
Web Audio: Some Critical Considerations

Victor Lazzarini, Steven Yi and Joseph Timoney

1Sound and Music Research Group
Maynooth University

Maynooth, Co. Kildare Ireland

victor.lazzarini@nuim.ie, stevenyi@gmail.com

Abstract. This paper reviews the current state of the Web Audio API, providing
some critical considerations with regard to its structure and development. Fol-
lowing an introduction to the system, we consider it from three perspectives: the
API design; its implementation; and the overall project directions. While there
are some very good aspects to the API design, in particular its concise and
straightforward nature, we point out some issues in terms of usage, Javascript
integration, scheduling and extensibility. We examine the differences in browser
implementation of builtin nodes via a case study involving oscillators. Some
general considerations are made with regards the project direction, and in con-
clusion we offer a summary of suggestions for consideration and further discus-
sion.

1. Introduction
The Web Audio API[Adenot and Rodgers 2015] is a framework aimed at providing sound
synthesis and processing as part of Javascript engines embedded in World-Wide Web
(WWW) browser software. Such functionality had been previously only partially ex-
plored via plugin systems such as Adobe Flash. Since the introduction of the audio el-
ement in the HTML5 specification, basic streaming audio playback has been possible,
but this has not been developed significantly to allow for more complex sound computing
applications. These include capabilities provided by game engines, and by desktop audio
software (such as mixing, processing, filtering, sample playback, etc.). The aim of the
Web Audio API is to support a wide range of use cases, which is acknowledged to be a
very ambitious proposition.

In this paper, we would like to raise a number of questions with regards to
this framework, and explore some issues that have been left so far unresolved. The
WebAudio API has seen some significant changes in the past two years, and is be-
ing strongly supported by the major browser vendors[Wyse and Subramanian 2013]. It
has also been the main focus of a major international conference (the Web Audio
Conference at Ircam, Paris [Ircam 2015]), where a number of projects employing this
technology have been showcased (for a sample of software using the API, please re-
fer to [Roberts et al. 2013], [Lazzarini et al. 2014], [Lazzarini et al. 2015], [Mann 2015],
[Wyse 2015], [Monschke 2015], and [Kleimola 2015]). While these developments bring
some very interesting possibilities to audio programming and to Ubiquitous Music, we
feel it is important to consider a number of aspects that relate to them in a critical light.

Our interest in the Web Audio API is twofold: firstly, we hope it will eventu-
ally provide a stable environment for Music Programming, and add to the existing choice



of maturely-developed Free, Libre and Open-Source (FLOSS) sound and music com-
puting systems (such as SuperCollider[McCartney 2015], Pure Data[Puckette 2015], and
Csound [Ffitch et al. 2015]); secondly, we would like it to provide the supports we need
to host efficiently a Javascript version of Csound [Lazzarini et al. 2015]. In the light of
this, we would like to explore some of the issues that are currently preventing one or the
other, or both, to come to fruition.

The paper poses questions that relate to a number of perspectives. From a tech-
nical side, we would like to discuss points of Application Programming Interface (API)
design, and the split between builtin, natively-implemented, components (nodes) with
Javascript interfaces, and the user-defined, pure-Javascript, elements which include the
ScriptProcessorNode and the upcoming AudioWorker. We evaluate the current
API according to requirements to meet various musical use cases, and see what use cases
are best supported and what areas where the current API may present problems.

Complementing this analysis, we consider the issue where the Web Audio native
components are implemented by the vendors in different ways, based on a specification
that is open to varied interpretation. Since there is no reference implementation for any
of these components, different ways of constructing the various unit generators can be
found. As a case study, we will look at how the OscillatorNode is presented under
two competing Javascript platforms, Blink/Webkit (Chrome) and Gecko (Firefox). We
aim to demonstrate how these not only use different algorithms to implement the same
specification, but also lead to different sounding results.

