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FIONA T. MURRAY?, JOHN V. RINGWOOD? and PAUL C. AUSTIN§

A solution to the problem of producing long-range forecasts on a short sampling inter-
val is proposed. It involves the incorporation of information from a long sampling
interval series, which could come from an independent source, into forecasts produced
by a state-space model based on a short sampling interval. The solution is motivated by
the desire to incorporate yearly electricity consumption information into weekly elec-
tricity consumption forecasts. The weekly electricity consumption forecasts are pro-
duced by a state-space structural time series model. It is shown that the forecasts
produced by the forecasting model based on weekly data can be improved by the
incorporation of longer-time-scale information, particularly when the forecast horizon
is increased from 1 year to 3 years. A further example is used to demonstrate the
approach, where yearly UK primary fuel consumption information is incorporated
into quarterly fuel consumption forecasts.
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Integration of multi-time-scale models in time series forecasting
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1. Introduction

This paper deals with the problem of producing fore-
casts which are based on a short sampling interval over a
relatively long period of time. The forecasting procedure
applied to the problem should have the capability of
producing long-range forecasts on a fine time interval,
while allowing individual models to concentrate on
natural time scales, or cycles, within the data. In addi-
tion, our proposed technique allows causal variables on
the long sampling period to exert an influence over the
short sampling period solution. The motivation for
addressing this problem stems from forecasting
problems in the electricity supply industry, including
forecasting weekly consumption up to 10 years ahead
and the forecasting of half-hourly consumption up to
a year in advance.

One approach to the problem could be to use multi-
rate analysis where a discrete-time multirate model
(Berg et al. 1988) could conceptually contain both
short and long sampling periods, for example weekly
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and yearly sampling rates. However, with this approach,
all models used must fit within the same mathematical
framework and longer-time-interval models are
generally referred to the shortest sampling period,
resulting in a structurally unwieldy model.

Our solution is to consider the problem in terms of
a combination of forecasts (not models) produced by
models which are based on different time scales, that is
short and long time scales, which we refer to as multi-
time-scale model integration. The intention is to provide
the capability of producing forecasts on a relatively fine
sampling period, while retaining the fidelity of longer
trends and cycles in the data. Consider the example
given in figure 1.

Model 1 is a short-time-scale model which is capable
of making weekly predictions over 1 year, that is
it is capable of predicting y(74/) for lead times
/=1,2.3,... ,N weeks ahead where ¢ is the forecasting
origin. Models 2 and 3 are relatively longer-time-scale
models which can make yearly predictions over a period
of up to 10 years, that is they are capable of predicting
Yoo(T +L) and Y,(T +L) for lead times L =1,2,...
years ahead respectively, where T is the forecasting
origin. This paper proposes to integrate the forecasts
from these three models so that weekly predictions can
be produced over a period of up to 10 years. The inte-
gration can be achieved by using the forecasts produced
by models 2 and 3 to impose the longer-time-scale infor-
mation on a long-term prediction produced by model 1.
The forecasts obtained from model 2 will be termed
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Figure 1. Multi-time-scale model integration for electricity consumption. Model 1 produces weekly predictions of the consumption (o).
Model 2 forecasts for only a single week (end points) of each year (*). Model 3 produces yearly predictions of the annual aggregate (sum

data) consumption (x).

‘end-point’ information and the forecasts obtained from
model 3 will be termed ‘sum’ information. The longer-
term models therefore provide intermediate ‘targets’ for
the shorter interval forecast to follow. Such an approach
of target achievement has been considered indepen-
dently by Cholette (1982).

A suitable state-space model is required for the short-
sampling-period time series and many forecasting
studies are devoted to the use of such models.
Examples include autoregressive moving-average
(ARMA) models (Janacek and Swift 1993), autoregres-
sive-integrated moving-average (ARIMA) models
(Ansley and Kohn 1985) and structural time series
models (Ng and Young 1990). The choice of the state-
space model depends on the properties of the time series
in question (e.g. stationary or non-stationary) and the
various components present in the time series, such as
trend, seasonal or special signal components.

