
Neurocomputing 55 (2003) 469–498
www.elsevier.com/locate/neucom

24-h electrical load data—a sequential or
partitioned time series?

Damien Faya ;∗ , John V. Ringwoodb , Marissa Condona ,
Michael Kellyc

aDublin City University, Glasnevin, Dublin 9, Ireland
bNUI Maynooth, Maynooth, Co. Kildare, Ireland

cElectricity Supply Board, Dublin 2, Ireland

Accepted 11 March 2003

Abstract

Variations in electrical load are, among other things, hour of the day dependent, introducing
a dilemma for the forecaster: whether to partition the data and use a separate model for each
hour of the day (the parallel approach), or use a single model (the sequential approach). This
paper examines which approach is appropriate for forecasting hourly electrical load in Ireland. It
is found that, with the exception of some hours of the day, the sequential approach is superior.
The 7nal solution however, uses a combination of linear sequential and parallel neural models
in a multi-time scale formulation.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Short term load forecasting refers to forecasts of electricity, on an hourly basis, from
one to several days ahead. The amount of excess electricity production (or spinning re-
serve) required to guarantee supply, in the event of an underestimation, is determined
by the accuracy of these forecasts. Conversely, overestimation of the load leads to
sub-optimal scheduling (in terms of production costs) of power plants (unit commit-
ment). In accordance with the Electricity Regulation Act of 1999, a deregulated market
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Fig. 1. Typical working day loads.

structure was set up, which should lead to increased impetus to reducing forecast error
and the associated costs.
Electrical demand is driven by economic and human activity, which has obvious

daily, weekly and yearly cycles, as well as a long-term trend and special periods such
as bank holidays, Christmas etc., all of which are reBected in load data. The load
curve (i.e. the load over a day) for three typical working days (Mondays to Fridays)
is shown in Fig. 1, reBecting daily human activity.
Day to day variations in the load curves are dependent on weather, hour of the day

and previous loads. This hour of day dependence is the focus of this paper. In the
general case, the load on hour i of day k; yi(k) may be expressed as a function, f, of
previous loads, current and previous weather inputs, the hour of the day, the day, and
an error term as

yi(k) =f(yi−1(k); : : : ; yi−N (k); yi−1(k − 1); : : : ; yi−N (k − P);

Ui−1(k); : : : ;Ui−M (k);Ui−1(k − 1); : : : ;Ui−M (k − Q); i; k) + �i(k) (1)

where Ui(k) is a vector of causal variables (weather inputs) on hour i of day k; �i(k)
is an error term, N;M are the orders of the hourly regressors (N;M ¡ 24) and P;Q
are the orders of the daily regressors. Note that k is included as a factor in Eq. (1) to
reBect that, due to the long-term trend, load is a non-stationary process. Indexing the
load by both hour and day, though cumbersome, is useful in pointing out the diEerence
between the parallel and sequential approaches to load forecasting.
The sequential approach uses just one function, fs, relating the current load to

previous loads and inputs and so Eq. (1) becomes:

yi(k) =fs(yi−1(k); : : : ; yi−N (k); yi−1(k − 1); : : : ; yi−N (k − P);

Ui−1(k); : : : ;Ui−M (k);Ui−1(k − 1); : : : ;Ui−M (k − Q)) + �i(k): (2)
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Fig. 2. Constructing partitioned series from electrical load data.

However, in the parallel approach, the data is partitioned so that each hour of the day
is modelled by a separate function and so Eq. (1) becomes:

y1(k) =f1(y1(k − 1); : : : ; y1(k − P1);U∗
1 (k − 1); : : : ;U∗

1 (k − Q1)) + �1(k)

y2(k) =f2(y2(k − 1); : : : ; y2(k − P2);U∗
2 (k − 1); : : : ;U∗

2 (k − Q2)) + �2(k)

...

y24(k) =f24(y24(k − 1); : : : ; y24(k − P24);U∗
24(k − 1); : : : ;U∗

24(k − Q24))

+�24(k); (3)

where U∗
i (k) is the input vector for hour i of day k (which may now include the load

at previous hours), yi(k) is the load at hour i on day k (for example y1(k) is the load
at 01 : 00 h on day k, etc.), fi is the parallel model for hour i. Pi and Qi are the
orders of the regressors for partitioned series i.
The parallel approach may make the modelling task more diHcult as:

1. although f1; :::;24 is no longer hour of the day dependent (i is excluded from Eq.
(3)), this may not result in f1; :::;24 being any less complex than fs. The parti-
tioned series are created by daily sampling of load (Fig. 2). As shown by Harvey
[13], a sub-sampled (i.e. taking every pth sample) auto-regressive moving average
(ARMA) process is itself an ARMA process of equal or higher order. Although it
is questionable that load is generated by an ARMA process it has been modelled
as such with varying degrees of success by several authors [1,8,27],

2. the number of parameters that need to be calculated in the parallel approach (24
sets of parameters) exceeds that of the sequential approach, where only one set of
parameters needs to be calculated [20],

3. the data set is partitioned into 24 separate time series (Fig. 2), reducing the number
of input–output pairs for training of the model,
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4. training 24 separate models can be overly computationally expensive and
5. calculating the topologies of 24 separate neural networks is prohibitive, as was found

in [10].