From a project development perspective, we have concerns that there is not a uni-
fied direction, or vision, for Web Audio as a system. Extensibility appears to be provided
as an afterthought, rather than being an integral part of the system. This is exemplified by
how the ScriptProcessorNode was provided to users with some significant limita-
tions. These are due to be addressed with the appearance of the AudioWorker, whose
principles are discussed in this paper. We also observe how the long history of com-
puter music systems and languages can contribute to the development of the Web Audio
framework.

2. The API and its design
The Web Audio API has been designed in a way that allows simple connections be-
tween audio processing objects , which are called AudioNodes or just nodes in this
context. These connections are simply performed by a single method (connect()) that
allows the output of one node to be put to another node. These objects all live within a
AudioContext, which also provides the end point to the connections (physically, the
system sound device), the AudioContext.destination. Aspects such as channel
count are handled seamlessly by the system, and obey a number of basic rules in terms of
stream merging or splitting. Such aspects of the API are well designed, and in general,
we should commend the development team for the concise and straightforward nature of
its specification.

In the API, the audio context is global: it controls the overall running of the nodes,
having attributes such as the current time (from a real time clock), the final audio desti-
nation (as mentioned above), sample rate, and performance state (suspended, running,
closed). This design can be contrasted with the approach in some music programming



systems such as Csound and SuperCollider, where local contexts are possible, on a per-
instance/per-event basis. Allowing such flexibility can come with a cost of increased
complexity in the API, but at the level at which the framework is targeted, it might be
something that could be entertained.

In general, it is possible to equate Web Audio nodes with the typical unit gener-
ators (ugens) found in music programming systems. However there are some significant
differences. One, which was pointed out in [Wyse and Subramanian 2013], is that there
are two distinct types of nodes: those whose ‘life cycle’ are determined by start and stop
commands, and those whose operation is not bound by these. This leads to a two-tier
system of ugens, which is generally not found in other music programming systems. In
these, the classification of ugens tends to be by the type of signal they generate, and in
some cases by whether they are performing or non-performing (ie. whether they consume
or produce output signals in a continuous stream). Such differences have implications for
programming in that nodes that are ‘always-on’ can be more or less freely combined into
larger components that can themselves be treated as new nodes, whereas the other type is
not so amenable to this type of composition. This is not an optimal situation, as ideally,
programmers should be able to treat all nodes similarly, and apply the same principles to
all audio objects being used.

A related difficulty in the design is the absence of the concept of an instru-
ment, which has been a very helpful element in other music programming systems. In
these, they take various forms: patches (PD), synthDefs (SuperCollider), and instruments
(Csound). They provide useful programming structures for encapsulating unit genera-
tors and their connecting graphs. In some senses, nodes that are activated/deactivated via
start-stop methods implement some aspects of this concept, namely, the mechanisms of
instantiation, state and performance. But in most other systems, instruments are program-
ming constructs that are user-defined, encapsulating instances of the ugens that compose
it. In other words, they sit at a different level in the system hierarchy. While we might be
able to introduce the concept via a Javascript class, this is perhaps more cumbersome than
it needs to be. The concept of an instrument could also allow the introduction of local
contexts.

From another perspective, the Web Audio API does not offer much in terms
of lower-level access to audio computation. For instance, users do not have ac-
cess to the individual data output from nodes (outside the ScriptProcessor or
AudioWorker nodes). It is not possible to control the audio computation at a sam-
ple or sample-block level, something that audio APIs in other languages tend to provide
(e.g. PyO[Bélanger 2015] or the SndObj[Lazzarini 2008] library for Python). Such ac-
cess would allow a better mix between natively-implemented nodes and Javascript ones.

2.1. ScriptProcessor and AudioWorker

The ScriptProcessorNode interface has been present in the API since the first
published working draft (in the form of a JavaScriptAudioNode, as it was called
then). The main aim of this component was to provide a means of processing sound
through Javascript code, as opposed to the natively-compiled bultin nodes. This is cur-
rently the only means of accessing the individual samples of an audio signal provided
by the API, but it sits awkwardly amongst the other built-in nodes, which are opaque.