One of the features of the proposed technique is the
ability to use any model type, or data from an indepen-
dent source, to produce the long-sampling-period series,
since the focus is on the forecast that it produces and not
the model itself. The versatility of our approach is
demonstrated by the use of a neural network model as
the long-sampling-period series model. Such model
types have been shown to be effective in forecasting
annual electricity consumption, although much care is
required in order to apply them effectively. In other
applications, different (e.g. state-space) models may be
more appropriate. Further flexibility is provided by the

ability to utilize either causal or univariate models at the
different sampling periods. In the paper, however, a uni-
variate model is assumed at the shortest sampling
period. The numerical examples presented demonstrate
the use of both causal and univariate models at the long
sampling period.

A possible solution to the current problem is also
provided by smoothing analysis in conjunction with an
appropriate model structure (Jones 1980, Harvey 1984,
Kohn and Ansley 1989, Ng and Young 1994). However,
while such an approach allows the fitting of the forecast
to particular points of the series, there is no mechanism
for the inclusion of ‘sum’ or cumulative data.

There are a number of other studies which deal with
the subject of combining forecasts produced on different
time scales. In contrast with the current technique, some
of these aggregate forecasts obtained with a higher sam-
pling frequency and then combine them with the lower-
sampling-frequency forecast (Corrado and Greene 1988,
Howrey et al. 1991), the final ‘pooled’ forecast being
produced at the lower frequency level. One exception
is the paper by Fuhrer and Haltmaier (1988), which
extends the approach put forward by Corrado and
Greene (1988), where the pooled forecast may be
obtained at the disaggregated higher frequency level.

Harvey (1989) also examines the subject of forecasting
using different timing intervals. However, this work
formulates state-space forecasting models at timing
intervals which are shorter than the observation
interval.
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2. Multi-time-scale model integration

The multi-time-scale model integration procedure
involves modifying the prediction obtained from the
short-time-scale model so that it matches, in a least-
squares sense, the end-point and sum information
obtained from longer-time-scale model predictions.
This is achieved by adjusting the solution of the state-
space short-time-scale model through the relaxation of
some of the states in the state vector at the forecasting
origin and then back solving for a new set of states
using end-point and sum specifications. The modified
solution is now found using this new state vector
where a weighted least-squares solution is sought
to create selective alteration of the raw unmodified
solution.

2.1. The multi-time-scale models

Depending on the nature of the time series in question
there are a number of possible state-space models avail-
able for the short sampling period. For a stationary time
series an ARMA model could be employed. The state-
space form, identification and estimation of such a
model have been dealt with by Janacek and Swift
(1993). For some non-stationary time series, detrending
or differencing can be applied to achieve stationarity.
ARIMA and seasonal autoregressive-integrated
moving-average (SARIMA) models use differencing
operators to deal with non-stationary non-seasonal
time series and non-stationary seasonal time series re-
spectively. However, it has been shown that differencing
or detrending analysis may not be suitable for a time
series with a time trend (Kang 1990). A structural time
series model which uses separate models for trend, sea-
sonal and signal components present in the time series
can handle non-stationarity where there is an underlying
trend component which is changing randomly over time.
The state-space form, identification and estimation of
ARIMA and SARIMA models have been dealt with
by Ansley and Kohn (1985) and Kohn and Ansley
(1986) and structural time series models by Young
(1988, 1994), Harvey (1989), Young et al. (1989, 1991)
and Ng and Young (1990). Each of these studies use
state-space Kalman filtering (or variants of it) and
fixed interval or fixed-point smoothing. The Kalman
filter provides the minimum mean squared estimate of
the state vector at any given point in time based only on
the observations available at that point in time and it
can be used to forecast future values of the time series.
Smoothing allows the estimation of the state vector at
any point in time given all the available data and it can
be used to interpolate missing observations of the time
series.

2.2. Adjustment of the short-time-scale model prediction

Let the short time-scale model for the observations
Wk), k=1,... K be a general state-space model of
the form

x(k) = Fx(k — 1) + Gn(k — 1) (1a)
y(k) = Hx(k) +&(k), (10)

where x(k) € R" is the state vector, F € R"", G € R""
and HT € R" are the system matrices which are assumed
to be constant matrices, and n(k) and & k) are assumed
to be zero mean independent and identically distributed
normal random variables. Equation (la) is the state
equation and equation (1 b) is the observation equation;
together they make up the state-space model for a
system with n state variables, m system inputs and a
single system output. An /-step-ahead forecast of the
series is obtained through the following:

x(t +1/1) = Fix(1), (24)
y(t+1/t) =Hx(t +1/1), (2b)

where ¢ represents the forecasting origin, / represents the
forecasting lead time and x(7 +//1) is the estimate of the
state vector at time ¢ +/ given the state estimate x(7) at
time ¢. Let the forecast be required for lead times
[=1,2.3,... N. It is required to modify the prediction
so that the forecast obtained at the end point N matches
the end-point value obtained from the prediction of the
longer-time-scale model. It is also required that the sum
of the forecasts, aggregated over the forecast horizon,
matches the sum value obtained from the longer-time-
scale model. The adjustment is achieved by relaxing
some of the states in the state vector at forecasting
origin ¢ and back solving for these freed states using
the end-point and sum data. Define

(/) = F € R™". (3)
The forecast at the end point N is given by
¥(N) = HO(N)x(1). (4)

Let the value of the end point obtained from the
longer-time-scale model be Y., (L). Also let the
number of fixed states in the state vector x(¢) be r; there-
fore n — r states are freed. Split the state vector into

x=[x; x|, (5)
where
x €R" and x, e R

Therefore x| are the original fixed states and x, are the
freed states which it is necessary to solve for using the
end-point and sum specifications. Partition @ as

@ = [@,D,], (6)
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where
®, R and @, € R”X(”‘r);
then
Yep(L) —H® (N)x)(1) = [HO(N)]xo(7) +er,  (7)
where e; = Y,(L) —y(N) represents the error in the

end-point specification. If the sum value obtained from
the longer-time-scale model is Y (L), then

H‘Dz(l))z(l) +ey,

(8)

Y (L) - IZ:H(DI(Z)xl(l) =

where e, = Y{(L) — >_", y(/) represents the error in the
sum specification.

When applying the end-point and sum information it
is desirable that the prediction follows, to some degree,
the original unaltered solution. Therefore minimization
of the deviation from the unmodified prediction for
N — 1 forecasts, that is all the forecasts minus the end
point, is required. If y*(/) and y(/) are the altered and
unaltered predictions respectively, and x*(7) and x(¢) are
the altered and unaltered state vectors at the forecast
origin ¢ respectively, then it is required to minimize

y(1) = y*(D)* in
H®(/)x(1) = HO(/)x*(1) +[y(/) —y*())]

for/=1.2,.... N—-1. (9)

Partitioning @ and x*(¢) according to (5) and (6), (9)
can be written as

HO()x (1) — HO(Dx (1) = HOy(Dx3(1) +[y(1) —y*(])]
for/=1.2,...,N—1. (10)
A weighted least-squares formulation of the problem is

sought which allows for selective adjustment of the orig-
inal prediction. Combining (7), (8) and (10)

[ Y(L) — H®,(N)x(2) ]

Y, (L) —IZ:HQ)I(I)xl(l)

H®(1)x(1) — HO(1)x%(1)

HO(N — 1)x(1) — HO (N — 1)x(1) |

[H®,(N)] ]

EN:H@z(Z)
=1

= | heyny |0 FEOD

where
T
E=le, e e3 - ey
e3,...,eyy represent the deviation of the modified

prediction from the original prediction, where
e, =y(l) —y*) for/=1,... N—1 Equation (11)
is of the form

2= Axy(1) +E. (12)

A weighted least-squares solution of the freed states
x,(#) which minimizes E'-WE is determined using

xo(1) = (ATWA)'ATWZ, (13)

The relative importance of the error minimization can
be specified in the weighting matrix W which is chosen
to be of the form

T T
0 w, 0 - - 0
W= 14
w; ' (14)
0 0 0 Waa1

where the weight w; corresponds to the error term e in

E'.WE. The errors may be weighted differently,
allowing selective control of the modified solution. The
modified initial state vector which consits of r original
states and n — r modified states can now be used to
obtain a modified short-time-scale prediction from (2).

The multi-time-scale integration approach has been
described for imposing a single end point and sum
value on a short-time-interval prediction. It is straight-
forward to extend the approach to deal with more than
one end point and sum value and thus the integration
approach can be used in an attempt to produce short-
time-scale predictions over a long-range forecast
horizon. This may be achieved either by augmenting
the least-squares problem in (11) with extra end points
and sum targets or by reapplying the adjustment after
each cycle.