1.1. Sequential and parallel approaches to load forecasting

For many statistical techniques a sequential approach is taken, in which hour of
the day dependence is ignored, such as [1,6–8,27]. As observed by Connor et al. [6],
this approach can lead to excellent results if the hour of the day dependence is not a
dominant factor for the electrical system being modelled. In that study, Connor et al.
[6] observed that sequential approaches which ignored hour of the day dependence were
superior to those that did not (in this case two types were examined; a recurrent neural
network and a multi-layer perceptron (MLP) neural network). This was reported as
being due to the increased complexity of the modelling task. Darbellay and Slama [7]
similarly observed that an ARMA model, which ignores hour of the day dependence,
was superior to a feedforward neural network, which used the hour of the day as
an additional input. However, diEerences in the type of model employed, prevent a
genuine evaluation of the eEect of including this time dependence.
The parallel approach has also been used by many authors [15,25]. In the study

by Connor et al. [6], it was found that the parallel approach vastly improved the
forecasting performance, where recurrent neural networks were used as the modelling
tool. In fact, this was found to be the optimal technique. In contrast, Lee et al. [20]
found the performance of parallel and sequential models which used a MLP neural
network, indistinguishable. Interestingly, although not explicitly stated in the paper, the
parallel model gave superior results for some hours of the day. In a similar study,
also using MLP neural networks, Lu et al. [22] found that the sequential approach was
superior to the parallel approach.
The only consistent conclusion to be drawn from the literature is that the choice

of sequential or parallel modelling is highly dependent on the particular power system
being analysed [18,22].
A number of other studies [12,17,24] have examined combining the sequential and

parallel approaches. This combined approach is known as the multi-time scale approach
and adjusts the forecasts of a sequential model with those of parallel models. For
example, [12] 7rst forecasts the load curve for the following day using a sequential
model. A parallel model is then used to forecast the load at 6 p.m. (the daily peak
load). The diEerence between the load curve forecast at 6 p.m. and the parallel model
forecast for 6 p.m. is then used to adjust the whole load curve forecast.

1.2. Neural networks for load forecasting

Neural networks have been found by many authors to give excellent results for
short term load forecasting [5,6,14], due to the presence of non-linear auto-regressive
components in load [7,10] and the non-stationary nature of the series [28]. For imple-
menting dynamic time series models, basic choices of network type include feedforward
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networks (MLP [18] or radial basis function (RBF) [19] networks) with delayed inputs
(external recurrence), or locally recurrent networks [6].
In terms of feedforward networks, the use of RBF neural networks as time series

models (as is the case here) has been questioned by Mitchell [23] for several reasons,
mainly due to dimensionality diHculties. Kodogannias and Anagnostakis [19] similarly
noted that, for the speci7c case of short-term load forecasting, the number of RBF
inputs is severely restricted.
As electrical load data is, in general, a non-stationary time series, recurrent neural

networks would appear to be a suitable choice of model [6,7,28]. However, as noted by
Connor et al. [6] the diEerence between load forecasting models which use recurrent
neural networks and those using feedforward neural networks, is the assumption in
the latter case that the non-stationarity of the load can be removed by a stationarity
transform. The non-stationarity in load arises from the long-term trend, which changes
very slowly from day to day. Thus, for the forecasting horizon required in short term
load forecasting (i.e. up to several days ahead), removing the non-stationarity is not
a diHcult task. Also, recurrent neural networks are diHcult to train and require large
data sets [4].
Like recurrent neural networks, MLPs can model stationary time series and do not

suEer from the restrictions on the dimension of the input as RBF networks do. However,
feedforward neural networks are less complex and less computationally expensive to
train than locally recurrent neural networks [4]. Therefore, MLPs are used in this study.

1.3. Paper layout

The paper is laid out as follows: Section 2 describes the data set under examination
and Section 3 examines the hour-of-day dependency in that data. Sections 4 and 5
develop parallel and sequential models, respectively, with Section 5 also containing a
multi-time-scale formulation which allows extra inputs from the parallel models to be
included in a sequential formulation. Section 6 presents comparative results for both
parallel and sequential philosophies with conclusions drawn in Section 7.

2. Data set details

A database containing electricity demand, actual temperature, wind speed and hu-
midity from 1987 to 1998 on an hourly basis is available. Data between Tuesday and
Thursday in the months January to March has been selected so as to avoid the ex-
ceptions associated with weekend, Christmas and changes due to the daylight saving
hour. Thus in total there are 30 days of data selected from each full year of data.
Though likely that the summer period would require a separate model set, it is felt
that focusing on the winter period presents the greatest forecasting challenge, since
the winter load data has considerably more variability than summer. Also note that
while actual weather data has been used in this analysis, future forecasts will utilise
forecasted weather variables, as documented in [9].
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Table 1
Segmentation of data set

Set Training Validation Novelty

Range 20thJan 1987 21stMar 1996 20thMar 1997
20thMar 1996 19thMar 1997 26thMar 1998

Size (Days) 300 30 30

T

VT T

T

TT V

V

V

Bootstrap
number

1

2

3

8

Division of training and validation sets.
(V=validation T=Training)

Fig. 3. Selection of training and validation sets for input determination.

Three sets of data are used to train and test the models (Table 1):

• the training set is used to calculate model parameters,
• the validation set is used to aid in model structure determination. In the case of
neural network models, the validation set is used for early stopping and topology
determination and

• the novelty set is used to evaluate model performance. As the validation and training
sets have signi7cantly inBuenced the model, a novelty set is used to evaluate model
performance with previously unseen data.

The overall training, validation and novelty sets, used for performance determination,
topology and training cessation point in the parallel and sequential models, is shown
in Table 1.
The techniques used for input selection (Section 4.2) utilise diEerent training and

validation sets where the dates vary due to the use of a bootstrapping technique [11],
which allows a statistical evaluation of the diEerent input selections. In this case, eight
bootstraps are constructed, where the validation set occupies a diEerent range for each
set (Fig. 3 and Table 2).

