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12.1 INTRODUCTION

In this chapter, the use of wave energy con-
verter (WEC) models for optimization and control
will be investigated. Since the choice of modelling
strategy, and the nature/structure of the model
itself, is very much influenced by the application
for which the model is used, significant consider-
ation will be given to the modelling requirements
which are particular to WEC control (and control
of WEC arrays) and the constraints or characteris-
tics relevant to optimization needs.

A variety of WEC model use is explored
throughout this book. In many cases, the focus is
on developing a model that can accurately predict
device responses, or allow device developers to
assess the performance of a device under a specific
set of sea conditions. Alternative model uses
include the desire to assess the performance of
various WEC control strategies in simulation, or
to assess the likely power production from a
WEC device under a specific set of sea conditions
(Chapter 13). In this chapter, however, the use of a
WEC model either to evolve a control design algo-
rithm or to include a WEC simulation or evalua-
tion model within an optimization loop, places
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demanding computational and complexity limi-
tations on allowable WEC models. For the control
case, two requirements need to be met:

(a) There needs to be an algebraic route between
the model parameters and the control
parameters, and

(b) The derived controller must be able to
execute in real time.

Item (a) places a complexity limit on the WEC
model, while (b) also places a computational com-
plexity limit. As a very rough guide, WEC devices
designed to operate in Atlantic seas are likely to
experience waves with periods around 10 s, sug-
gesting that the sampling rate for sucha WEC con-
troller would operate in the region of 10 Hz,
giving 0.1 s maximum for controller calculations.
For use in numerical optimization loops (eg, opti-
mizing the geometry of a device or array layout)
the WEC/array models do not need to compute
in real time, but since the optimization is likely
to take a considerable number of iterations, and
hydrodynamic parameters may need to be recom-
puted ateach iteration, some economy needs tobe
achieved in the model complexity if optimization
results are to be returned in a reasonable time.
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In some cases, the WEC control algorithms
are not simply algebraic transformations of the
WEC model, but themselves involve numerical
optimization routines which use a WEC model,
in tandem with a numerical objective function;
for example, see Hals et al. (2011b), Cretel
et al. (2011), Brekken (2011), and Bacelli and
Ringwood (2015). Though such control algo-
rithms have a high computational overhead,
they have the advantage of being able to take
device constraints (displacement, power take-
off (PTO) force, etc.) into account.

12.2 CONTROL OF WECs

In this section, the control of WECs and
arrays of WECs is considered. Control refers
to any device or algorithm used to alter the
behaviour of a WEC or an array of WECs. There
are multiple levels of WEC and WEC array
behaviour at which control can be applied.
In general, and in keeping with the spirit of
this book, a model-based approach to control
will be considered here, though we note that
model-free approaches (for example, extremum-
seeking control, Hals et al.,, 2011a) are also
possible.

While the word “control” used in connection
with WECs and WEC arrays is consistent with
the general use of the word in broader control
applications, in that the behaviour of a system
is altered, the control objective in the wave energy
case diverges from traditional control objectives.
Typically, traditional control loops are used to
follow a setpoint (the servomechanism prob-
lem), or minimize the variance of a system out-
put variable (the regulator problem). In both
cases, the tendency is to drive the output to a cer-
tain demanded value, which is often constant.
Two characteristics, which traditional control
systems depend on, include:

The use of feedback, which has the added
advantage of a reduction in the sensitivity of
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the closed-loop system to variation in the
open-loop characteristics, including the
system model, as well as providing set-point
tracking, and

Forcing the system variables to a (relatively)
constant value, which helps to validate

the use of a linearized system model

(for control design and simulation) about

a fixed operating point or well-defined
small region.

In contrast, the objective in WEC control is
the maximization of captured energy, via a
performance function of the form:

]/()Tv(t)fpto(t)dtl (12~1)

where v(t) is the device velocity in the degree(s)
of freedom harnessed by the PTO and f,(t) the
corresponding PTO force(s) exerted, subject to
device physical constraints. Maximization of
Eq. (12.1) is usually achieved by maximizing
the motion of the device, which makes it difficult
to justify linearization about an equilibrium
point (usually the still water level is chosen).
In addition, WEC control generally relies on
feedforward control to generate optimal device
velocity or PTO force setpoints (see Fig. 12.1)
so that the attractive sensitivity properties of
feedback systems cannot be relied on.

As a result, WEC control is a challenging
problem, made considerably more challeng-
ing by the difficulty of obtaining lumped-
parameter models that lend themselves to
control design.

12.2.1 Control Effectors

Since wave energy PTO systems typically
involve a number of changes of energy form, there
can be a variety of ways to implement the required
PTO force, in order to achieve the desired device
velocity that maximizes Eq. (12.1). Fig. 12.2 shows
a number of possible variables that can be
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FIG. 12.1

Hierarchical control structure, showing the optimal setpoint (feedforward) calculation and the servomechanism

section that adjusts the PTO so that the optimal (force/velocity) setpoint is achieved.
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FIG. 12.2 Wave energy PTO system components and potential control inputs. In general, only one of these control inputs is

used by the energy-maximizing control.

manipulated to control the PTO force which influ-
ences the WEC device motion, including:

¢ Hydraulic motor swashplate angle,
e Generator excitation current, and
* Power converter conduction angle.

In general, only one of these inputs is used,
though consideration of efficiency of the various
included PTO components might suggest that
some combination might be beneficial, in partic-
ular circumstances. A manipulated control var-
iable, for WECs where multiple hydraulic
cylinders or (linear) electrical generators are used,
could be the number of cylinders/generators
employed either on a wave-to-wave basis, or for
significant changes in sea-state. Hydraulic bypass
valves could be used to deactivate hydraulic cyl-
inders, while nonrequired linear generators could
be electrically short-circuited. A final control pos-
sibility is that of pumpable water ballast, which
can be used to alter the WEC inertia and therefore
change its resonant frequency. An example study
using ballast control for a bottom-hinged flap

was performed by Qiu et al. (2013). However,
the use of water ballast as a control input has
limitations, including maximum pumping rate
(determined by pump size) and the energy cost
of moving water ballast.