2.3. Solution parameters

The objective of the method is to provide enough
freedom in the state vector at the forecasting origin,
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while maintaining reasonable fidelity with the original
short-sampling period forecast. In particular, the modi-
fied forecast should not deviate significantly from the
original forecast in the area close to the forecasting
origin but should be allowed more freedom later, in
order to achieve the end point. To this end, the
weighting on the deviation from the original forecast is
heavier near the forecasting origin and lighter towards
the end; in practice, good results have been obtained
from a linear weighting profile. Following experimental
analysis, larger values are assigned to the weights on
the end-point error e; and the sum error e,, reflecting
the importance of minimizing these errors. For cases
involving more than one end-point and sum specifica-
tion, end-point errors are heavily penalized, since the
end point of each prediction cycle provides the starting
point for the next cycle.

A further design parameter is available in the number
of states to free n—r at the forecasting origin.
Considerations here include the model type and the
desire to maintain the values of the most recent states
intact. For autoregressive (AR) or ARMA models, the
state vector is made up of present and past values of the
model output, and it is therefore desirable to leave a
proportion of the states which represent the most
recent values of the model output unchanged since
they provide the starting point and higher-order deriva-
tives for the solution. In practice, fixing 25% of states
for AR and 20% for ARMA models has been found to
give good results. AR models may be overparametrized,
thus allowing a greater number of the states that repre-
sent the most recent values of the model output to
remain fixed while allowing approximately the same
number of states to be freed. In the case of structural
state-space models, some of the states may represent
components such as trend. In such cases, it is beneficial
to maintain the trend state at its original value and to
free other states.

1253

To date, selection of r and the weighting matrix W has
been largely based on trial and error. In spite of this,
reasonable initial results have been obtained, and cur-
rent efforts focus on analytical and numerical techniques
for optimization of these parameters. Preliminary results
suggest that r is dependent on the model structure and
order, while W depends on the characteristics of the
particular time series.

3. Practical examples

Two examples are used to demonstrate the effectiveness
of the multi-time-scale technique. Example 1 concen-
trates on the weekly electricity demand, which exhibits
a slowly rising trend and seasonality of regular ampli-
tude, while example 2 focuses on fuel series data
(Janacek and Swift 1993), which is also seasonal, but
with a more irregular long-term trend. Both actual
end-point and sum information and the corresponding
predicted values are used to reshape the forecast, giving
an indication of the ideal and realistic improvement
obtained.

3.1. Example 1: weekly electricity demand

In this example, the short-time-scale series is made up
of weekly electricity demand (in megawatt hours) from
July 1982 to July 1990, as shown in figure 2. The data
are divided into three identification sets, where these
data sets and their corresponding forecast horizons are
described in table 1.

A state-space structural time series model consisting
of a trend and seasonal component is used for the short-
time-interval series. The smooth changes in the trend are
represented by an integrated random walk (IR W) model
(Young 1988, 1994, Young et al. 1989, 1991, Ng and
Young 1990). The seasonal component with sustained
amplitude will be represented by a differenced periodic

JuHg?
Jukg8
JuHgd
Juk80

Figure 2. Weekly electricity demand.
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Table 1. Identification data sets and corresponding forecast horizons.

Identification data set

Forecast horizon

Week 30 of July 1982—Week 29 of July 1987
Week 30 of July 1982-Week 29 of July 1988
Week 30 of July 1982-Week 29 of July 1989
Week 30 of July 1982-Week 29 of July 1987

Week 30 of July 1987-Week 29 of July 1988
Week 30 of July 1988—Week 29 of July 1989
Week 30 of July 1989-Week 30 of July 1990
Week 30 of July 1987-Week 30 of July 1990

random walk (DPRW) model (Harvey 1984, Kitagawa
and Gersch 1984, Young 1988, Ng and Young 1990). A
description and a detailed discussion of the estimation of
such a model have been given by Harvey (1989) and
Harvey and Peters (1990) where prediction error decom-
position is employed and also by Young (1988, 1994),
Young et al. (1989, 1991), Ng and Young (1990) where
sequential spectral decomposition (SSD) is carried out.
The estimation of the short-time-scale model in this
example is carried out using SSD. The noise variance
ratio (NVR) selected for the IRW model for each of
the identification data sets is 0.00001 (using the
NVR = 1650(F50)4 relationship (Young 1994) and 0.1
for the DPRW model, estimated using prediction error
decomposition. The unaltered forecast results for this
model are shown later in table 4 and also later in figures
3-6. The criteria, namely the mean squared emr (MSE)
and the mean absolute error (MAE) used in assessing
the quality of the forecast are defined as follows:

| o
MSE = — tual; — predicted;

p Ei (actual; — predicted;)
1 (15)
MAE =— tual, — i i

" Ei lactual; — predicted;|

where n; is the number of samples in the forecasting
horizon.

