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Up-Wave and Autoregressive Methods for
Short-Term Wave Forecasting for an

Oscillating Water Column
Francesco Paparella, Kieran Monk, Victor Winands, M. F. P. Lopes, Daniel Conley, and John V. Ringwood

Abstract—The real-time control of wave energy converters
(WECs) requires the prediction of the wave elevation at the loca-
tion of the device in order to maximize the power extracted from
the waves. One possibility is to predict the future wave elevation
by combining its past history with the spatial information coming
from a sensor which measures the free surface elevation up-wave
of the WEC. As an application example, this paper focuses on the
prediction of the wave elevation inside the chamber of the oscillat-
ing water column (OWC) for the Pico OWC plant in the Azores,
and two different sensors for the measurement of the free surface
elevation up-wave of the OWC were tested. The study showed that
the use of the additional information coming from the up-wave
sensor does not significantly improve the linear prediction of the
chamber wave elevation given by a forecasting model based only
on the past values of the chamber wave elevation.

Index Terms—Time series, wave energy, wave forecasting.

I. INTRODUCTION

W AVE ENERGY converters (WECs) are usually
designed to efficiently extract energy from the sea for

a limited range of frequencies, usually located around the res-
onance of the device. In order to realize an efficient energy
extraction for a broader range of frequencies, a control sys-
tem can be designed [1], [2]. Real-time optimal control can be
derived from a controller designed in the frequency domain, but
it involves noncausal transfer functions which can be imple-
mented only if the future motion of the device or the incident
wave elevation are known [1], [2]. Usually, prediction of the
wave elevation is based on a spatial reconstruction of the wave
field starting from a set of sensors located in the proximity of
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the WEC, as shown in Fig. 1(b) [3]. Another possible solution
is to predict the wave elevation based only on its past history, as
shown in Fig. 1(a). The prediction of wave elevation based on
past values requires less instrumentation respect to the spatial
approach, since only one measure is needed at the sea location
of the WEC. Regarding spatial approach for wave prediction
in [4], digital filters were deployed for the real-time predic-
tion of waves incident upon a wave energy device. In [5], the
remote wave profile is measured by means of a nautical radar
and is propagated in time and space in order to predict the wave
field and estimate the motion of a vessel. In [6], a shallow angle
LIDAR was adopted in order to measure the time evolution of
spatial profiles of sea waves over an extended region of several
hundred meters. In [7], the fast Fourier transform is employed
to decompose the wave elevation into individual frequencies at
a given point, propagate each individual frequency component
using the dispersion relation, and reconstruct the wave elevation
at a different temporal and spatial point. In [8], an overview
of a deterministic sea-wave prediction (DSWP) model is pre-
sented, which is used to estimate the wave elevation at the point
of interest, given the measurement of the free surface elevation
at a point at some distance from the prediction site. In [9], a
linear harmonic model fitted to distant wave elevation measure-
ments is presented. In [10], the hydrodynamics of the chamber
of an oscillating water column (OWC) is predicted by means
of a neural network (NN) based on the measurements of the
incident wave elevation.

Regarding time-series approach for wave prediction, in [3]
autoregressive (AR) models are proposed and validated against
real observations. In [11], adaptive filters based on AR mod-
els for wave prediction are deployed. In [12], a robust control
for wave energy devices based on the prediction of the wave
elevation is implemented. For the wave prediction, a hybrid
Kautz/AR predictive model as well as a purely predictive Kautz
model are proposed. In [13], NNs for the estimation of the wave
excitation force were trained and results compared to other
methods.

This paper examines the comparative benefits on wave pre-
diction accuracy using a sensor for the measurement of the free
surface elevation up-wave of the WEC, compared to using his-
torical measurements alone. In particular, an AutoRegressive
eXogenous (ARX) input model, which extends the AR model
with the inclusion of the additional information coming from
the measurement of the free surface elevation up-wave of the
WEC. The up-wave elevation is considered to be an exoge-
nous input of the model. The ARX models proposed are
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Fig. 1. (a) Wave prediction based on one-single point of measurements and
(b) wave prediction based on spatial reconstruction from array of sensors.

validated against real observations coming from the Pico WEC
plant located on the Portuguese island of Pico in the Azores
archipelago [10]. In particular, two types of sensors for the up-
wave elevation have been tested. The real data available are
discussed in Section II, while the forecasting models proposed
are outlined in Section III. Finally, the results are discussed in
Section IV.