It should be borne in mind that, for each PTO
component of Fig. 12.2 used, a model is
required. Ultimately, if we require to simulate
a complete WEC system, a model of the full sys-
tem from free surface elevation variations to the
required output (eg, electrical power), taking
into account intermediate inputs such as control
inputs, is required. Similarly, a model-based
WEC control algorithm will require a full model
of the system from (usually) a measure of either
the excitation force or free surface elevation to
the control input point. In addition, control
algorithms may also require a measure of an
objective function, usually involving output
power. In this book, the focus is on hydrody-
namic modelling, so this chapter will also focus
on hydrodynamic aspects of modelling and
control.
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12.2.2 Fundamental Control Results

With reference to the frequency-domain
models developed in Chapter 2, we can recall
the energy maximization problem by consider-
ing the force-to-velocity model of a WEC as
(Falnes, 2002):

V() 1

Fex(@) +Fu(@)  Zi(w)’ (12.2)

where Z;(w) is termed the intrinsic impedance of
the system. In Eq. (12.2), V (w), Fex(®), and F,(w)
represent the Fourier transform of the velocity,
u(t), excitation force, f..(t) and control force
fpto(t), respectively. Note that, in the following,
unless stated otherwise, the Fourier transform
of time-domain signals or functions will be
denoted by the corresponding capital letter,
namely X(w)2F{x(t)}.

The intrinsic impedance, Z,(w), of the model
in Eq. (12.2) is specified as (refer to Falnes
(2002) for the full derivation):

Zi(w)=B/(w)+Jw {M +M,(w)— 5)4 ,  (12.3)
where B,(w) is the radiation resistance (real and
even) and M,(w) is the added mass.

The model in Eq. (12.2) allows the derivation
of conditions for optimal energy absorption and
the intuitive design of the energy maximizing
controller in the frequency domain (Falnes,
2002) as:

Zpro(w) = Z; (@), (12.4)

where ( )* denotes the complex conjugate. The
choice of Zpro as in Eq. (12.4) is referred to as
complex conjugate control, but many (especially
electrical) engineers will recognize this choice of
Zpro as the solution to the impedance matching
problem represented by Fig. 12.3. The result
in Eq. (12.4) has a number of important
implications:

* Zpro(w) is frequency dependent, implying
that there is a different optimal impedance for
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FIG. 12.3 Impedance matching for a wave energy device,
directly analogous to its electric circuit counterpart.

each frequency—which raises the issue of
how to specify Zpro(w) for irregular seas
containing a mixture of frequencies?

e Since the radiation impulse response, h(t), is
causal, he(t) = F 1 (Zpro(w)) is anticausal,
requiring future knowledge of the excitation
force. While this is straightforward for the
monochromatic case (single sinusoid), it is
more problematic for irregular seas. The issue
of forecasting random seas is dealt with in
Section 12.2.5.

¢ Since force and velocity can have opposite
signs in Fig. 12.3, the PTO may supply power
for some parts of the sinusoidal cycle. This is
akin to reactive power in power systems.
Such a phenomenon places particular
demands on PTO systems, not only in terms
of the need to facilitate bidirectional power
flow, but also that the peak reactive power
can be significantly greater than active power
(Shek et al., 2008; Zurkinden et al., 2013).
The optimal passive PTO is provided by
Zpro = |Zi(w)|, which avoids the need for
the PTO to supply power, but results in a
suboptimal control.

e The optimal control in Eq. (12.4) takes no
account of physical constraints in the
WEC/PTO, where there are likely to be
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limitations on displacement or relative
displacement, PTO force and there may be
external constraints imposed by electrical
grid regulations.

e In Eq. (12.3), B)(w) and M,(w) are usually
normally calculated as nonparametric
functions of w (see Chapters 2, 3 and 4). In
order to use the model-based impedance
matching approach, it is usually required to
parameterize B,(w) as a finite-order
differential function (see Chapter 3), which
effectively replaces the convolution integral
in Cummins equation with a finite-order
differential equation. The relationship
between the radiation damping convolution
kernel function k(f) and B(w) and M,(w) is
provided by Ogilvie’s relations
(Ogilvie, 1964).

The condition in Eq. (12.4) can also be expre-
ssed in terms of an optimal velocity profile as:

VP (@) = Fex(w)/(2Ri(w)), (12.5)

where R;=1/2(Z; + Z}) is the real part of Z;. The
condition in Eq. (12.5) is a condition on the
amplitude of V% (w), with the restriction that
v”7!(t) be in phase with f,(t), since R; is a real
(and even) function. This phase condition, con-
sidered separately, forms the basis for some sim-
ple WEC phase control strategies, such as latching
(Falnes, 2002).

While the conditions of Eqs (12.4) and (12.5)
specify the optimal device velocity profile, they
don’t specify how it might be achieved. Fig. 12.1
shows a hierarchical structure for WEC control,
where the optimal velocity is calculated in the
upper branch and the PTO force is used to
achieve this velocity in the lower servo loop. A
number of studies have documented lower-loop
control strategies for WEC PTO systems, includ-
ing solutions based on internal model control
(IMC) (Fusco and Ringwood, 2013; Beirdo
et al, 2007) and proportional-integral-plus
(PIP) control (Taylor et al., 2009). A robust con-
trol strategy, using a passivity-based controller,
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can also be used (Fusco and Ringwood, 2014).
Finally, in some cases, an integrated high/low-
level controller is employed as, for example, in
Falcdao (2007) for a two-body WEC with a
hydraulic PTO system.

12.2.3 Real-Time Model-Based WEC
Control

In this section, three different example control
strategies are presented, with increasing com-
plexity (and potential resulting performance)
of WEC model employed. In general, the com-
plexity of the control algorithm is broadly con-
sistent with the complexity of the model
employed, though the way in which the control
problem is formulated is also a determinant of
the control algorithm complexity. Note that,
for real-time control, a time-domain WEC model
is required. For example, model predictive con-
trol (MPC) (Li and Belmont, 2014) uses a simula-
tion model of the system contained within an
optimization loop, which maximizes the objec-
tive function (energy) with respect to the control
signal (PTO force or velocity), resulting in signif-
icant computational requirements.