An attempt is now made to improve the forecast using
annual data. To obtain an indication of the maximum
achievable improvement, actual end-point and sum
values are initially employed. The end point, for ex-
ample, in the 1987-1988 prediction is taken as the
weekly electricity demand in week 29 of 1988 and the
sum value is taken as the sum of the weekly electricity
demand from week 30 of 1987 to week 29 of 1988. For
the structural state-space models used in this example
the first state in the state vector is fixed and the
remaining states are freed. In the weighting matrix W,
wy and w, are assigned large values (1 x 10° ) relative to
the other weights ws,... ,wyyy (1% 100) for the one-
year-ahead forecasts. For the three-year-ahead forecast,
the end-point weighting is increased to 1 x 10°. The
three-year-ahead forecast is carried out through the aug-
mentation of the least-squares problem given by (11).
The results for this case are shown later in table 4,
with a mean improvement of approximately 9% for

the one-year-ahead forecasts and approximately 21%
for the three-year-ahead forecast.

Causal artificial neural networks (ANNs) are now
used to forecast the yearly end-point and sum values.
Neural networks has been shown to be useful in fore-
casting daily (Azzam-ul-Azar and McDonald 1994) and
yearly (Murray et al. 1996) electricity demand. Only
brief details of the neural network modelling method-
ology are given here; the interested reader is referred to
the books by Azoff (1994) and Vemuri and Rogers
(1994). The neural networks considered are multilayer
perceptrons (MLPs) consisting of an input layer, two
hidden layers and an output layer. The weekly average
temperature is used as an exogenous input for the end-
point model, while yearly economic data such as the
gross domestic product, the average unit price of elec-
tricity, the average industrial wage and the number of
customers; the period 1960-1990 is used for the sum
model. The output Y,,(k) of the end-point network is
given by:

Yep(k) = (at(k), Yep(k — 1)), (16)

where / is the nonlinear function defined by the trained
end-point network, Y,(k) is the electricity demand at
the end-point week in year k and at(k) is the average
temperature over the end-point week in year k. Similarly
the output of the network which predicts the elements of
the sum series is given by

Y (k) = q(gdp(k),pr(k),aiw(k),noc(k), Y{(k —1)),

(17)
where ¢ is the nonlinear function defined by the trained
sum network, Y (k) is the sum of the weekly electricity
demand for year k. gdp(k) (£) is the gross domestic
product for year k. pr(k) (pkw™! l_l) is the average
unit price of electricity in year k, aiw(k) (£ week ! is
the average industrial wage in year k and noc(k) is the
number of customers in year k.

The networks are trained using the error back-propa-
gation algorithm with momentum and an adaptive
learning rate (Hertz et al. 1991). Using numerical opti-
mization techniques (Murray et al. 1996), the structure
selected for the end-point series is a 3-2-6—1 network
(three inputs in the input layer, two neurons in the first
hidden layer and six neurons in the second hidden layer,
with one linear neuron in the output layer). Similarly,



Integration of multi-time-scale models in time series forecasting 1255

Table 2. Models used to predict inputs to the ANNs: seasonal
auto-regressive integrated (SARI), autoregressive integrated
(ARI)

Input Model

at SARI(4, 1, 0)(1, 52, 0)
gdp ANN 2-1-3-1

pr ARI(6, 2, 0)

aiw ARI(1, 2, 0)

noc ARI(3, 2, 0)

the structure selected for the sum series is a 5-1-3-1
network. The activation function used in all the non-
linear neurons is a log-sigmoid function, since electricity
demand always has a positive value. Although a small
number of annual data points are available, the use of
causal models and training using multiple epochs helps
to ensure an effective forecasting model for the end-
point and sum values, which are reasonably straightfor-
ward to predict. Inputs to the causal models are pro-
vided by the AR models given in table 2.