More importantly, script processor code is run in the Javascript main thread, and asyn-
chronously to the other nodes. It communicates with the rest of the audio context through
AudioBuffer objects, and if these are not of sufficient size, dropouts may occur.
Higher latencies are then experienced as the result of this. In addition, any interruption by,
for instance, user interface events, can result in dropouts. These characteristics render the
ScriptProcessorNode unsuitable for applications which require a robust system.
They limit significantly the extendability of the system. Given that Web Audio is quite
limited in terms of its offer of builtin nodes (if compared to other music programming
systems), this represents a significant issue at the time of writing.

In order to rectify the problems with the script processor, a new node interface has
been introduced in the latest Web Audio API editor’s draft [Adenot and Rodgers 2015],
the AudioWorkerNode. This follows the model defined for the Web Worker specifi-
cation [Hickson 2014], which describes an API for spawning background threads to run
in parallel with the main page code. The Audio Worker has two sides to it: the one
represented by AudioWorkerNode methods, visible to the main thread; and another
that is provided in the actual worker script that processes the audio. This is given by
an AudioWorkerGlobalScope object, which allows access to the input and output
audio buffers and other contextual elements. A script is passed to the Audio Worker on
creation, and is run synchronously in the audio thread (rather than in the main thread as
the script processor did). In the cases where the WebAudio implementation places this
thread on high priority, using the Audio Worker will mean a demotion to normal priority,
as for security reasons, Javascript user code is not allowed to run with higher than normal
priority. Also, the specification dictates that the processing script cannot access the call-
ing audio context directly. The key configuration parameter of the sampling rate is passed
to the script as a readonly element of the AudioWorkerGlobalScope interface.

Since no actual implementation of the AudioWorkerNode exists at the time of
writing, it is not possible to assess its performance. There are some indications that it
might provide a more robust means of extending the Web Audio API, but some aspects of
its design (such as the separation between the script context and the calling audio context)
may limit it to some use cases. We understand this to be motivated by security reasons
(as many of the design decisions in Javascript engine-provided APIs have to be), but
inevitably it is a limitation of the current specification.

In providing Audio Workers, the editors of the Web Audio API are marking the
ScriptProcessor node as deprecated. However, some applications for script proces-
sors might still be found, and so it could be advisable to keep providing this interface in
future versions of the system.

2.2. AudioParams

AudioParams are exposed as parameters for AudioNodes. AudioParams can have a single
value set, can be connected to from other nodes, or also automated with values over time.
While the first two ways of setting values seem to align well with the rest of the API,
the third option of automating values via function calls is somewhat of an outlier. Since
automation times and values are set directly on the AudioParam itself, the curve values
can not be shared with multiple params. Instead, if one wants to use the same automation
values, one has to set the values for each parameter.



In systems such as Csound and SuperCollider, time-varying values using piece-
wise segment generators are often done using unit generators designed for that purpose.
Within the context of WebAudio, a similar implementation could have been done by cre-
ating an AutomationNode. By using a node, the values of the automation could then be
connected to multiple AudioParams. In that regards, the design of AudioParams adds
another node-like source of values in the graph that is implicitly connected, rather than
explicitly done so like other node inputs.

The user is certainly able to create and use their own automation nodes by imple-
menting them in Javascript. This would also allow one to create other types of curves and
means of triggering than those provided by the AudioParam API. However, since this ap-
pears to be a very basic functionality that could well be encapsulated as a node, it appears
that it would be best handled by an addition to the API.

2.3. Scheduling

Scheduling issues are also worthy of note. In many similar systems, an event mechanism
is provided or implemented behind the scenes. In Web Audio, there is no event data
structure to schedule. Instead, as we have discussed above, the API encourages creating a
graph of nodes, then using start() and stop() functions to turn on and off the nodes
at a given time, relative to the AudioContext clock. For ahead of time scheduling of
events, this requires all future nodes to be realised. This is inefficient in terms of memory,
but does give accurate timing. This appears to be a known issue that is being tracked by
the development team.