3. Determining hour of the day dependence

Consider the partitioned series y1; :::;24 which represent the data partitioned by hour of
the day. If electricity demand is hour of the day independent (which is the underlying
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Table 2
Segmentation of data set for input selection

Set Training Validation

Range Variable Variable
Size (Days) 287 41

Table 3
Cross-correlation matrix of y13; y14 and y15

Hour 1 p.m.(13:00) 2 p.m.(14:00) 3 p.m.(15:00)

1 p.m.(13:00) 1 0.9958 0.9924
2 p.m.(14:00) 0.9958 1 0.9934
3 p.m.(15:00) 0.9924 0.9934 1

assumption of the sequential approach), then the cross-correlation between any two
adjacent parallel series should be independent of which two hours are chosen. For
example, the correlation between y1 and y2 should equal the correlation between y4

and y5. If f1; :::;24() is a linear function then this hypothesis can be tested using the
linear cross-correlation coeHcient ri; j between parallel series i and j. Even if f1; :::;24()
are non-linear, the linearising assumption of using linear cross-correlation analysis is
suHcient to either con7rm or reject the hypothesis. The cross-correlation coeHcient is
de7ned as [2]:

ri; j =
E[( Ly i − yi)( Ly j − yj)]√

E[( Ly i − yi)2]
√
E[( Ly j − yj)2]

(4)

where E[] denotes the expectation operator and Ly i is the average of yi. An example
of the cross-correlation matrix between the 1 p.m., 2 p.m. and 3 p.m. series is shown
in Table 3.
As can be seen the cross-correlations are very high (Table 3). This is not surprising;

the load pro7les for 3 typical days shown in Fig. 1 are very similar, showing how a
large component of the data is highly correlated. Also note that the correlation between
the load at 1 p.m. and 3 p.m. is less than that between the load at 1 p.m. and 2 p.m.
This is to be expected, as a larger gap between the times leads to a lower correlation.
However, the main point is that r1;2 is not equal to r2;3, suggesting that load is hour
of the day dependent. The cross-correlation matrix between all the partitioned series
is calculated and the contour for ri; j = 0:99 is shown in Fig. 4. An example of the
expected contour for the case where the load is hour of the day independent, is also
shown for clarity (Fig. 4).
Inside the contour, the cross-correlation is higher than 0.99 and outside it is lower.

The contour changes with each hour and so the assumption that load is hour of the
day independent is not true. The narrowness of the contour at 9 a.m. and 6–8 p.m.
show that at these hours especially, the load may have an independent component.
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Fig. 4. Actual and expected contour plot of ri; j = 0:99 for partitioned series i with j.

This suggests that it may be best to model the load at 9 a.m., 6 p.m., 7 p.m. and 8
p.m. separately rather than try to incorporate them into a sequential model. The next
step is to model the data using both the parallel (Section 4) and sequential (Section
5) approaches and examine the results.

4. Parallel models

4.1. Preliminary auto-regressive linear model

As explained earlier, the non-linearities in electrical load data are to be modelled
using a feed forward neural network, which requires that the data be stationary. This
can be achieved in two ways:

• stationarity transformations can be used, such as diEerencing [2] and
• a preliminary model can be used to remove the non-stationary elements of the data,
leaving a stationary residual. This is known as a preliminary linear auto-regressive
(AR) model.

The latter approach is taken in this study as stationarity transforms can introduce
noise to the training data [13].
The partitioned series for hour i on day k; yi(k) has a low frequency trend di(k) due

to year on year changes in usage of electricity and a seasonal component si(k) due
to more electricity being used in winter for heating than in summer. The preliminary
linear AR model is composed of a basic structural model (BSM) [13] which removes
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di (k) + si (k)

Actual Load yi (k)

Residual xi (k)

Fig. 5. Preliminary AR linear model overview.

di(k) and si(k) from yi(k) leaving a residual xi(k) (Fig. 5). The residual is composed
of weather, non-linear AR and white noise components.
The BSM is a state space model which represents a time series as a sum of a trend,

di(k), a seasonal, si(k), and a residual, xi(k), [13] as

yi(k) = di(k) + si(k) + xi(k): (5)

If the trend component is modelled using an integrated random walk [13] and the
seasonal component is modelled using a diEerenced periodic random walk [13], then
the complete state-space model is de7ned by the following [13]:



di(k)

ḋi(k)

− − − − − − −
si(k)

si(k − 1)

:

:

si(k − (T − 2))




= �i(k) =




1 1 | 0 0 : : 0

0 1 | 0 0 : : 0

− − | − − − − −
0 0 | −1 −1 : : −1

0 0 | 1 0 : : 0

: : | : : : : 0

: : | : : : : :

0 0 | 0 0 : 1 0




×




di(k − 1)

ḋi(k − 1)

− − − − −−
si(k − 1)

si(k − 2)

:

:

si(k − (T − 1))




+




0

�d(k − 1)

− − −
�s(k − 1)

0

:

:

0




; (6)

where ḋi(k) is the rate of change of the trend, �i(k) is the state vector, �d(k) and
�s(k) are error terms. T is the seasonal length in this case 30 as there are 30 days per
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Fig. 6. A plot of the residuals for 1 a.m., i.e. x1(k).

year in data set (see Section 2). The load may be extracted from the state vector by
using the observation matrix [13] de7ned as

yi(k) = [1 0 1 0 · · · 0 0 0]�i(k) + xi(k) (7)