In the following, Section 12.2.3.1 describes a
simple controller, which is loosely based on
the system model, but potentially offers good
robustness properties and can handle PTO
amplitude constraints. The controller described
in Section 12.2.3.2 essentially inverts the com-
plete Cummins equation model (constraints
are not considered), while the controller of
Section 12.2.3.3 uses constrained numerical opti-
mization to solve the WEC control problem.

12.2.3.1 A Simple but Effective WEC
Controller

This controller, fully reported in Fusco and
Ringwood (2013), effectively parameterizes the
radiation damping dynamics by a constant,
resulting in a controller which has a very simple
parametric form. Consider Eq. (12.5), which
calculates the optimal velocity profile as a

IV. APPLICATIONS FOR WAVE ENERGY CONVERTER MODELS



234

(frequency-dependent) function of the excita-
tion force. In the following, a nonoptimal
approximation of reactive control is proposed,
where the noncausality and constraints are han-
dled in a simple, but effective, way. The essence
of this algorithm is the assumption that f,,(f) is a
narrow-banded harmonic process, defined by
time-varying amplitude, A(t), frequency, o(t),
and phase ¢(t):

Jex(£) = A(t) cos (o(b)t + (1));

the optimal reference velocity can then be gener-
ated from the following adaptive law:

(12.6)

1 1 L
o =g/ HE = 2R(@)

(12.7)

where the value of the constant H(t) is calculated
from the curve 1/2B(w), based on a real-time
estimate of the peak frequency of the wave
excitation force. An on-line estimate of the fre-
quency, @, and amplitude, A, is obtained with
the extended Kalman filter (EKF) (Quine et al.,
1995). Based on the narrow-banded assumption
of Eq. (12.6), the excitation force can be
expressed in complex notation as:
fo(t) =R{Ae7%e7"!}, F2Ae,  (12.8)
where I:“ex is the complex amplitude of f..(t).

As a consequence of the proportional
reference-generation law in Eq. (12.7), the com-
plex amplitude of the velocity, V, and position,
U, can be expressed as:

A A
14 :Egj‘ﬂ (12.9)
J V A T
A — 12.10
u 7o ije . ( )

Suppose that the vertical excursion of the WEC
is limited to +Uj, from equilibrium. From
Eq. (12.10), the position constraint can be written
as an equivalent velocity constraint:
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A 1% -

u:% < ulirn < ‘V| < wulim/ (12‘11)
and the following upper bound for the variable
gain, 1/H, involving the amplitude and fre-
quency of the excitation, can be derived from
Eq. (12.9) as:

1 < wlyy,

— 12.12
H™ A ( )

The reference generation strategy, based on
Egs (12.5), (12.7), and (12.12), can therefore
be modulated in order to keep the amplitude
of the velocity within the bound specified in
Eq. (12.11). A real-time estimate of the fre-
quency, @, and amplitude, A, of the excitation,
can be obtained through the EKF (Budal and
Falnes, 1982; Fusco and Ringwood, 2010):

1 " Uiy, 1
HE | ol . '
otherwise.

-~ 7

According to Eq. (12.13), when in the uncon-
strained region, the velocity is tuned to the opti-
mal amplitude given by complex-conjugate
control, as in Eq. (12.5). Otherwise, the maxi-
mum allowed velocity (lower than the optimal)
is imposed, while keeping the velocity in phase
with the excitation force. The control structure is
illustrated in Fig. 12.4. Since the algorithm is
only loosely based on the WEC model, it has rel-
atively good robustness properties to model
error. Lower loop control as illustrated in Figs
12.1 and 12.4 is performed using IMC (Morari
and Evanghelos, 1989), while a robust servo con-
troller has been developed in Fusco and
Ringwood (2014). The simple but effective (SE)
controller, when compared with a MPC in both
wide- and narrow-banded seas, has a relative
capture width (RCW) within about 10% of the
MPC (see Fig. 12.5), and even outperforms the
MPC for long wave periods in the low H; case.
However, the simple controller has superior
robustness to variations in K, and has a tiny
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FIG. 12.4 Proposed control architecture for the simple/effective controller. The EKF effectively tracks the wave frequency
and amplitude as in Eq. (12.6), while the 1/H(t) block provides an adaptive feedforward gain to determine the optimal velocity
profile. K(s) regulates the PTO to ensure that the optimal velocity profile is achieved.
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FIG. 12.5 Performance of proposed nonoptimal causal control, compared with optimal MPC. Relative capture width fig-
ures of merit are comparable for both controllers, with some small compromise on PTO force limits by the SE controller.
(A) Relative capture width (RCW). (B) Distribution of heaving excursion and PTO force.
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fraction of the computational complexity of
MPC. Note also, from Fig. 12.5, that the ampli-
tude and force limits of =1 m and +1 MN are,
in general, well respected. The parameter 1 in
Fig. 12.5 reflects the sea spectrum bandwidth
(A=0.5 = widebanded), from the Ochi sea
spectrum model (Ochi, 1998). Further details
and results for this controller are given in
Fusco and Ringwood (2013).

12.2.3.2 The “‘Aalborg’ PID Controller

The control algorithm reported here follows a
control signal parameterization which is a direct
consequence of the WEC model employed. For a
WEC model based on the typical Cummins for-
mulation (see Chapter 3 and Cummins, 1962),
the control force is parameterized (Nielsen
et al., 2013) as:

fe(t) =m0 (t) +coo(t) +keu(t),

where v(t) and u(t) are the device velocity and
displacement, respectively. It can reasonably
be argued that this controller parameterization
is optimal for monochromatic waves, since it
effective has the potential to cancel or modify
each of the terms in the Cummins’ equation
model, bearing in mind that the radiation damp-
ing term is constant for a fixed frequency (the
monochromatic case). There is also some fam-
iliarity to the form of Eq. (12.14) since, from
a velocity perspective, the control signal is com-
posed of proportional (c.v(t)), integral (k.u(t)),
and derivative (m.v(t)) terms, following the
pattern of the well-known PID form used in
traditional feedback control. However, one
important distinction with the traditional PID
controller is that the controller in Eq. (12.14) is
a feedforward controller and does not operate
on a tracking error, as does the traditional PID
controller. Nevertheless, there is a bidirectional
interaction between the control force, f.(t), and
the device velocity, v(t), via the WEC system
or system model (f-(t) — v(t)) and via the control
calculation (v(t) — f.(¢)).