Table 3 shows the accuracy of the end-point and sum
predictions obtained from the neural network fore-
casting models. The improvement in the weekly forecast
using predicted end-point and sum information is given
in table 4, with a mean improvement of approximately
7% for the one-year-ahead forecasts and approximately
21% for the three-year-ahead forecast. Figures 3—5 show
graphs of the one-year-ahead predictions, while figure 6
shows graphs of the three-year-ahead predictions. 95%
confidence intervals are given for the adjusted forecast

using predicted end-point and sum information. For
clarity, plots of actual and adjusted profiles only are
given.

3.2. Example 2: UK primary fuel consumption

In this example the multi-time-scale integration tech-
nique is applied to the quarterly UK primary fuel con-
sumption series 1965-1985 (Janacek and Swift 1993),
shown in figure 7.

The time series exhibits strong seasonality, following
the UK seasonal variation in temperature, and a long
term trend with a small slope. The identification sets and
forecast horizons are given in table 5.

Following Janacek and Swift (1993, chapter 6) a
structural state-space model with a trend and quarterly
trigonometric seasonal component is fitted to the fuel
series. They used maximum-likelihood estimation tech-
niques to estimate the hyperparameters (ag , af, , aé ,ai) of
the structural state -space model where the estimates
obtalned are aE = 2746 .40, a,, =204.43, a< =0 and

= 3.83. The unadjusted forecasting results for this
model are given later in table 7 and also later in figures
8-10. The results show a higher degree of error in the
1984 forecast compared with the 1985 forecast, because
in the year 1984, for quarters 3 and 4, the time series
behaves differently from previous years or in 1985. This
difference in behaviour of the time series has been dealt
with in more detail by Murray (1996).

The multi-time-scale integration technique is now
applied to the quarterly forecast using annual fuel con-

Table 3. Results for the predicted end-point and sum electricity demand values using ANNs.

Prediction Year End-point error (%) Sum error (%)
Week 30 of July 1987-Week 29 of July 1988 1987-1988 0.2 0.9
Week 30 of July 1988—Week 29 of July 1989 1988-1989 5.3 0.2
Week 30 of July 1989-Week 30 of July 1990 1989-1990 0.2 0.1
Week 30 of July 1987-Week 30 of July 1990 1987-1988 0.2 0.9
1988-1989 4.1 0.2
1989-1990 4.3 4.5

Table 4. Results for the electricity demand example.

Unaltered forecast

Altered forecast:
using actual data for
end-point and sum values

Altered forecast:
using predicted data for
end-point and sum values

Year MAE MSE MAE MSE MAE MSE
1987-1988 0.8108 x 10" 1.4455 x 10° 0.7381 x 10* 1.3197 x 108 0.7372 x 10* 1.3198 x 10°
1988—1989 0.7652 x 10" 1.0122 x 10% 0.6723 x 10* 0.9158 x 10° 0.7083 x 10* 0.9485 x 10°
1989-1990 0.5942 x 10" 0.7740 x 10° 0.5574 x 10* 0.7143 x 10® 0.5575 x 10* 0.7156 x 10®
1987-1990 1.0191 x 10* 1.9439 x 10° 0.8043 x 10* 1.5080 x 10® 0.7998 x 10* 1.4948 x 10°
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Figure 3. Actual versus predicted profiles for the 1987-1988 forecast: ( ), actual data; (- - - -), data adjusted using predicted
information and confidence limits.
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Figure 4. Actual versus predicted profiles for the 19881989 forecast: ( ), actual data; (- - - -), data adjusted using predicted
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Figure 5. Actual versus predicted profiles for the 1989-1990 forecast: ( ), actual data; (- - - -), data adjusted using predicted
information and confidence limits.
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Figure 7. UK primary fuel consumption for 1965-1985.

sumption data. The end-point data are given as the fuel
consumption for last quarter in each year, and the sum
data as the aggregate of the quarterly fuel consumption
over each year. The use of actual data provides a meas-
ure of the maximum achievable improvement. For the
quarterly state-space model the most accurate results
are obtained when the first state, corresponding to the
trend component, is fixed and the remaining states are

Table 5. Identification data sets and corresponding forecast

horizons.