In order to perform a prediction, a Kalman 7lter [13] is used over the identi7cation data
set to provide initial state estimates for the model. Covariances for the (process) noise
sources �s(k) and �d(k) the measurement noise, �(k), are determined using maximum
likelihood optimisation [13].
The residuals are then tested to ensure that they are stationary using the sample auto

correlation function (SACF). The SACF of a time series v(k) represents the linear
correlation between observations separated by a lag, and may be expressed [2] as

r̂v(m) =
∑n−m

t=1 (v(t)− Lv)(v(t + m)− Lv)∑n
t=1(v(t)− Lv)2

; (8)

where r̂v(m) is the SACF value for a lag of m, n is the number of observations
used and Lv is the average value of v(k). Note that the SACF is an estimate of the
auto-correlation function, as sample data is used. Box and Jenkins [2] suggest that
a process may be considered non-stationary if the SACF dies away slowly, which is
determined subjectively with experience. A plot of the residuals for the 1 a.m. series
is shown in Fig. 6 with the associated SACF in Fig. 7.
As can be seen the SACF dies away quickly and is close to zero for all lags greater

than zero. Thus this residual is deemed to be stationary (using the approach suggested
by Box and Jenkins [2]). The SACF for the other partitioned series are similar and
this con7rms the stationarity of the residuals.
There is a high degree of correlation between weather and load. As the residual has

the trend and seasonal components of the load extracted, this distorts the relationship
between the weather and the residual. The seasonal component of the weather is related
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dwi (k) + swi (k)

Actual weather wi (k)

Pre-whitened
weather w*

i (k)

Fig. 8. Pre-whitening a weather variable.

to si(k) but not to xi(k) and so cannot be used to forecast xi(k). Thus the seasonal
component in the weather variables must be removed. As pointed out by Harvey [13]
in the general case, this may be achieved by 7ltering the causal variable with the
same model used to produce the residual. That is, the trend, dwi(k), and seasonal
components, swi(k), of the weather variable, wi(k), are removed using the BSM to
give a weather residual w∗

i (k) (Fig. 8). The weather residual w∗
i (k) is also called the

pre-whitened weather variable.

4.2. Input selection

Input selection forms perhaps the most important step in model building [21]. Inclu-
sion of non-causal variables leads to poor model generalisation. In addition, reducing
the dimensionality of the inputs aids training of neural networks [21].
The input variables available to choose from are:

• ti(k), a vector of pre-whitened temperature from hour i to hour i-23 on day k,
• wsi(k), a vector of pre-whitened wind speed from hour i to hour i-23 on day k and
• hi(k), a vector of pre-whitened humidity from hour i to hour i-23 on day k.
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Thus there are 72 variables in the set of possible inputs, [ti(k)wsi(k)hi(k)]. Ideally,
neural networks with all possible combinations of the inputs should be constructed and
the best selected. However, this is not possible for two reasons:

1. the computational expense of a neural network prohibits more than a few combina-
tions being tested and

2. the number of possible combinations of the inputs (72! = 6× 10103) is too large to
implement with any model.

To increase the number of combinations that can be tested, a linear regression model
(RM) [13], which is computationally inexpensive, is used. Though this model is not
representative of the full complexity of the system, it is more than suHcient to deter-
mine the relative importance of the inputs. The RM model has the form:

xi(k) = ai;1ui;1(k) + ai;2ui;2(k) + · · ·+ ai;nui;n(k) + �i(k) (9)

where xi(k) is the residual to be forecast, ui; j is the jth input for model i (i.e. for hour
i), ai; j is the coeHcient applied to that input (calculated by least squares) and n is the
number of inputs used.
Note that the input selection procedure must be carried out for each parallel model.

A subscript is thus used to indicate the hour index of the particular model (e.g. RMi

refers to a regression model for hour i).
Four methods are now evaluated for input selection.
Method 1:
Method 1 performs input selection using the following algorithm:

For all inputs:
Train a linear regression model.
Calculate the T -ratio [16] of all the coeHcients. This is the ratio of the variance
of ai; j to the amplitude of ai; j. A high T-ratio for ai; j implies that ui; j is of little
use in forecasting xi.
Order the inputs with increasing value of T-ratio.

For number of inputs NINP = 1 to 72:
Select the 7rst NINP inputs.
Train a linear regression model for these inputs, for each training bootstrap (see
Table 2 and Fig. 3).
Calculate each of the Minimum Absolute Errors (MAE’s)1, on each of the boot-
strap validation sets.
Next NINP

In summary, the technique uses the T-ratio to order the inputs so that 72 combina-
tions of the inputs can be evaluated (Fig. 9).

1 Although the mean absolute percentage error (MAPE) is the preferred error measure in the 7eld of
short-term electrical load forecasting, the data trend changes over time and thus so does the MAPE. This
means that the MAPE cannot be used as an error measurement in a bootstrap (explained in Step 9).
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Fig. 9. A block diagram of method 1 for input selection for hour i model.
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Method 2:
One disadvantage of Method 1 is that it is susceptible to collinearity in the in-

puts (a high degree of correlation between any of the inputs) [26]. If two inputs are
highly correlated then the coeHcients attached to those inputs from step 3 will have
smaller values than if one was excluded. This, in turn, increases their T-ratio values
and can mistakenly push these inputs down the priority list. One means of reducing
the collinearity in the input data is to use principal component analysis (PCA) [26].
PCA is a technique used for input dimension reduction. Consider, for example, the

case where just two highly correlated input variables are available u1(t) and u2(t) (Fig.
10). PCA transforms these variables into a set of orthogonal variables u′1(t) and u′2(t)
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Fig. 11. A block diagram of method 2 for input selection for hour i model.

such that each variable represents the coeHcient along a basis vector in characteristic
directions of the original data set [26] (Fig. 10). Thus, the transformed variables are
not collinear.
Additionally, the transformed variables (u′1(t) and u′2(t) in this example) or compo-

nents are ordered in descending order of variance explained in the original data set
(�2

u′1
and �2

u′2
in Fig. 10), with the 7rst component containing the highest amount of

information [26] (Fig. 10). As can be seen from Fig. 10, u′2(t) accounts for very little
information and could be discarded.
Method 2 performs input selection using the following algorithm:

For all inputs:
Transform the inputs using PCA.
Order the transformed components in descending order of variance explained.