II. AVAILABLE DATA

This paper proposes a strategy for forecasting the wave ele-
vation inside the chamber of the Pico OWC by a combination
of its past values and the measurement of the free surface ele-
vation up-wave of the WEC. A sonar sensor for recording the
chamber wave elevation is mounted on the roof of the chamber,
while two different sensors for the measurement of the free sur-
face elevation around 60 m in front of the Pico OWC chamber
wall are deployed [10]. During the first deployment period, the
“Aquadopp” hydrostatic pressure sensor and Acoustic Doppler
Current Meter (ADCM) unit was utilized to measure the hydro-
dynamics of the free surface elevation up-wave of the WEC.
Since the data cable providing the online data from the sensor
was damaged by the sea, the sensor was redeployed from time
to time in order to acquire the data stored in the internal mem-
ory of the device. Obviously, for the wave elevation forecasting
inside the chamber, an online measurement of the free surface
up-wave elevation is needed. Given the high cost for the data
cable, an alternative sensor was developed and used at the same
location as the Aquadopp during the second deployment period.
This alternative sensor, in the following referred with the name
“pneumatic sensor,” consists of a small steel box fixed on the
sea floor with an open bottom. The variation of the pressure of
the entrapped air inside the box, due the change in the water
column above, is measured by a pressure transducer. From the
pressure variation of the air inside the box, the water surface
elevation can be obtained [10] as

ηw =
phyd
ρg

(1)

where phyd represents the dynamic water pressure at 60 m
in front of the OWC, ρ is the density of the sea water, and
g is the gravitational acceleration. The data available from the
Aquadopp sensor consist of 25 h of records, while the data
provided by the pneumatic sensor consist of 10 h of records.

Fig. 2. Chamber wave elevation spectra for (a) first and (b) second deploy-
ment period and up-wave elevation spectra from (c) Aquadopp sensor and from
(d) pneumatic sensor.

The sampling frequency for both the deployment periods is
equal to 2 Hz.

The spectra of the chamber wave elevation measured during
the first and second deployment period are reported in Fig. 2(a)
and (b), respectively, while the corresponding spectra of the
up-wave elevation measured with the Aquadopp and pneumatic
sensor are reported, respectively, in Fig. 2(c) and (c). The spec-
tra of the chamber wave elevation show a resonance around
0.62 rad/s for both deployment periods, which corresponds to
a dominant wave period of approximately 10 s. However, the
spectra of the free surface elevation up-wave of the WEC show
that, in addition to the dominant wave frequency, other com-
ponents exist at higher frequency. Because the incident waves
are reflected by the wall of the OWC, frequency components
of shorter period can be present in the spectra of up-wave
elevation [10].

Since the low-frequency components carry most of the wave
energy, it is a reasonable assumption to predict only the low-
frequency components of the chamber wave elevation [3]. In
fact, the high frequencies are representative of low energy sea
states, which are not relevant for wave energy conversion. Also,
neglecting the sea spectra components at high frequency yields
to a more regular and more predictable wave elevation, and
accurate predictions can be also obtained for long forecast-
ing horizons. Therefore, the data are filtered with an ideal
zero-phase low-pass filter with cut-off frequency ωc. The fil-
ter is approximated with offline forward and backward filtering
through Chebyshev filters of Type I, discretized with the bilin-
ear transform. The cut-off frequency was selected in order to
preserve the dominant wave period of the sea state.

If the free surface elevation up-wave of the WEC propa-
gates only in the direction toward the chamber, with a time
delay termed the propagation time, the incident wave ele-
vation causes the change in the chamber wave elevation.
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The propagation time can be inferred from considerations of
wave propagation in a finite water depth. Assuming that there
are no attenuation effects on the traveling wave, the wave ele-
vation η propagates in the direction x, defined positive from the
location of the up-wave sensor to the chamber, accordingly to
the following expression [14]:

η(t, x) = A cos(ωt− k(ω)x) = Re(Aej(ωt−k(ω)x)) (2)

where k(ω) is the wave number, which is a function of the fre-
quency ω and water depth h. The wave propagates with a phase
velocity given by [2]

vp =
ω

k(ω)
. (3)