Identification data set Forecast horizon

Quarter 1 of 1965—quarter 4 of 1983 1984
Quarter 1 of 1965—quarter 4 of 1984 1985
Quarter 1 of 1965—quarter 4 of 1983 19841985

freed. In the weighting matrix W [w,wy, w3, wy,ws] =
[10,1,1,0.67,0.34] for the one-year-ahead predictions
and [wy,w,y, w3, Wy, w5, W, Wy, Wg,wo,wo] = [10, 10, 1,
1, 1, 0.67, 0.34, 1, 0.67, 0.34] for the two-year-ahead
prediction (Murray 1996). The results using actual
end-point and sum data are given later in table 7, with
a mean improvement of approximately 68% for the one-
year-ahead forecasts and approximately 13% for the
two-year-ahead forecast.

Univariate AR neural network models are now used
to forecast the yearly end-point and sum values (Murray
1996). As in example 1, MLP networks with an input
layer, two hidden layers and an output layer, using a
log-sigmoid activation function in the nonlinear neurons
and trained using the error back-propagation algorithm
with momentum and an adaptive learning rate, are util-
ized. The output Y,(k) of the end-point network is
given by
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Figure 8. Actual versus predicted profiles for the 1984 forecast: (—O—), actual data; (— — + — —), adjusted data; (- - - - - -), data
adjusted using predicted information and confidence limits.
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Figure 9. Actual versus predicted profiles for the 1985 forecast: (—O—) actual data; (— — + — —), adjusted data; (- - - * - - -), data
adjusted using predicted information and confidence limits.
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Figure 10. Actual versus predicted profiles for the 1984-1985 forecast: (—O—), actual data; (— — + — —), adjusted data; (-- - x - -
-), data adjusted using predicted information and confidence limits.
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Yep(k> =/ ( Yep(k - 1)a Yep(k - 2) ) Yep(k - 3)a

Yeo(k —4) (18)

where f is the nonlinear function defined by the trained
end-point network and Y,,(k) is the quarterly fuel con-
sumption for the last quarter in year k. Similarly the
output of the network which predicts the elements of
the sum series is given by

Yi(k) = g(Yi(k = 1), Y(k =2),Y(k =3),Y{(k - 4)),
(19)

where g is the nonlinear function defined by the trained
sum network Y(k) is the sum of the quarterly fuel con-
sumption for year k.

Using numerical optimization techniques, (Murray
et al. 1996), the structure selected for the end-point
series and sum series is a 4-3-5-1 network. Table 6
shows the accuracy of the end-point and sum predic-
tions obtained from the neural network forecasting
models. The improvement in the weekly forecast using
predicted end-point and sum information is given in
table 7, with a mean improvement of approximately
40% for the one-year-ahead forecasts and approxi-
mately 13% for the two-year-ahead forecast.

Figures 8 and 9 show graphs of the one-year-ahead
predictions, while figure 10 shows graphs of the two-
year-ahead predictions. As in example 1, 95% confi-
dence intervals are given for the adjusted forecast
using predicted end-point and sum information. The
original unadjusted solution is also included in the
graphs.

Table 6. Results for the predicted end-point and sum fuel
values using ANNs.

4. Conclusions

This paper develops a technique which allows the inte-
gration of forecasts produced at different sampling per-
iods. Specifically, the method provides for utilization of
long-sampling-period forecast information to force a
short-sampling-period forecast in order to maintain
the long-term characteristics of the time series with rea-
sonable fidelity. The main use is where long-range fore-
casts are required on a short sampling interval, as in the
electricity supply industry, for example. Based on the
experience to date, the proposed technique has shown
merit (e.g. for the two practical examples considered in
the paper, the improvement in forecast accuracy is of the
order of 10-20%) although a rigorous multi-time-scale
modelling procedure is not yet available. Current
research is concentrated on optimum procedures for
the determination of the weighting matrix W and the
number of free initial states. The use of the relatively
unconventional neural network models for a long sam-
pling interval demonstrates the diversity of model types
which may be used at this level, although models with a
state-space structure must be used for a short sampling
interval. For the examples considered, the technique
compares favourably with state-space smoothing,
which does not allow the incorporation of cumulative
sum information. It is anticipated that the method may
be straightforwardly extended to include more than two
levels of integration, when state-space models will be
required for all but the longest sampling period.
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