(12.14)
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For the panchromatic case, the radiation
damping term in the WEC model is replaced
by a finite-order rational approximation (see
Chapter 3) and the (now) stochastic optimal con-
trol problem is solved using a variational
approach based on a Hamiltonian formulation.
The resulting control force solution is:

Je(t) = —(m +moc)o(t) —kyu(t)

+ / Iy (7 —t)o(t)dz,

(12.15)

where m is the WEC inertia, m,, is the infinite
frequency added mass, k;(t) is the restoring force
constant (assuming a linear restoring force), and
h,,(t) is the impulse response resulting from the
rational approximation to the radiation da-
mping kernel. It can be noted that Eq. (12.15)
maintains the general PID form, with the pro-
portional term now replaced with a convolution
representing the radiation damping term. Effec-
tively, the terms in Eq. (12.15) cancel each term
in the Cummins equation, resulting in perfectly
optimal control (within the bounds of the
approximation of the radiation damping kernel),
assuming that the Cummins equation model is
exact.

Since the integral term in Eq. (12.15) requires
future knowledge of v(t), the authors further
develop a causal version of the controller, which
requires no future knowledge. The interested
reader is referred to Nielsen et al. (2013) for
the complete details.

12.2.3.3 WEC Controllers Based
on Numerical Optimization

The class of WEC controllers based on numer-
ical optimization share the following
characteristics:

® An accurate model of the WEC is required,

¢ The complexity of the controller is such that it
exploits all the subtleties of the model, ie, the
controller is highly tuned to the model,

* No fixed parameterization is applied to the
control force (as, for example, in Sections
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12.2.3.1 and 12.2.3.2, but rather a solution for
the control signal time series is sought from
numerical optimization,

e Device constraints (displacement, force, etc.)
can be included in the control
formulation, and

¢ The computational demands of such
controllers are significant, mainly due to the
iterative numerical optimization.

This class of controller has emerged from tra-
ditional feedback control and, specifically, MPC,
which was developed for the relatively slow
process and chemical industry. In the WEC set-
ting, the traditional feedback error cost function
is replaced with a performance function of the

form:
T
T)= [t ooy a

where T is the control horizon, f,(t) the desired
optimal PTO force (the solution of the optimiza-
tion problem) and v(t) the device velocity. A
variety of MPC formulations have been reported
in the literature, including Hals et al. (2011b),
Cretel et al. (2011), Brekken (2011), and Li and
Belmont (2014). The main differences between
these formulations are the specific cost functions
employed, which are usually variations on
Eq. (12.16) designed to ensure a convex optimi-
zation problem, which simplifies the calculation
of the optimum. A recent variation on the gen-
eral MPC framework has been developed
(Bacelli and Ringwood, 2015), inspired by the
emergence of pseudo-spectral optimal control
formulations within the traditional control com-
munity, which parameterizes the WEC signals
with basis functions, resulting in a computation-
ally efficient formulation. An outline of the solu-
tion route is provided here.

This control solution is based on the dis-
cretization, in the time domain, of the PTO force
and of the motion of the device in order to trans-
form the problem into a nonlinear program
(NLP). The approach is similar to the direct

(12.16)
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simultaneous method used for the solution of
optimal control problems (Cuthrell and Biegler,
1987), where both the control variables and the
state variables are discretized. The optimal con-
trol problem is to find the PTO force vector f,,
that maximizes the total absorbed energy ],
subject to the equation of motion (Cummins
equation) and the additional control and motion
path constraints described as:

h(ufvlfpto’t) = O

8010, f o ) < 0.

where u(t) is the device displacement. The dis-
cretization of the control problem is performed
by approximating the position (1) and the veloc-
ity (v) vectors with a linear combination of the
basis functions ¢(t), and the PTO force (f,,;,) vec-
tor with a linear combination of the functions
$F(t); the ith components of these vectors are:

(12.17)

(12.18)

N

wi(t) = ul(t) = xj () =d(D3}, i=1,...,n
k=1

(12.19)
N

vilt) ~ N () =D X i(t) =D()%], i=1,...,n
k=1

(12.20)

Souo () fy (8) Z”lk # () =" B)iki, (1707

i=1,...,m,

where N and N are the orders of the expansions
for the states (position and velocity) and the con-
trol input (PTO force), respectively,

. S u 1T . o A o 1T
f=[R0 A xn] T, & = [RAn LA
it = iy, i, ... Thingy ]

and

D(t) = [p1(t), (L), ..., ()],

D (1) = [dF (8,420, (1))
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Using the approximated velocity and PTO force,
from Eqgs (12.20) and (12.21), respectively, the
total absorbed energy J" is

T NP N
M= [ owx uTe =35 wir,

i=1 j=1
(12.22)

where w;; are the elements of the matrix W = X’
UT, which depends on the coefficients of the
velocity (X") and the PTO force (U), while I
are the elements of the constant matrix I” which
depends on the bases @ and @” as

r= / T@T(t) o (t) dt. (12.23)
0

The matrices X“, X, and U are defined as
X" =[x],...,xy], X°=[x],...x%],
U=liy,... i,

The result of the discretization is the finite
dimensional NLP described by the quadratic
cost function J" in Eq. (12.22), the linear equality
constraints due to the dynamic equations (Cum-
mins equation) which is reformulated in terms
of the variables in Eqs (12.19)—(12.21), and by
the additional equality and inequality path
and control constraints in Eqgs (12.17) and
(12.18).