In shallow water with depth h, the waves can reach a
maximum velocity vmax =

√
gh, where g is the gravitation

acceleration. Since the up-wave sensor is placed at a location
with a water depth h = 8 m, a velocity vmax = 8.85 m/s is
obtained. If it is assumed that all the waves travel at the same
phase velocity equal to the maximum velocity, then the free
surface elevation up-wave of the WEC reaches the chamber
without any phase distortion. If d denotes the spatial distance
between the point of measurement of the free surface eleva-
tion up-wave of the WEC and the point of measurement of the
chamber elevation, the propagation time tprop of the wave is as
follows [14]:

tprop =
d

vmax
. (4)

Since the point of measurement of the up-wave elevation is
placed at a distance d = 60 m from the chamber, using (4), a
propagation time around 7 s is obtained. If there are no non-
linearities or attenuation effects on the wave propagation, the
use of the up-wave elevation measurement provides advance
knowledge of the future wave elevation inside the chamber
for a forecasting horizon equal to the propagation time. In
reality, the presence of eventual nonlinearities on the wave
propagation and multidirectionality of the waves distorts the
effect of the incoming wave on the chamber wave elevation.
As a result, the measurement from the up-wave sensor gives a
partial information about the future wave elevation inside the
chamber. As shown in (4), the distance of the up-wave sensor
from the chamber determines the maximum forecasting hori-
zon. The measurements of the up-wave elevation given by a
sensor located at a long distance from the chamber provides less
accurate information about the future chamber wave elevation,
due to the increasing effect of nonlinearities and multidirec-
tional waves. Also, in order to acquire the measurements from
a sensor more distant from the site where the prediction is
required, greater costs for the data cable are involved.

III. FORECASTING MODELS

A. Up-Wave Only Models

In this section, a model for forecasting the chamber wave
elevation based only on the measurement of the free surface

Fig. 3. Time-series data segmentation for the (a) first and (b) second deploy-
ment period.

elevation up-wave of the WEC is presented. In particular, a
finite impulse response (FIR) model is designed which assumes
that the chamber wave elevation at time instant k is a linear
combination of nb past values of the free surface elevation up-
wave of the WEC. The up-wave measurement is considered
to be the input of the model and is denoted as u. The model
considered is of the following form:

ηch(k) =

nb∑
i=1

biu(k − i+ 1− nk) + ξ(k) (5)

where ξ is considered to be a white noise with zero mean and
variance σ2. The term nk is the delay (in number of sample
periods) that occurs before the output is affected by the input.
If the data coming from the up-wave sensor are delayed by
the propagation time then, at time instant k, the water level
in the chamber is influenced by the up-wave elevation at the
same time instant. Therefore, the delay nk is considered to be
zero. The use of the FIR filter takes into account the unmodeled
dynamics between the up-wave elevation and the chamber wave
elevation which was not considered in the calculation of the
propagation time alone. Also, the FIR filter models the dynam-
ics of the sensor utilized for the measurement of free surface
elevation up-wave of the WEC. In fact, since the up-wave sen-
sor deployed approximates the free surface elevation based on a
pressure signal, the FIR filter also models the dynamic relation-
ship between the pressure and the free surface elevation. Given
a set of parameters bi, from (5), the l-step ahead prediction is
given as follows:

η̂ch(k + l|k) =
nb∑
i=1

biu(k + l − i+ 1). (6)

In (6), the time series of the up-wave elevation is known up
to a certain prediction horizon, equal to the propagation time of
the wave from the location of the sensor.

As shown in Fig. 3(a) and (b), the data for each deployment
period were divided into training and validation sets. The coef-
ficients bi of the FIR model, at an instant k, are estimated using
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a batch of training data Ti,j of dimension N1 consisting of past
observations of the water level in the chamber and measure-
ments of the free surface elevation up-wave of the WEC. The
cost function to be minimized, for the estimation of the model
parameters, is the variance of the one-step ahead prediction
error, which is given as follows:

JLS =

N1∑
k=1

(ηch(k + 1)− η̂ch(k + 1|k))2 (7)

which is a linear least squares (LS) problem. For the estimation
of the model parameters, a different cost function referred as
long range predictive identification (LPRI) [15] was considered,
with initial value of the parameters given by the minimization
of (7). Since the minimization of the LPRI cost function for dif-
ferent forecasting horizons did not yield a significantly different
value of the parameters compared to their initial estimates, the
LPRI cost function was not further considered.