So in this case, it is expected that users will try and implement their own event
system. If this is the case, and nodes are used as-designed, it is possible to do this cur-
rently in Javascript via the ScriptProcessorNode. Scripts run inside these nodes
do have access to the AudioContext, and so can create new nodes. However, timing is
jitter-prone, as the ScriptProcessor is processed asynchronously from the audio thread.
Also, the jitter is unbounded; the Javascript main thread can end up completely paused
due to other processing or due to things like the page being backgrounded. Chris Rodgers
has proposed a solution [Rodgers 2013], which is similar to the one proposed by Roger
Dannenberg and Eli Brandt [Brandt and Dannenberg 1999]. However, this is not an ac-
curate solution in that it does not guarantee reproducible results. It might be sufficient for
many real-time scenarios, but not when processing may require sample-accurate timing.
It is not appropriate for non-realtime scenarios.

As we have seen above, the new AudioWorker proposes Javascript-based pro-
cessing code that is run synchronously in the audio thread. This would allow accurate
event system to be written, but the problem is that in this case AudioContext is not
available to the script run under this mechanism. That means even if you wrote a sched-
uler, you could not create nodes running in an AudioContext that is external to it. In
this scenario, one is probably better off not using any of the nodes in WebAudio, and
instead doing everything in Javascript. This abandons using any of the built-in nodes, but
trades off for accuracy and reproducibility across browsers (which is not guaranteed with
Web Audio code, see section 3). As noted above, there is an element of speculation in
this discussion, however, as AudioWorker is only a specification at this moment. It is
unknown whether the audio context will eventually be made available to AudioWorkers.



2.4. Offline rendering

As part of the current Editor’s draft of the Web Audio specification, we see the presence
of new audio context interface, represented by OfflineAudioContext. This is a
welcome addition, which would allow non-realtime use cases to be addressed. It provides
a means of running nodes asynchronously which are not dependent on the need of deliv-
ering samples in a given time period, so slow processes could be rendered through this
method (and buffered for playback when needed). It writes the output of the process to
memory (as an AudioBuffer object), and if the final destination of these is a file, then
this has to be separately handled by Javascript and HTML5. It appears to provide much
needed support for processing that is not designed for realtime audio. However at the
time of writing, it is not possible to assess it in a more thorough way since it is still at a
specification stage.

2.5. Extensibility

While support for Javascript-based extensions to the system exist, as discussed in sec-
tion 2.1, there is no indication of plans or proposals for means of extending the system
via natively-compiled nodes. Such components would be useful for two reasons: they
would allow computationally-intensive processes to take advantage of implementation-
language performance; and they would provide a simple means of porting existing code
into web applications. Current estimates of difference between optimised Javascript code
and native code plugins performing the same tasks indicate a slowdown by a factor of ten
[Lazzarini et al. 2015], so the first point above is clearly justified. The second is similarly
valid considering the wealth of open-source code for audio processing algorithms that
exists in C or C++ forms.

It would be interesting, for instance, if the efforts that have been put in the Na-
tive Client (NaCl) [Yee et al. 2009] open-source project could somehow be incorporated
into WebAudio via a well-defined interface maybe through a dedicated node. There has
been some indication that this might work, as a user-level integration of the two via the
script processor has been reported as functional, albeit with some significant issues, for
instance in terms of added latencies in the audio path [Kleimola 2015]. The Portable Na-
tive Client (PNaCl) plugin system has been proved to be very useful for audio processing,
for example, in one of the ports of the Csound system to the Web [Lazzarini et al. 2015].

One of the key aspects of the NaCl system is that it has been shown to be a se-
cure way of extending Javascript applications [Sehr et al. 2010]. Given that many of the
constraints to improving the support to lower-level programming in Web Audio appear to
relate to security concerns, it appears that NaCl, in its PNaCl form, might provide a suit-
able environment for extensibility. The provision of an interface for NaCl could therefore
provide a very powerful and secure plugin system for the API.