For number of components NCOMP = 1 to 72
Select 7rst NCOMP components.
Train a linear regression model for these components, for each training bootstrap
(see Table 2 and Fig. 3).
Calculate each of the Minimum Absolute Errors (MAE’s), on each of the boot-
strap validation sets.
Next NCOMP

Fig. 11 gives an overview of Method 2.
Method 3:
One diHculty with Method 2 is that components are ordered by variance explained

in the input data, which may not reBect the signi7cance of these inputs with respect



D. Fay et al. / Neurocomputing 55 (2003) 469–498 483

T-Ratios

[ti(k) wsi(k) hi(k)]

RMi,1

RMi,2

RMi,50

ui,1

ui,1ui,2

ui,1ui,2…ui,50

MAE and standard deviation

MAE and standard deviation
of MAE using just ui,1

MAE and standard deviation
of MAE using ui,1 to ui,50

of MAE using just ui,1 and ui,2

RMi

Order
Inputs

Select 50

PCA

Order
components

Variance explained

Fig. 12. A block diagram of method 3 for input selection for hour i model.

to the output data. For example, the 7rst component may have the highest level of
variance explained with respect to the input data while still having no correlation with
the output data. Method 3 attempts to circumvent this problem by removing the inputs
least correlated with the output prior to transformation with PCA using the following
algorithm:

For all inputs:
Train a linear regression model.
Calculate the T -ratio [16] of all the coeHcients.
Choose the inputs with the lowest 50 T-ratio scores.
Transform the inputs using PCA.
Order the transformed components in descending order of variance explained.

For number of inputs NCOMP = 1 to 50:
Select 7rst NCOMP components.
Train a linear regression model for these components, for each training bootstrap
(see Table 2 and Fig. 3).
Calculate each of the Minimum Absolute Errors (MAE’s), on each of the boot-
strap validation sets.
Next NCOMP

Fig. 12 gives an overview of Method 3.
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Method 4:
Method 4 is similar to Method 3 in that a combination of PCA and multiple regres-

sion models is used. However, the order of application is reversed and the transformed
components are ordered exclusively using the T-ratio scores, so that the correlation be-
tween the components and the output is emphasised, rather than the variance explained
in the input. Method 4 performs input selection using the following algorithm:

For all inputs:
Transform the inputs using PCA.
Train a linear regression model with the transformed components.
Calculate the T -ratio [16] of all the coeHcients.
Order the transformed components with increasing value of T-ratio.

For number of inputs NCOMP = 1 to 72:
Select 7rst NCOMP components.
Train a linear regression model for these components, for each training bootstrap
(see Table 2 and Fig. 3).
Calculate each of the Minimum Absolute Errors (MAE’s), on each of the boot-
strap validation sets.
Next NCOMP

Fig. 13 gives an overview of Method 4.
For each method and each hour of the day, the optimum selection of inputs (Method

1) or components (Methods 2–4) is that which gives the minimum MAE in the valida-
tion set. An example is shown in Fig. 14. The optimum MAE’s, and the
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Table 4
Input selection MAE (normalised)

Method 1 Method 2 Method 3 Method 4

Mean MAE (validation sets). 0.90 0.86 0.90 1.00
Standard deviation of MAE (validation sets) 0.13 0.13 0.13 0.15
Mean MAE (training sets). 0.83 0.83 0.87 0.96
Standard deviation of MAE (training sets) 0.03 0.02 0.03 0.06

associated standard deviations, for each hour of the day, are then averaged to give a
summary of the results (Table 4). As can be seen, Method 2 achieves the lowest MAE
in both the validation and training sets. Additionally, Method 2 provides the lowest
standard deviations of the MAE’s in both the training and validation sets (indicating
more con7dence in the results) and is thus selected as the optimum input selection
method.
The optimum number of components used in Method 2 is found to vary from 6 to

15 depending on the hour of the day. The mode (an integer value mid-way between
the maximum and minimum) is 10 and due to the computational expense of calculating
the topology of neural networks, 10 components are used for all hours of the day.
Additionally, it was found in [10] that there is a non-linear relationship between xi(k)

and xi(k−1), xi(k−2). These inputs are therefore included in the neural network. Fig.
15 shows an overview of the parallel models which produce an estimate of xi(k) as
xnni (k).
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Fig. 15. Overview of a parallel model.

4.3. Training the neural network models

A multi-layer perceptron network using the back-propagation learning algorithm [4]
is used. It was found that use of a single hidden layer resulted in an excessive number
of neurons and that networks with 2 hidden layers are superior. Similar results have
been observed in other studies as detailed in [14].
Each network consists of 2 hidden layers with tan sigmoid activation functions and a

linear activation function in the output layer. The input data is normalised between ±1
so that the tan sigmoid activation functions are not driven into saturation [4], with a
resulting speed up in training, since the high gain (gradient) of the neuron characteristic
is used.
Each model is trained using early stopping [14] in which training ceases when the

sum squared error of predictions in the validation set reaches a minimum (an example
is shown in Fig. 16). If a minimum is not found, the training stops after ten thousand
epochs. Cessation of training at the validation set minimum prevents over-training of
the neural network (NN) [14] and assists in conjunction with topology determination
and input selection, in achieving a parsimonious network.
The topology of a neural network determines the degrees of freedom available to