An important element of the identification of the FIR model
with cost function (7) is the choice of the order nb. The objec-
tive is to identify a model that guarantees an accurate fitting of
the training data without incurring the so-called “over-fitting,”
or rather the identification of a over-parametrized model which
also interpolates the stochastic noise presents in the measure-
ments. Given a previously unseen batch of validation data Vi,j

of dimension N2 consisting of observations of the chamber and
up-wave elevations, the accuracy of the identified model can be
validated by means of the variance of the prediction error σ2

l

for a forecasting horizon l computed as follows:

σ2
l =

1

N2

N2∑
k=1

ê(k + l|k)2

=
1

N2

N2∑
k=1

(ηch(k + l)− η̂ch(k + l|k))2. (8)

In order to select the best order nb that avoids over-fitting the
data, FIR filters of different orders nb were trained and vali-
dated by means of the data coming from the two deployment
periods. In Fig. 4, the variance σ2

l for a forecasting horizon
equal to the propagation time of 7 s is computed for FIR fil-
ters of different order nb. The variance is averaged across the
validation data sets coming from both the deployment periods,
normalized by the appropriate maximum value. An order nb

equal to 10 is chosen as point of trade-off between the minima
of the two curves.

B. AR Models

In this section, a model for forecasting the chamber wave
elevation, based on its past history, is presented. In particular,
an AR model is proposed which assumes that the chamber wave
elevation at time instant k is linearly dependent on a number na

of its past values. Thus, the model considered is of the following
form:

ηch(k) =

na∑
i=1

αiηch(k − i) + ξ(k). (9)

Fig. 4. Normalized prediction error variance for a forecasting horizon of 7 s as
a function of the order nb averaged across validation data sets for the first and
second deployment periods.

Fig. 5. Normalized prediction error variance for a forecasting horizon of 30 s
as a function of the order na averaged across validation data sets for the first
and second deployment periods.

Given a set of parameters αi, from (9) the l-step ahead
prediction is given as follows:

η̂ch(k + l|k) =
na∑
i=1

αiη̂ch(k + l − i|k) (10)

where η̂ch(k + l − i|k) ≡ ηch(k + l − i) if k + l − i ≤ k,
since the information is already available and there is no need to
have a prediction [3]. The coefficients αi of the AR model are
estimated using the cost function given by (7), and the identified
models can be validated according to the variance of the predic-
tion error over a forecasting horizon l, given by (8). AR models
of different orders na were trained and validated by means of
the measurements of the wave elevation inside the chamber for
both the deployment periods. In Fig. 5, the variance σ2

l for a
forecasting horizon equal to 30 s, normalized by its maximum
value and averaged across the validation sets, is plotted against
different order na for both the deployment periods. An order
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na equal to 30 is chosen since it represents a minimum point
for both the two curves.

C. Combination Up-Wave/AR Models

In this section, a model for forecasting the chamber wave
elevation based on a combination of its past history and mea-
surements of the free surface elevation up-wave of the WEC is
presented. In particular, an ARX input model is proposed which
assumes that the chamber wave elevation at time instant k is
linearly dependent on a number na of its past values and on nb

values of the up-wave measure. Thus, the model considered is
of the following form:

ηch(k) =

na∑
i=1

aiηch(k − i) +

nb∑
i=1

biu(k − i+ 1) + ξ(k).

(11)

Given a set of parameters ai and bi, from (11), the l-step
ahead prediction is given as follows:

η̂ch(k + l|k) =
na∑
i=1

aiη̂ch(k + l − i|k)

+

nb∑
i=1

biu(k + l − i+ 1). (12)

In (12), no prediction of the input is made until a prediction
horizon, equal to the propagation time of the wave from the
location of the sensor is reached. The limit of the prediction
horizon, in time steps, is denoted as lmax, which is given as
follows:

lmax =
tprop
tsamp

=
d/vp
tsamp

(13)

where tsamp is the sampling time of the chamber and up-wave
elevation. Therefore, the prediction of η̂ch can be made with
an ARX model only until lmax steps, after which an AR only
model is used to predict the water level in the chamber. Thus,
the complete prediction of the wave elevation using an ARX
model is given as follows:

η̂ch(k + l|k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

na∑
i=1

aiη̂ch(k + l − i|k)

+

nb∑
i=1

biu(k + l − i+ 1), if l ≤ lmax

na∑
i=1

αiη̂ch(k + l − i|k), else.