3. Implementation issues
The Web Audio API specification is implemented by browser vendors in different ways.
Since the source code for the audio implementation does not stem from a unique upstream
repository, such differences can be considerable. In order to explore this issue in a limited
but detailed fashion, we have chosen to concentrate on a particular case study. We un-
derstand, from informal observations, that the differences discussed here may extend well



beyond this particular example. For instance, we have discovered that a certain browser
(Safari) appears to apply a limit of -12dB for full scale audio, whereas other browsers,
such as Chrome and Firefox, do not (allowing not only a 0dB full scale, but also not
making any efforts to prevent off-scale amplitudes). However it is beyond the scope of
this paper to provide a complete assessment of implementation issues. We have chosen
two popular browser lines for this test, Google Chrome and Mozilla Firefox, which will
provide a sample of the possible differences both in source code implementation and in
sonic result.

3.1. Case study: the Oscillator node

In this case study, we have written a very simple Oscillator-based instrument consisting
of an OscillatorNode connected to the output, in this case, producing a sawtooth wave:

var audioContext;
var freq = 344.53125, end= 10, start = 1;
var oscNode = audioContext.createOscillator();
oscNode.type="sawtooh";
oscNode.frequency.value = freql
oscNode.connect(audioContext.destination);
oscNode.start(audioContext.currentTime + start);
oscNode.stop(audioContext.currentTime + start + end);

All signals had an f0 = 344.53125, which at fs = 44100 means 128 complete cy-
cles in 16384 samples. This was used as the size of our DFT frame for analysis. The above
program was run under the Chrome and Firefox browsers. We plotted the magnitude spec-
tra for the sawtooth waves in figs 1 and 2 (Chrome and Firefox outputs, respectively), and
their absolute difference in fig 3.

0 5000 10000 15000 20000
frequency (Hz)

90

80

70

60

50

40

30

20

10

0

m
a
g
n
it

u
d
e
 (

d
B

)

Figure 1. The magnitude spectrum of a sawtooth wave generated by Chrome



0 5000 10000 15000 20000
frequency (Hz)

90

80

70

60

50

40

30

20

10

0

m
a
g
n
it

u
d
e
 (

d
B

)

Figure 2. The magnitude spectrum of a sawtooth wave generated by Firefox

0 5000 10000 15000 20000
frequency (Hz)

0

5

10

15

20

25

30

35

40

a
b
so

lu
te

 m
a
g
n
it

u
d
e
 d

if
fe

re
n
ce

 (
d
B

)

Figure 3. The absolute difference of the magnitude spectra of two sawtooth
waves generated by Firefox and Chrome

In addition, we run the same program with oscNode.type="square" and
plotted the results of the individual magnitude spectra in figs 4 and 5, as well as their
absolute difference in fig 6.

From these plots, it is clear that at the high end of the spectrum, we have sig-
nificantly different signals, as the Firefox output is quite drastically bandlimited, yield
a difference of around 37-40dB between the two in the ten highest partials (sawtooth
wave, five in the square wave case). Examining the source code for these two imple-
mentations of the Web Audio spec, we see that while the Chrome implementation uses
a wavetable algorithm for implementing bandlimited versions of classic analogue waves,
the bandlimited impulse train (BLIT) [Stilson and Smith 1996] method is used in Firefox.
The Chrome implementation is much richer in harmonics, due to its use of three waveta-
bles per octave over twelve octaves, which covers quite a lot of the spectrum up to the
Nyquist frequency. In addition to the differences plotted here, we noticed the presence of
a very low-frequency component (not visible in the figures above), which is present in the
Firefox OscillatorNode signal as an artefact of the way BLIT is implemented.