The solution to this discretized WEC control
problem is provided by the optimal PTO force,
u*, corresponding to the discrete parametric
form of the PTO force in Eq. (12.21). For the
unconstrained case, an algebraic solution results
while, with the addition of constraints, a numer-
ical optimization is required. For the full devel-
opment and solution, the interested reader is
referred to Bacelli and Ringwood (2015). One
useful feature of the pseudo-spectral approach
is that a user-defined trade-off between compu-
tational complexity and fidelity of approxima-
tion can be achieved by appropriate choice of
N and N” in Egs (12.19)—(12.21), which guaran-
tees a feasible real-time control solution. In the
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discretization in Eqs (12.19)—(12.21), a variety
of basis function types can be used; however, a
natural choice of basis function is a Fourier
series, given the harmonic nature of the system
variables and the excitation signal.

12.2.4 Control of WEC Arrays

The analytical formulation of the maximum
power absorbed by an array of oscillating
devices was independently derived by Evans
(1979) and Falnes (1980). Both authors obtained
a result which is the general case of reactive
(phase and amplitude control) control. A system
of optimally controlled WECs is described by
Evans (1981), with the effect of motion con-
straints on maximum power absorption also
considered. Also, Falnes and Budal (1982)
reported a study on linear arrays of heaving
buoys, where they considered unconstrained
motion as well as constrained motion. Falnes
extends his previous work in Falnes (1984),
where he considers an infinite linear array of
evenly spaced oscillating bodies. Constraints
on arrays of oscillating bodies have also been
considered in Fitzgerald and Thomas (2007),
where limiting the oscillation amplitude to two
or three times the incoming wave amplitude
results in the positive interference between array
elements being reduced, though the negative
interference is not significantly affected.

Finally, a real-time control algorithm for
arrays of WECs, using a basis function parame-
terization of system variables (following the
general development in Section 12.2.3.3), is pre-
sented in Bacelli et al. (2013), while the method is
extended to consider system constraints in
Bacelli and Ringwood (2013a). All of these
methods use a Cummins equation-style model,
with the device variables now expanding to vec-
tors to cater for the multiple bodies (see
Chapter 8). Though coordinated control of
WEC arrays has been shown to be advantageous
(up to 20% more energy can be captured by get-
ting the devices to work together and take
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advantage of mutual interaction through radia-
tion), there is a significant dependence on the
model accuracy and an appreciable reduction
in coordinated control benefit can accrue from
modelling errors. To this end, a sensitivity anal-
ysis to device position errors is carried out in
Bacelli et al. (2013), which shows that indepen-
dent device control is more beneficial than
coordinated control, when modelling errors (in
relative device position) exceed a certain
threshold.

12.2.5 Wave Forecasting

While some WEC control algorithms circum-
vent the need to predict future variations in free
surface elevation or excitation force (Fusco and
Ringwood, 2013; Scruggs et al., 2013), in general
there is a need to provide forecast values of free
surface elevation or excitation force due to the
noncausality of the optimal PTO force, as articu-
lated in Section 12.2.2. Fortunately, there is a
strong positive connection between the wave
forecasting requirements of energy maximizing
control (Fusco and Ringwood, 2012) and the

Incoming waves

—_—f — .

Predicted
(A) wave

WEC
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forecastability of random seas (Fusco and
Ringwood, 2010), due to the close relationship
between the radiation damping dynamics and
the design sea state (ie, predominant period).

Wave forecasting can be performed using up-
wave measurement, based on either black-box
propagation models (Price and Wallace, 2007;
Eder et al., 2013; Monk et al., 2013) or models
for wave propagation based on wave physics
(see Chapter 10). A simpler alternative is to
use a time series model at the device location
(Fusco and Ringwood, 2010) for either excitation
force or free-surface elevation. Both approaches
are illustrated in Fig. 12.6. A comparative case
study (Paparella et al., 2015) of both up-wave
and timer series approaches showed little
advantage of the inclusion of up-wave measure-
ments, suggesting that the additional cost of up-
wave sensors and the development of (either
time-series or physics-based) wave propagation
models is questionable. While many time series
techniques may be employed, including har-
monic, neural network, and models based on
the EKF, a simple linear autoregressive (AR)
forecasting model, viz:

Incoming waves

—_—f — .

Predicted
(B) wave

WEC

FIG. 12.6 The two main approaches to wave forecasting. Up-wave prediction requires the addition of extra sensors, while
the time series approach in (A) simply forecasts future excitation force based on the measured device motion. (A) Prediction
based only on local single-point measurements. (B) Prediction based on up-wave measurements.
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FIG. 12.7 Wave prediction and confidence intervals for a filtered wave record corresponding to Pico Island in the Azores.
The prediction shows acceptable fidelity over a 35 s forecast horizon.

n

Ak +1lk) = (k)i (k+1—ilk),

i=1

(12.24)

performs well and has a nice frequency domain
interpretation. For example, Fig. 12.7 shows
fi(k+1lk), for I =1 to I = 50, at a specific time
instant k, calculated with an AR model of order
n =24, for wave data at Pico Island in the Azores
filtered with cut-off frequency w. = 0.7 rad/s.
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Fig. 12.8 shows how the AR model poles pick
out the characteristic spectral peaks in the sea
spectrum.

12.2.6 WEC Control Perspectives

A number of comments, from a control per-
spective, may reasonably be made in relation
to the WEC models (and array models) upon

0.7
o AR model frequencies
0.6 4 — Data set spectrum
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S
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FIG. 12.8 AR model poles and corresponding sea spectrum. The AR model is essentially a time domain model; the pole
locations give a useful frequency-domain interpretation, which can be well related to the sea spectrum.
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which WEC controllers are based. In the first
instance, the robustness of WEC control systems
to modelling errors is highlighted in Fig. 12.1,
which shows the calculation of the optimal
velocity profile as an open loop calculation,
which is therefore sensitive to modelling errors.
There is therefore a robustness issue, which is
rarely explicitly addressed in WEC control stud-
ies, though there are some exceptions, for exam-
ple, Fusco and Ringwood (2014).