(14)

The coefficients ai, bi of the ARX model and αi of the AR
model are estimated individually using the cost function given
by (7), and the identified models were validated according to
the variance of the prediction error, over a forecasting horizon l,
given by (8).

Given an order na = 30 for the AR model obtained in
Section II-B, ARX models of different orders nb were trained

Fig. 6. Normalized prediction error variance for a forecasting horizon of 30 s
as a function of the order nb with na = 30 averaged across validation data sets
for the first and second deployment periods.

and validated for both the deployment periods. The optimal
order nb selected for the FIR model cannot be used directly for
the ARX model, since that, in (11), the chamber wave elevation
is not exclusively determined by the up-wave measurement, but
it is also determined by its past values. In Fig. 6, the normalized
variance of the prediction error, averaged across the validation
data sets, is plotted against different orders nb for both the
deployment periods. By inspection of Fig. 6, an order nb = 15
is selected as a trade-off point between the minima of the two
curves. The order nb, chosen for the ARX model, is different
from the order nb of the FIR model, since the ARX models
were trained and validated for a fixed choice of na = 30.

D. Neural Networks

In this section, an NN based on multiple layers of perceptrons
is presented in order to investigate the possibility of a nonlinear
relationship between the free surface elevation up-wave of the
WEC and the chamber wave elevation. Different architectures
for the NN were considered, and the NN selected for the pre-
diction of the chamber wave elevation is made of three layers
of perceptrons. The first and second layers include three and
five nonlinear neurons, respectively, while the output layer is
made of one linear neuron. A linear neuron was selected for the
output layer, in order not to limit the range of values assumed
by the output of the NN. The inputs of the NN are composed
of past values of the chamber wave elevation and free surface
elevation up-wave of WEC. The structure of the NN is of the
following form:

ηch(k) = NN(ηch(k − 1), . . . , ηch(k − na),

u(k), . . . , u(k − nb + 1)) (15)

with regression orders na and nb equal to the orders selected
for the linear ARX model, i.e., na = 30 and nb = 15. The same
orders selected for the linear ARX model were also adopted for
the NN-ARX, in order to have a consistent comparison between
the performance of the two models. The NN was trained using
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Fig. 7. RGOF between AR model (na = 30) and FIR model (nb = 10)
averaged across the validation data sets of the first and second deployment
periods.

the Levenberg–Marquardt backpropagation algorithm [16] on
a set of batch data, following which the network was used
to compute the l-step ahead prediction of the chamber wave
elevation.

IV. RESULTS

In the following section, the forecasting of the water level
in the chamber given by the FIR and ARX models is compared
with the forecasting given by the AR model over a certain range
of prediction horizons. The index used for the prediction accu-
racy for every forecasting horizon l is the goodness of fit (GOF)
index, which is defined as follows:

GOF(l) =

(
1−

√∑
k(η(k + l)− η̂(k + l|k))2√∑

k η(k)
2

)
· 100.

(16)

In order to compare the performance between the AR model
and the FIR or ARX model, the relative goodness of fit (RGOF)
is introduced

RGOFFIR(l) = GOFFIR(l)−GOFAR(l)

RGOFARX(l) = GOFARX(l)−GOFAR(l).
(17)

The RGOF between an AR model of order na = 30 and a
FIR model of order nb = 10, averaged across the validation
data sets, is plotted against the forecasting horizon for the first
and second deployment period in Fig. 7. As shown in Fig. 7,
the AR model is able to provide more accurate predictions of
the wave elevation in the chamber for all forecasting horizons
up to 7 s. In Fig. 8, the RGOF between an AR model of order
na = 30 and a ARX model of order na = 30 and nb = 15,
averaged across the validation data sets of the first deployment
period, is plotted against the prediction horizon for different
values of the cut-off frequency ωc. As the figure shows, the AR
model performs better than the ARX model for prediction hori-
zons that range from 10 s up to 22 or 27 s, depending on ωc.
The choice of the cut-off frequency ωc depends on frequency
components of the chamber wave elevation that need to be pre-
dicted. Since the resonance of the chamber is around 0.6 rad/s,

Fig. 8. RGOF between AR model (na = 30) and ARX model (na = 30,
nb = 15) averaged across the validation data sets of the first deployment
period.