model the data [14]. If the neural network is too simple then the network will not
be able to learn the function relating the input to the output [14]. An over-complex
network will learn the noise in the data and will not be able to generalise [14].
In order to determine the correct topology, 50 NN architectures were examined,

using 1–5 and 1–10 nodes in the 7rst and second hidden layers, respectively. Ten
neural networks were trained for each topology with random initial weights to assist
in achieving a global (or at least a good local) minimum. To perform this for each
partitioned series would require training 1200 (50× 24) neural networks, which is too
expensive computationally, so the network topology is re7ned for the 6 p.m. series (as
a representative model) and applied to the others.
Tables 5 and 6 shows the average training and validation mean absolute percentage

error (MAPE) for each network topology, respectively. The MAPE is the preferred
error measure in the 7eld of short-term load forecasting as it allows electric utilities
of diEerent sizes to compare forecasting accuracy, which a measure such as the mean
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Fig. 16. An example of early stopping (Architecture: 4× 4).

Table 5
Average training MAPE for diEering NN topologies (6 p.m. series)

#Nodes Layer 2 : 1 2 3 4 5 6 7 8 9 10

Layer 1 : 1 1.85 1.83 2.00 2.13 2.07 2.09 2.19 2.14 2.17 2.23
2 1.92 1.87 1.90 1.86 1.87 1.86 1.89 1.91 2.04 1.91
3 1.80 1.78 1.88 1.77 1.77 1.75 1.77 1.84 1.82 1.90
4 1.79 1.87 1.86 1.75 1.74 1.77 1.92 1.77 1.73 1.73
5 1.79 1.75 1.72 1.71 1.70 1.73 1.70 1.73 1.79 1.69

Table 6
Average validation MAPE for diEering NN topologies (6 p.m. series)

#Nodes Layer 2 : 1 2 3 4 5 6 7 8 9 10

Layer 1 : 1 1.42 1.43 1.60 1.68 1.65 1.62 1.69 1.73 1.81 1.83
2 1.90 1.92 1.53 1.55 1.56 1.58 1.52 1.54 1.77 1.64
3 1.44 1.47 1.53 1.48 1.50 1.50 1.51 1.60 1.59 1.68
4 1.42 1.49 1.48 1.45 1.50 1.48 1.63 1.48 1.43 1.51
5 1.47 1.46 1.48 1.52 1.53 1.47 1.44 1.47 1.62 1.53

squared error (MSE) or MAE would not allow. In order to calculate the MAPE on the
overall load forecast, ynn

i (k), the trend and seasonal components, which are forecast
by the preliminary AR model (Section 4.1), must be re-introduced (Fig. 15):

ynn
i (k) = di(k) + si(k) + xnni (k); (10)
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where ynn
i (k) is forecast of the load on hour i of day k produced by the parallel model

for hour i.
Neural network topology selection is based on two competing criteria:

• failure to stop early during training is used as an indication of too simple an archi-
tecture and

• the objective is to favour networks with less complexity.

Examination of Table 6 shows that an architecture of 1 × 1 (1 nodes in hidden layer
1 and 1 node in hidden layer 2) appeals as it has the best performance (1.42%) over
the validation set. However the performance of this architecture in the training set
(1.85%) is relatively poor (Table 5). In addition, 1 × 1 networks fail to stop early
during training. This architecture is therefore deemed to be too simple.
Failure to stop early during training also occurs with architectures of 1 or 2 nodes

in either the 7rst or second hidden layers. Thus these architectures are also eliminated
from the selection. Of the remaining networks, topologies 4 × 4 (4 nodes in hidden
layer 1 and 4 nodes in hidden layer 2), 5× 7 and 4× 9 achieved the lowest MAPE’s
(Tables 5 and 6). Topology 4 × 4 is chosen using the second criteria. Finally, Fig.
16 demonstrates the training cessation point for one of the networks trained with this
architecture.

5. Sequential model

The sequential model (SM) ignores the hour of the day dependence which, as pointed
out in Section 1.1, can decrease the model performance. However, though points are
serially correlated in this model, some extra information with regard to the behaviour
at individual hours can be included using the multi-time scale (MTS) technique of
Murray et al. [24]. In this formulation, a linear auto-regressive (sequential) model is
encouraged to achieve intermediate targets through adjustment of the initial conditions
of the model.
With the MTS formulation, the SM is restricted to a linear state space model and a

BSM is used, where the load t hours from the start of the sequential series is modelled
using a trend and a seasonal component as

ym(t) = dm(t) + sm(t) + xm(t); (11)

where dm(t) is the trend component, sm(t) is the seasonal component and xm(t) is the
SM residual t hours form the start of the data.
Note that the variables in this model are indexed with the number of hours from

the start of the data, t, as opposed to indexing by hour i on day k as in the case
of the parallel models. This is because the model is sequential and cannot easily be
indexed in the same manner as the parallel models.
As with the preliminary (BSM) model in Section 4.1, the trend component is mod-

elled using an integrated random walk [13], with the seasonal component modelled
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using a diEerenced periodic random walk [13] as

�m(t) =




dm(t)

ḋm(t)

− − − − − − −
sm(t)

sm(t − 1)

:

:

sm(t − (24− 2))




=




1 1 | 0 0 : : 0

0 1 | 0 0 : : 0

− − | − − − − −
0 0 | −1 −1 : : −1

0 0 | 1 0 : : 0

: : | : : : : 0

: : | : : : : :

0 0 | 0 0 : 1 0




×




dm(t − 1)

ḋm(t − 1)

− − − − −−
sm(t − 1)

sm(t − 2)

:

:

sm(t − (24− 1))




+




0

�dm(t − 1)

− − −
�sm(t − 1)

0

:

:

0




; (12)

where �m(t) is the state vector, ḋm(t) is the rate of change of the trend and �dm(t) and
�sm(t) are errors in the estimates of the model states. The seasonal length in this case
is 24, since there are 24 h in each day. Eq. (12) may be expressed in matrix form [13]
as

�m(t) = �m�m(t − 1) + �m(t − 1); (13)

where �m is the state transition matrix and �m(t) a vector of error terms. The load
may be extracted from the state vector by using the observation matrix, Hm, de7ned
[13] as

y(t) = Hm�m(t) + xm(t) = [1 0 1 0 · · · 0 0 0]�m(t) + �(t); (14)

where �(t) is the modelling error.
For the MTS formulation [24], the intermediate targets are forecasts of:

1. The load at the overnight minimum at 5 a.m.,
2. The load the lunchtime peak at 1 p.m.,
3. The load at 2 p.m.,
4. The load at 6 p.m.,
5. The load at 12 p.m. for days k; k + 1; k + 2 (also called the end points), and
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Fig. 17. Overview of the end-sum model.

6. The integrated daily consumption, in MWh, for days k, k + 1; k + 2 (also called
daily sums).

Targets 1 to 5 represent forecasts for individual hours, while the targets in 6 essentially
represent the sum of the previous 24 points as discussed in Section 5.2.

5.1. Individual hour targets

The forecasts for these target points (known as cardinal points) are provided by the
parallel models, as discussed in Section 4. A selection of the parallel models already
examined are used to provide forecasts for the 5 a.m, 1 p.m., 2 p.m., 6 p.m. and 12
p.m. points, while further parallel models are used to determine forecasts for the 12
p.m. value 1 and 2 days in advance. As described in Section 4, all the cardinal point
models are BSM+neural network models, which are driven by a variety of weather
inputs. Since the overall sequential model is purely autoregressive, this provides an
important mechanism for including the inBuence of weather variables in the sequential
model, albeit via target adjustment.

5.2. The daily sum model

The integrated daily load for day k; ys(k), is de7ned as

ys(k) =
24∑
i=1

yi(k): (15)

This series is modelled using a similar structure to the parallel models of Section 4 (Fig.
17). In accordance with this philosophy, ys(k) is 7rst modelled using a preliminary
AR model similar to (5; 6; 7) with:

ys(k) = ds(k) + ss(k) + xs(k); (16)

where ds(k) is the trend component for day k; ss(k) is the seasonal component for
day k and xs(k) is the daily sum residual for day k. The daily sum residual is
then modelled using a neural network with the same structure as that described in
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Section 4. Speci7cally, the daily sum neural network has:

• t24(k);ws24(k) and h24(k) as causal variables,
• inputs selected using Method 2 with 10 components retained, as in the parallel
models, and

• a topology with 4 nodes in the 7rst and second hidden layers.

The neural network then produces a forecast of the daily sum residual, xnns (k), which is
used to produce a forecast of ys(k) by re-introducing the trend and seasonal component
as

ynn
s (k) = ds(k) + ss(k) + xnns (k); (17)

where ynn
s (k) is the end sum forecast of ys(k).

5.3. The multi-time scale technique

An example of how the MTS technique adjusts a sequential model forecast of the
load 3 days ahead using the cardinal points and daily sum targets, is shown in Fig.
18. The initial conditions of the SM, which are adjusted by the MTS technique, are
the states of the state vector �m(t).

The MTS technique partitions the state vector into states which are 9xed at the
forecasting origin and states which are freed (i.e. free to be adjusted in order to achieve
point and sum targets). Eq. (13) may be expressed in terms of the 7xed and freed states
[24] as

�m(t + 1) =

[
�m1(t + 1)

�m2(t + 1)

]
= �m�m(t) = [�m1 �m2]

[
�m1(t)

�m2(t)

]
; (18)

where �m1(t) and �m2(t) are vectors of 7xed and freed states at the forecasting origin, t,
respectively and �m1 and �m2 are the partitions of the state transition matrix associated
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with �m1(t) and �m2(t), respectively. The SM may be used to generate forecasts p steps
ahead by repeated use of Eq. (13) as

�m(t + p) =

[
�m1(t + p)

�m2(t + p)

]
= (�m)p�m(t) = [�m1(p) �m2(p)]

[
�m1(t)

�m2(t)

]
; (19)

where �m1(p) and �m2(p) are the partitions of (�m)p associated with �m1(t) and
�m2(t). However, this solution does not take into account the desired targets, so the
�m2(t) are now adjusted in order to attempt to achieve this. The MTS technique calcu-
lates the adjusted states �∗m2(t) by formulating the problem as a set of over-determined
equations in �∗m2(t), made up of three types of soft constraints [24], namely:

1. a smoothing constraint in which the MTS forecast deviation from the SM forecast
by e1; : : : ; e72 is to be minimised from t + 1 to t + 72,

2. a cardinal point constraint in which deviation of the 7 cardinal point forecasts,
ŷ cp1; : : : ; ŷ cp7, of the load from the SM forecasts by ecp1; : : : ; ecp7 is to be minimised
at times t + t1; : : : ; t + t7 2 respectively, and

3. a daily sum constraint in which the deviation of the forecasts of the daily sum for
days 1 to 3, ŷ s1; ŷ s2 and ŷ s3 from the sum of the SM forecasts over those days by
es1; es2 and es3 is to be minimised.

The complete set of constraints, represented as a set of over-determined equations is:

Constraint 1




Constraint 2




Constraint 3







Hm�m�m(t)− Hm�m1(1)�m1(t)

...