In general, the more complex the WEC model,
the more highly tuned the model-based control-
ler will be. While such complex controllers
potentially offer better performance, they are
likely to be more sensitive to modelling error.
The control formulation in Sections 12.2.3.1—
12.2.3.3 offer incrementally increasing complex-
ity, but some consideration needs to be given to
the robustness to modelling error. To this end,
the pseudo-spectral formulation shown in
Section 12.2.3.3 could offer a variable sensitivity
to modelling errors, through the appropriate
choice of N and N”, though this requires further
study. One interesting experiment was reported
in Kracht (2013), where the performance of the
simple controller reported in Section 12.2.3.1
was compared to an MPC in a tank test for a
heaving buoy device. Though the MPC (margin-
ally) outperformed the simple controller in sim-
ulation (where the same model was used in
simulation as for the model-based controller)
(Fusco and Ringwood, 2013), the simple control-
ler was seen to outperform the MPC in the tank
test (Kracht, 2013), most likely due to the fact
that the model-based MPC was more sensitive
to modelling errors.

While the bulk of WEC control design
methods are based on linear WEC models, non-
linear WEC modelling methods are becoming
more common (see Chapters 5-7 and Retes
et al., 2015) and WEC controllers based on non-
linear WEC models are also beginning to
appear. One important issue raised in Retes
et al. (2015) is that, while (linear) WEC models
may validate well with tank tests for uncon-
trolled systems, the operational range of the
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WEC may be significantly expanded under con-
trol, with greater extremes in wetted surface var-
iation (displacement) and velocity/acceleration
likely to be achieved. In such an expanded oper-
ational situation, nonlinear models based on
boundary-element methods (see Chapter 5 and
Retes et al., 2015), or nonlinear or representative
linear models identified from wave tank data
(see Chapter 7) may give greater fidelity. How-
ever, apart from the representative linear
models (Davidson et al., 2015), WEC controllers
have yet to be designed for WEC models which
include nonlinear Froude-Krylov forces. How-
ever, controllers are available for WEC models
containing:

* Nonlinear restoring force (Richter et al., 2013;
Fusco and Ringwood, 2014),

¢ Nonlinear viscous damping (Bacelli and
Ringwood, 2014), and

e Nonideal PTO efficiency characteristics
(Falcdo et al., 2015; Bacelli et al., 2015; Genest
et al., 2014).

This chapter presents a small selection of
WEC control algorithms and perspectives. A
broader study on the WEC control systems prob-
lem and literature is available in Ringwood
etal. (2014). In general, there is a positive correla-
tion between the complexity of the model that
a WEC controller is based on and the potential
power capture performance. However, increased
model complexity is also accompanied by an
increased computational burden and, most
importantly, a WEC controller tightly tuned to
a complex WEC model may be quite sensitive
to modelling errors. With the almost exclusive
reliance on linear WEC models for WEC
model-based controllers, and the dubious valid-
ity of linear WEC models under control condi-
tions (Retes et al., 2015), significant care needs
to be taken that an overall well-performing
WEC control solution is achieved. While tradi-
tional (feedback regulatory) controllers are
often reasonably based on linearized system
models, since system operation is forced to an
equilibrium by the controller action, WEC
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controllers tend to exaggerate motion away from
equilibrium (eg, the still water level) making the
assumption of small variations invalid.

12.3 OPTIMIZATION OF WECs AND
WEC ARRAYS

This section considers the use of numerical
optimization to optimize the geometry of WECs
and the layout of WEC arrays. In particular, the
interaction between such device/array optimi-
zation and the control design problem is also
studied and some recommendations made. In
theory, all the design parameters of single-body
WECs, multibody WECs and WEC arrays can be
numerically optimized, providing there exists:

(@) A suitable objective function to provide a
figure of merit for the various candidate
designs, and

(b) A route to calculate the objective function
values

Regarding (a), a typical figure of merit
employed is the amount of useful energy
converted by a WEC or WEC array. However,
focussing on power alone may resultin dispropor-
tionate capital or other costs and a more holistic
objective is suggested by the techno-economic
optimization framework outlined in Costello
et al. (2012) and illustrated in Fig. 12.9. In the
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significant computation is involved, including
the required recalculation of hydrodynamic
parameters in the ‘device analysis’ block, as the
WEC geometry is adapted. However, providing
such a problem can be solved, the resulting solu-
tion balances capital, operation and other costs
against power production, maximizing the eco-
nomic benefit of a wave energy project. With
regard to (b), while the specification of suitable
WEC models for such a formulation is not too dif-
ficult (and is the focus of much of this book), the
accurate articulation of the cost model is far from
trivial, as outlined in Teillant et al. (2012).

Finally, there are (in general) no guarantees that
the global minimum (or maximum) of the objec-
tive function can be found in practice. For rela-
tively simple performance functions, typically
employing quadratic measures, the optimization
problem presented is usually convex, with a guar-
anteed convergence to the function minimum or
maximum. However, for more complex objective
functions (and more complex relationships
between the objective function variables, ie, the
device model), convergence is not guaranteed,
though recourse can be made to concurrent search
algorithms (such as genetic algorithms Goldberg,
1989), which employ multiple interacting simulta-
neous solutions to cover the search space.

In the following two sections, by way of ex-
ample, two optimization problems of interest to
WEC developers are presented. In Section 12.3.1

techno-economic  optimization framework, the geometric optimization of a heaving buoy is
Resource Resource Market
data data data
CAPEX
drivers CAPEX
. Wavefarm Discounted CoE
WEC Device FMEA table O8M OPEX iy NPV
concept CIEL L , analysis B analysis IRR
Power matrix Productivity
Optimize Optimize I

FIG. 12.9 Techno-economic optimization philosophy.
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considered, while in Section 12.3.2, the optimal
spacing of an array of WECs in an array is consid-
ered. In both cases, the interaction between the
geometric/spacing design and the control design
problem is emphasized, highlighting the need to
consider both design problems concurrently,
rather than sequentially.