0 5000 10000 15000 20000
frequency (Hz)

90

80

70

60

50

40

30

20

10

0

m
a
g
n
it

u
d
e
 (

d
B

)

Figure 4. The magnitude spectrum of a square wave generated by Chrome

0 5000 10000 15000 20000
frequency (Hz)

90

80

70

60

50

40

30

20

10

0

m
a
g
n
it

u
d
e
 (

d
B

)

Figure 5. The magnitude spectrum of a square wave generated by Firefox

The differences discussed here stem from these implementations being, in sound
and music computing terms, two clearly distinct unit generators. In a system such as
Csound, with over 1,800 such components, they are assigned two different names (in
this case, vco and vco2, also with slightly different parameters reflecting the particular
methods used). The WebAudio specification is not definitive enough to prevent such
deviations, and maybe not wide enough to accommodate them in a more suitable way.
While we understand the desire to be succinct, we also note that the experience of the
existing systems could have been used to inform the design of the API. Clearly, if we
are to allow different implementations of bandlimited oscillators (and there are many
of them), then we need to provide ways that users can distinguish between them. The
development of Computer Music has been one in which precision and audio quality were
always first-class citizens, and it is reasonable to expect these standards to be maintained
in such an important software project.



0 5000 10000 15000 20000
frequency (Hz)

0

5

10

15

20

25

30

35

40

a
b
so

lu
te

 m
a
g
n
it

u
d
e
 d

if
fe

re
n
ce

 (
d
B

)

Figure 6. The absolute difference of the magnitude spectra of two square waves
generated by Firefox and Chrome

As builtin nodes can differ, it is not possible to create consistent results across
browsers. An alternative to this of course is to use Javascript-programmed audio code (ei-
ther directly or via systems like Csound) to ensure the same results everywhere. It is also
important to note that issues such as this are not confined to Web Audio, as differences
in interpretations are not new to web applications. For instance, on the graphics side,
browsers have long been known to render web pages differently (types, in particular, are
an issue[Brown 2010]). However, this is widely acknowledged to be a less than desirable
scenario.

4. Project directions
The Web Audio project is clearly a very significant project, which has been managed
in an open way, through accessible code repositories, and a well-supported issue track-
ing system. Discussions on its directions have been carried out in open fora, and the
main team members seem to take heed of user suggestions. On the other hand, the
points made in this paper may indicate a certain lack of awareness of the fifty years of
computer-based digital audio technologies. The history of computer music languages
is rich in examples of interesting ideas and concepts [Lazzarini 2013], and these could
be very useful to the design of WebAudio. Interestingly, developers seem to be well
aware of commercially-available closed-source music software. Proprietary multitrack
and MIDI programs Logic and GarageBand, for instance are name-checked in the Web
Audio specification document[Adenot and Rodgers 2015], even though the functionality
and use-cases of the API are closer to FLOSS music programming systems.

One way in which the project could take advantage of the wealth of ideas in
FLOSS Computer Music systems is to develop a reference implementation for unit gen-
erators/nodes, based on source code that is openly available and well documented. This
could be a way of addressing the issues raised in section 3, and a means of making good
use of existing technology. Furthermore, a review of such systems could inform the deci-
sions taken by the team in terms of steering the future directions of the API. Contributors
to the discussion fora have already been bringing ideas that stem from academic research
in the area, in an informal way. This could be enhanced by structured and systemic study
that could be carried out as part of the development work.



5. Conclusions
The Web Audio framework is a very welcome development in audio programming, as
it provides a number of potential applications that were previously less well supported.
However, there are some key issues in its current implementation, and in its design, that
need to be addressed, or at least, considered. On one hand, users of the framework should
be made aware of these so that they can make informed decisions in the development
process; on the other, developers might want to pay attention to the ones that can be
addressed in some way. Our aim with this paper is to be able to contribute to the debate
in the area of programming tools, so that support for a variety of approaches in music
systems development is enhanced. From this perspective, we would like to offer the
following summary of suggestions:

• The introduction of an instrument interface to enhance composability (section 2)
• Further flexibility for Audio Worker code (e.g. some form of access to the calling

audio context) (2.1)
• New nodes, in particular one for handling control curve generation (2.2)
• More precise and flexible scheduling (2.3).
• Extensibility enhancements via native plugins (2.5).
• More precise definitions to minimise implementation differences (3).
• A reference implementation based on existing computer music systems (4).