Fig. 9. RGOF between AR model (na = 30) and ARX model (na = 30,
nb = 15) averaged across the validation data sets of the second deployment
period.

a cut-off frequency wc = 0.7 rad/s is selected for filtering the
chamber and up-wave elevation. Note that the improvement
in the accuracy of the prediction of the chamber wave eleva-
tion for long horizons obtained with the ARX model has to be
evaluated respect to the prediction requirements in the control
of the WEC. In fact, because of the noncausal transfer func-
tion involved in the realization of the real-time optimal control
of the WEC, the future wave elevation may be needed until a
time horizon less than 30 s [17]. Regarding second deployment
period, in Fig. 9, the RGOF between an AR model of order
na = 30 and an ARX model of order na = 30 and nb = 15,
averaged across the validation data sets, is plotted against the
prediction horizon for different values of the cut-off frequency
ωc. As the figure shows, the ARX model provides less accurate
predictions of the wave elevation inside the chamber than the
AR model for every prediction horizon.
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Fig. 10. GOF of linear ARX model (na = 30, nb = 15) and of NN-ARX
model (na = 30, nb = 15) computed on validation data set of the first
deployment period.

Fig. 11. GOF of linear ARX model (na = 30, nb = 15) and of NN-ARX
model (na = 30, nb = 15) computed on validation data set of the second
deployment period.

In Fig. 10, the GOF of the predictions of the chamber wave
elevation given by the linear ARX model and NN-ARX model
are compared for forecasting horizons up to a maximum of 20 s.
The two prediction models were trained and validated on the
same batch of training and validation data from the first deploy-
ment period. Since the algorithm chosen for training the NN is
highly dependent on the choice of the initial parameters for the
network, different NN-ARX models were trained with differ-
ent initial conditions, with the NN that returned the best GOF
selected. In Fig. 11, the same comparison is done for the second
deployment period. For both the deployment periods, the linear
ARX model outperforms the NN-ARX model.

A comparison between predicted and actual chamber wave
elevations for a forecasting horizon of 30 s, for an ARX model
of order na = 30 and nb = 15, is made. The ARX model uti-
lizes the free surface elevation up-wave of the WEC provided
by the Aquadopp and pneumatic sensors, reported in Figs. 12

Fig. 12. Comparison between measured chamber wave elevation and predic-
tion ηch(k + 60|k) computed with ARX model of order na = 30 and nb =
15 with data set of first deployment period, filtered with a cut-off frequency of
ωc = 0.7 rad/s.

Fig. 13. Comparison between measured chamber wave elevation and predic-
tion ηch(k + 60|k) computed with ARX model of order na =30 and nb =15
with data set of second deployment period, filtered with a cut-off frequency of
ωc = 0.7 rad/s.

and 13, respectively. The prediction of the chamber wave eleva-
tion is plotted together with confidence intervals, which can be
assumed to be a Gaussian process with zero mean and variance
σ2
l given as follows [3]:

ê(k + l|k) = η(k + l)− η̂(k + l|k) ∼= N (0, σ2
l ). (18)

V. CONCLUSION

This paper demonstrates that, for the case of the Pico OWC
installation, there is little advantage in making an up-wave mea-
surement, in terms of wave forecasting accuracy. This is useful
information, allowing potential reductions in capital and main-
tenance costs. However, the generality of such a conclusion
is uncertain. The Pico wave climate is reasonably stable, with
a well-defined swell component. Furthermore, the forecasting
problem for an OWC is straightforward, where the chamber
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water elevation is directly measurable, unlike the case of
floating devices, where the free-surface elevation at the device
location is impossible to measure, and the focus may need to
change to excitation force. It should also be borne in mind that,
for the current case study, the chamber was in an unloaded con-
dition (relief valve open); one might expect some small change
in the forecasting problem for a loaded chamber. Also, the paper
examines the efficacy of using nonlinear forecasting models,
showing no benefit. While the added complexity is a drawback
in its own right, the fact that artificial NNs do not, by default,
include the linear case suggest a preference for linear models,
at least in the first instance. Finally, it is important to highlight
that the noncausal control law computes the optimal velocity for
maximum wave energy absorption, which depends on the future
values of the wave elevation [17]. Prediction errors on the wave
elevation cause the tracking of an incorrect velocity reference,
and therefore a loss on the absorbed power occurs. In [18], a
floating cylinder is considered, and the study has demonstrated
that prediction errors on the wave elevation can result in losses
of absorbed power from 8.5% to 40%, depending on sea state
considered.
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