has
consistently the worst training performance, suggesting that the
data contain some nonlinearities, which the KGP model and the
ANN model, in particular, are able to capture.

B. Model Validation

The η → y class models trained on the W1 dataset, are val-
idated on the W2 dataset. Fig. 9 shows a comparison of the

Fig. 9. Identified model performances (η → y model family) on the validation
experiment W2. The models have been trained on the experiment W1.

TABLE IV
NUMBER OF IDENTIFIED PARAMETERS FOR THE η → y AND fIN → y

MODEL FAMILIES

TABLE V
NRMSE MODELS MULTISTEP PERFORMANCES FOR VALIDATION

(fIN → y MODEL FAMILY)

ARX, KGP and ANN model multi-step predictions against
the validation data. The NRMSE performance for each of the
different models against the validation data is summarised in
Table II. The results show the ARX and KGP models maintain
similar performance, if compared with their training perfor-
mances, clear symptom that the models are able to generalise
quite well and that the identification was correct. On the other
hand, the ANN model, which was the best in training, degrades
considerably in validation, showing an inability to generalise,
likely a consequence of the nonlinear optimization necessary
to identify the ANN parameters, which does not guarantee the
achievement of a global minimum. Furthermore, as shown in
Table IV, the number of parameters for the ANN model is con-
siderably larger than the number of parameters for the ARX
and KGP models, increasing the difficulty of finding a global
minimum.

Table V shows the performance of the models belonging
to fIN → y on the validation experiments M2, R2 and C2.
Comparing the validation fitting of the ARX and KGP models
with their training fitting, it is possible to see that the two mod-
els generalise quite well on M2 and C2, indicating good quality
training data and model identification, but they show some more
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difficulty on R2. On the other hand, the ANN model is less con-
sistent exhibiting, in some cases, the ability to generalise well
and in other cases an inability (training on C1 and validation
on M2; training on R1 and validation on C2; all the valida-
tions on R2). Once again, the results show the supplemental
difficulty for the ANN identification, depending on the nonlin-
ear optimization and larger number of parameters (Table IV).
All the identified models exhibited more difficulties for valida-
tion on the experiment R2, possibly due to the fact that RARP
signals have very sharp corners, corresponding to fast changes
in the applied PTO force and resulting body acceleration, which
can create nonlinear effects.

VI. CONCLUSIONS

A 2D circular device geometry has been modelled to describe
its behaviour in power production mode, for a commonly occur-
ring moderate sea state at the EMEC test site. Three discrete
time model structures (ARX, KGP and ANN) have been intro-
duced for the η → y and fIN → y model families. In particular,
for the fIN → y case, the fitting performances of the nonlinear
models always outperform the linear ARX model, showing the
nonlinear nature of the NWT experiment data and the neces-
sity of employing nonlinear models to describe the fluid and
floating body interaction, when viscous effects are present and
the body oscillations are not negligible compared to the body
dimensions. This result has consequences for model-based con-
trol of WECs, whereby models determined from η → y cases,
which may behave linearly, should not be used as a basis for
model-based control design, due to the fact that the inclusion
of the PTO control forces may drive the WEC into nonlinear
operating regions.

The ANN model always displayed the best training perfor-
mances, but, on the other hand, its ability in generalising on
new experiments is not consistent, exhibiting the difficulties of
nonlinear identification associated with neural networks.

The identified KGP nonlinear models exhibited good per-
formances both in training and validation (especially for the
fIN → y model family), indicating that the training experi-
ment data, the selected model structures and the identification
procedures based on convex optimization are appropriate.
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