12.3.1 Geometric Optimization of WECs

Here, the optimization of geometric parame-
ters of a WEC is considered. In reality, the impact
of WEC geometry changes should be considered
from many aspects of a wave energy project, as
articulated in Fig. 12.9, including impacts on
capital cost, transport costs, manufacturability,
etc. However, for simplicity, the current analysis
will focus exclusively on the maximization of
energy capture, which will also facilitate a clear
presentation of the interplay between geometry
optimization and energy-maximizing control
design. The overall combined geometry/control
optimization is illustrated in Fig. 12.10. For each

WEC geometry
specification

A

Update WEC
geometry

Control design

Overall optimal
system ?

FIG. 12.10 Combined geometric and control optimization.

243

trial of the WEC geometry parameters, the con-
trol system must be redesigned to ensure that
energy capture is maximized over the full range
of operation.

In general, the WEC geometry is designed for
the prevailing sea conditions in a particular
location, with control subsequently used to
improve the energy conversion performance of
the device for sea-states other than the design
sea-state. This usually involves matching the
device frequency response, or response ampli-
tude operator (RAO), to the predominant sea
spectrum. However, particular control strategies,
subsequently employed and while doing their
best to broaden the RAO in frequency range,
can be limited in capability to produce an overall
optimal system. Two cases in point highlight the
issue. Latching control (Budal and Falnes, 1975;
Babarit and Clément, 2006a), which delays the
motion of a WEC by locking its position at the
extreme (upper and lower) points of motion,
has the ability to slow down the WEC in sea
periods longer than the design period. On the
other hand, declutching control (Babarit et al.,
2009; Folley and Whittaker, 2009) has the oppo-
site effect—for intervals of the motion cycle, the
WEC is ‘unloaded’ allowing the response to be
speeded up in sea periods shorter than the design
period. Both latching and declutching produce
composite device/control (‘closed loop’) sys-
tems, which are nonsymmetrical with respect
to the predominant sea state.

Aiming to improve wave energy extraction, a
number of studies have been done on device
geometry optimization of WECs independently
of the control system (Babarit and Clément,
2006b; Alves et al., 2007; McCabe et al., 2010;
McCabe, 2013; Kurniawan and Moan, 2013).
However, a preliminary study, examining the
influence of latching control on the overall geo-
metric optimization of a heaving cylinder
(Gilloteaux and Ringwood, 2010) suggested that
significant interaction potentially existed
between the geometry and control design prob-
lems, highlighting the issue for latching control.
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Some sample results, which illustrate the UD Uncontrolled device (optimal passive
effect of variations in the radius, r, and draught, damping, determined for peak for wave
d, of a cylindrical point absorber WEC, are spectrum),
shown in Fig. 12.11 for four different control LD Latching-controlled device (Babarit and
Clément, 2006a),

strategies:

FIG. 12.11
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FIG. 12.11 Evolution of the absorbed power for different values of r and d: (A) UD, (B) LD, (C) DD, (D) MPCD (polychro-
matic waves: H; = 1m; T, = 7's).
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DD Declutching-controlled device (Babarit
et al., 2009), and
MPCD MPC-like controlled device (Bacelli and
Ringwood, 2015).

P, is the absorbed power and the contour
plots on the base of the surface plots clearly
show the diversity in the optimal values for r
and d (denoted r* and d4* respectively, which
are enumerated in Table 12.1. T} is the resonant
period of each of the optimized devices. Note
that P,/V, is calculated for information only,
since the performance objective is the maximiza-
tion of P,. If desired, an alternative performance
function, with a dependence on (for example)
P,/V,, could be employed, which would yield
different optimal geometries.

Significantly, since latching (LD) has the abil-
ity to slow down the motion of a WEC but not
speed it up, the optimal WEC has a relatively
small resonant period, while the converse is true
for declutching (DD). The MPC-like strategy has
the capability to both speed up and slow down
the WEC, so the T’ for the MPC-optimized device
is fairly central and close to that for the UD case.

In the example shown, a simple device geom-
etry is employed, with just two parameters to
be optimized. For more complicated shapes,
if shape optimization is to be performed, the
geometry needs to be parameterized in terms of
a finite number of parameters. For curves, etc.,
such parameterization can become more chal-
lenging, with the potential need to parameterize
curved sections using basis functions, such as
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polynomials. However, as the number of param-
eters to be optimized grows, so too does the com-
plexity and dimensionality of the performance
surface to be searched, reducing the likelihood
of achieving a global optimum and incurring sig-
nificant computational requirements. One other
issue to consider is that, while shapes (and con-
trollers) may present advantageous average
power capture performance, the displacement
variations and maximum forces generated may
also vary, and these also have cost implications,
though the trade-off between force and ampli-
tude constraints may also, to some extent
(Bacelli and Ringwood, 2013b), be optimized. A
more complete treatment of the interaction
between geometry and control optimization is
given in Garcia-Rosa and Ringwood (2015).

12.3.2 WEC Array Layout Optimization

Wave farms have a feature, unusual among
the range of renewable energy technologies
(such as solar, wind, and tidal), whereby the
total energy output from a farm of n devices
can exceed that of n individual devices. This phe-
nomenon results from the fact that oscillating
WECs radiate waves, which can constructively
interfere with the incident wave field resulting
in an overall net benefit to the devices in the
array. However, by the same mechanism,
destructive interference can also occur. Ulti-
mately, array layouts and orientation need to
be optimized for the prevailing conditions at
the wave farm site.