Hm(�m)72�m(t)− Hm�m1(72)�m1(t)

ŷ cp1 − Hm�m1(t1)�m1(t)

...

ŷ cp7 − Hm�m1(t7)�m1(t)

ŷ s1 −
24∑
j=1

Hm�m1(j)�m1(t)

...

ŷ s3 −
72∑

j=49

Hm�m1(j)�m1(t)




2 For example the 7rst cardinal point is at 5 a.m. and thus y(t + t1) is equal to y5(k).
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=




Hm�m2(1)

...

Hm�m2(72)

Hm�m2(t1)

...

Hm�m2(t7)

24∑
j=1

Hm�m2(j)

...

72∑
j=49

Hm�m2(j)




�∗m2(t) +




e1

...

e72

ecp1

...

ecp7

es1

...

es3




W; (20)

where W is a diagonal weight matrix which allows Eq. (20) to be solved using
weighted least squares [24]. This is advantageous, since it allows the technique to
assign more signi7cance to the achievement of particular targets. For a full derivation
of Eq. (20), see [24]. The values in the weight matrix, W , are determined by minimis-
ing the MAPE in the training set with respect to the weights [10]. The optimisation
routine used is the Nelder Mead Simplex Algorithm [3].
Once the freed states have been adjusted, a p-step ahead forecast is generated [24]

via:

�∗m(t + p) =

[
�m1(t + p)

�∗m2(t + p)

]
= (�m)p�∗m(t) = [�m1(p) �m2(p)]

[
�m1(t)

�∗m2(t)

]
(21)

6. Results

The performance of the sequential (using the MTS technique) and parallel models
are evaluated using the novelty set data, which has up to now been excluded from the
analysis. The MAPE’s achieved by the sequential model and the parallel models in
the novelty set are shown in Fig. 19 for each hour of the day. The preliminary Linear
Auto-Regressive models (Section 4.1), used by each parallel model, forecasts the load
using only the trend and seasonal components. The performance of these models on the
novelty set is included as a baseline to determine the improvement in performance when
the neural networks are used to forecast the preliminary Linear Auto-Regressive model
residuals. The most signi7cant diEerences between the performance of the sequential
model and parallel models are at midnight (0 a.m.), 9 a.m. and 6–8 p.m. 9 a.m. and
6–8 p.m. are also the times at which load was shown to possibly have independent
components in Section 3. In spite of the fact that the forecasts from the parallel model
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Fig. 19. MAPE as a function of the hour of day in the novelty set.

Table 7
Summary of results

Model Parallel Sequential Preliminary linear AR Composite

Training set MAPE 1.64% 1.90% 2.31% 1.73
Novelty set MAPE 1.71% 1.67% 2.00% 1.57

for 6 p.m. are used as a cardinal point in the MTS technique, the performance by the
sequential model at 6 p.m. (Fig. 19) is nevertheless poor. The large MAPE for the
sequential forecasts for midnight is unexplained.
Given that the sequential model is inferior to the parallel model for forecasting the

load at 9 a.m., 6–8 p.m. and midnight, the forecasts at these times need not be used.
Parallel models exclusively can be used to forecast the load at these times. A composite
model using forecasts from the sequential model except at midnight, 9 a.m. and 6–8
p.m., where parallel forecasts are used, gives a better result than either sequential or
parallel individually (Table 7).
To summarise the results, an average of the 24 MAPE’s, one for each hour of the day

(shown in Fig. 19), are used to generate a global (i.e. a single 7gure for comparison)
MAPE. The global MAPE’s achieved in both the training and novelty data sets are
shown in Table 7. Although the parallel models are superior in the training set, their
performance is inferior to the sequential model performance in the novelty set. This
shows that the generalisation properties of the parallel models are not as good as those
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Fig. 20. Sample 1-day ahead forecast (MAPE’s shown in legend).

of the sequential model. Possible reasons for this include that fact that the topologies
of the parallel models are sub-optimal (Section 4.3) and the sequential model takes
serial correlations into account, which may give it better inherent robustness.
The composite model shows a consistent result in both data sets and a lower MAPE

than both the sequential or parallel models in the novelty set. A sample forecast is
shown in Fig. 20.
As can be seen, both the sequential model and parallel models produce a good forecast.

7. Conclusion

This paper has examined whether a sequential or parallel approach to load forecasting
is appropriate in the Irish case. In testing the data for hour of the day dependence
(Section 3), it was seen that the load at 4 particular hours in the day appeared to
have independent components and may be best modelled separately. The sequential
approach was subsequently shown to be inferior to the parallel approach for forecasting
these hours. By incorporating several parallel neural network models into the sequential
model via the multi-time scale technique the validity of the comparison was improved.
The largest problem with the parallel models used was shown to be the prohibitive

computational expense of calculating optimal topologies for all 24 parallel models.
However, as the number of parallel models used in the composite model is far less
than 24 (5 cardinal point models, 1 sum model and 3 further parallel models for the
‘independent’ hours) the computational expense is signi7cantly reduced. The composite
model also gives the best forecasting results, giving an acceptable compromise between
accuracy and computational complexity.
Several methods for input selection were examined in Section 4.2. It was found that

removing the collinearity from the input data using PCA and ordering the components
by variance explained in the input (Method 2) gave the best result. However, even
when the inputs have been transformed using PCA, selecting which components to
retain was not a straightforward task. Surprisingly, selection of the components using
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the T-ratio as in Method 4 was found to give inferior results to all the other methods.
Interestingly Method 4 was inferior to Method 1, which did not use PCA at all. Thus,
PCA alone cannot be attributed to the success of Method 2.
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