References
Adenot, P. and Rodgers, C. (2015). Web Audio API, W3C Editor’s Draft.
https://dvcs.w3.org/hg/audio/raw-file/tip/webaudio/
specification.html. Accessed: April 16, 2015.

Brandt, E. and Dannenberg, R. B. (1999). Time in distributed real-time systems. In In
Proc. Int. Computer Music Conference, pages 523–526.

Brown, T. (2010). Type rendering: web browsers. Accessed: April 17, 2015.

Bélanger, O. (2015). PyO: dedicated Python module for digital signal processing. http:
//ajaxsoundstudio.com/software/pyo/. Accessed: April 17, 2015.

Ffitch, J., Lazzarini, V., Yi, S., Gogins, M., and Cabrera, A. (2015). Csound. http:
//csound.github.io. Accessed: April 16, 2015.

Hickson, I. (2014). Web Workers, Editor’s Draft. http://dev.w3.org/html5/
workers/. Accessed: April 18, 2015.

Ircam (2015). The 1st Web Audio Conference . http://wac.ircam.fr. Accessed:
April 16, 2015.

Kleimola, J. (2015). Daw plugins for web browsers. In Proceedings of the Web Audio
Conference 2015, IRCAM, Paris, France.

Lazzarini, V. (2008). Interactive audio signal scripting. In Proceedings of ICMC 2008.

Lazzarini, V. (2013). The development of computer music programming systems. Journal
of New Music Research, 42(1):97–110.

Lazzarini, V., Costello, E., Yi, S., and ffitch, J. (2014). Csound on the Web. In Linux
Audio Conference, pages 77–84, Karlsruhe, Germany.



Lazzarini, V., Yi, S., Costello, E., and ffitch, J. (2015). Extending csound to the web. In
Proceedings of the Web Audio Conference 2015, IRCAM, Paris, France.

Mann, Y. (2015). Interactive music with tone.js. In Proceedings of the Web Audio Con-
ference 2015, IRCAM, Paris, France.

McCartney, J. (2015). SuperCollider. http://supercollider.github.io. Ac-
cessed: April 16, 2015.

Monschke, J. (2015). Building a collaborative digital audio workstation based on the web
audio api. In Proceedings of the Web Audio Conference 2015, IRCAM, Paris, France.

Puckette, M. (2015). Pure Data. http://puredata.org. Accessed: April 16, 2015.

Roberts, C., Wakefield, G., and Wright, M. (2013). The Web Browser As Synthesizer And
Interface. Proceedings of the International Conference on New Interfaces for Musical
Expression.

Rodgers, C. (2013). A Tale of Two Clocks. http://www.html5rocks.com/en/
tutorials/audio/scheduling/. Accessed: April 17, 2015.

Sehr, D., Muth, R., Bifie, C., Khimenko, V., Pasko, E., Schimpf, K., Yee, B., and Chen,
B. (2010). Adapting Software Fault Isolation to Contemporary CPU Architectures. In
19th USENIX Security Symposium.

Stilson, T. and Smith, J. (1996). Alias-free digital synthesis of classic analog waveformss.
In In Proc. Int. Computer Music Conference, page 332?335.

Wyse, L. (2015). Spatially distributed sound computing and rendering using the web
audio platform. In Proceedings of the Web Audio Conference 2015, IRCAM, Paris,
France.

Wyse, L. and Subramanian, S. (2013). The Viability of the Web Browser as a Computer
Music Platform. Computer Music Journal, 37(4):10–23.

Yee, B., Sehr, D., Dardyk, G., Chen, J. B., Muth, R., Ormandy, T., Okasaka, S., Narula,
N., and Fullagar, N. (2009). Native Client: A Sandbox for Portable, Untrusted x86
Native Code. In 2009 IEEE Symposium on Security and Privacy.