TABLE 12.1 Optimal Geometries, Relative Size of the Various Optimized Devices and Relative Power Captured

per Unit Volume

Control * (m) d* (m) T; V, (m®) P, (W) P,/V, (W/m>)
uD 11 6 7.06 2280.80 26,340 11.55
LD 6 4 5.55 452.39 39,730 87.82
DD 12 8 7.79 3619.11 33,290 9.20
MPCD 12 4 6.56 1809.56 65,130 35.99
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In addition, like the WEC geometry optimiza-
tion discussed in Section 12.3.1, optimal wave
farm layout is also a function of the control sys-
tem employed in the farm. Both independent
(each device has its own autonomous control
system) and global (a coordinated control strat-
egy, taking account of device interaction is
employed) strategies result in different optimal
farm layouts. The normal figure of merit for a
wave farm is the g factor, defined (Budal, 1977) as:

B W
q_nWS'

where W is the total energy absorbed by the
array, W, is the energy absorbed for a single iso-
lated device, and 7 is the number of units in the
array. If wave interactions have a constructive
effect on the energy absorbed by the array, then
g > 1 and, if the effect is destructive, g < 1.

A simple example (described more fully in
Garcia-Rosa et al.,, 2015) is used to illustrate
some of the issues. A small set of linear, triangu-
lar, and square arrays is examined and a single
parameter (the interdevice spacing) is opti-
mized, together with the incident wave orienta-
tion. It may be noted (Thomas and Evans, 1981)
that the average g factor around all possible
wave directions (ie, array orientation) is unity;
however, since most wave energy sites have a
predominant wave direction, a favourable ori-
entation (with g > 1) can normally be found.
For a square array of four cylindrical heaving
WECs, with radius of 6.25 m and draught 4 m,
Fig. 12.12 shows the variation in g factor for var-
iations in array orientation and interdevice spac-
ing (spacing distance d is normalized by the
device radius r). The upper and lower plots
show the case for global array control (GC)
(Bacelli et al., 2013) (using a control algorithm
as described in Section 12.2.3.3) and passive tun-
ing (optimal linear damping for each device,
PC). A Bretschneider panchromatic wave spec-
trum with H; = 1 m and T, = 7 s was employed,
using planar long-crested waves, and no PTO
constraints were active.

(12.25)
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A number of features of Fig. 12.12 are note-
worthy. A distinct peak in the g factor surface
is evident, which implies a significant sensitivity
to d/r and f, suggesting that a poor choice for d
and f can result in a very significant loss in
energy conversion potential of the wave farm,
at least for a particular, possibly the predomi-
nant, sea-state. It is also clear that significantly
more energy can be converted using a coordi-
nated control approach from the array (g factor
peak is higher for global control case), as
documented in Bacelli et al. (2013). In fact, with
an optimized array layout and global control,
up to 40% more power can be converted
(Garcia-Rosa et al., 2015), compared to a
layout-optimized array of devices with optimal
damping. One other significant feature that can
be drawn from Fig. 12.12 is that different opti-
mal d/r values are evident for the global control
and optimal (passive) damping cases. Such a dif-
ference (d/r* = 27 for GC and d/r* = 23 for PC,
for the case illustrated in Fig. 12.12) shows the
sensitivity of the optimal array layout to the con-
trol strategy employed. In general, there is little
sensitivity of the optimal array orientation to
the control strategy employed (Garcia-Rosa
et al., 2015).

As an illustration of the significance of the
sensitivity of the optimal array layout to the
control strategy employed, Fig. 12.13 shows
the corresponding optimal array layouts for lin-
ear (2 and 3 body), triangular, and square
arrays for the GC and PC cases. The examples
shown confirm that significant benefit can be
obtained from optimizing the array layout
and orientation and that the control strategy
should also be considered at the array layout
optimization stage. However, the simple exam-
ples shown in this section (chosen for clarity of
illustration) employ only one free layout
dimension parameter (and an orientation
parameter) while, in practice, much more free-
dom could be employed. For example, a com-
mercial array of (say) 30 devices might be
parameterized in terms of the individual
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FIG. 12.12 L4, G2—y factor values for different d/r and  corresponding to (A) global control, and (B) passive optimal

damping.

Cartesian (x,y) coordinates, giving 60 parame-
ters to be optimized. There are no guarantees
that the resulting multidimensional optim-
ization problem is convex, potentially requiring
the employment of concurrent search algo-
rithms, with the consequent high computa-
tional overhead. However, array layout
design is a once-off design issue and, given
the cost of WEC arrays and the potential impact

on energy receipts of a suboptimal layout,
deserves considerable attention. However, it
must also be recognized that the final optimal
array layout will also need to respect other
design criteria relating to moorings, electrical
interconnection, and navigational constraints.
In addition, optimization across the full range
of sea-states, and their associated probability,
would need to be performed.
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FIG. 12.13 Plan view of optimal array configurations for
passive control (shaded) and global control (unshaded): L1

(scale 1:100), L2 (scale 1:100), L3 (scale 1:200), and L4 (scale
1 : 400).

12.3.3 Summary

¢ For model-based control design, and the
simulation of WEC controller performance,
time-domain WEC models are required.

¢ Ideally, WEC controllers should respect the
true nonlinear dynamics of WECs (both PTO
and hydrodynamics); however, controllers
based on linear WEC models predominate so
far, due to the difficulty of generating true
nonlinear controllers. This is due to the
difficulty of nonlinear WEC controller design.

¢ There is, in general, a positive correlation
between the complexity of the hydrodynamic
models employed and the complexity of the
resulting controllers. For real-time
implementation, controller computational
complexity can become an issue.

* The robustness of WEC controllers to
modelling error should be considered in
identifying an overall optimal controller,
particularly since WEC controllers drive the
system away from equilibrium and subject
the WECs to forces that create relative
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body/fluid motion well in excess of that
experienced due to wave motion alone. In
addition, higher device/fluid relative
velocities may be attained under control,
resulting in the magnification of viscous drag
effects.

* Optimal control is noncausal, but wave
forecasting can assist in the provision
of future variations in excitation force or
free-surface elevation, and can be effectively
achieved using autoregressive forecasting
models.

¢ Optimization of WEC geometry and array
layout should include consideration of the
array control strategy as well as the incident
wave climate.

¢ The significant amount of computation
required for parametric (layout and
geometry) optimization means that the
WEC numerical model employed must be
computationally efficient. This is especially
true in the case where total wave farm project
optimization is considered, as illustrated in
Fig. 12.9.
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