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Abstract 

 

 This paper discusses the estimation of process parameters and time delay, in a Smith 

predictor structure, using gradient algorithms in the time domain. A number of estimation 

algorithms are outlined and applied in simulation to the estimation of the parameters of an 

appropriate process model. An analytical exploration of the technique is also provided. 
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1. Introduction  
 

 Gradient methods of parameter estimation are based on updating the process model 

parameter vector (which includes the time delay) by a vector that depends on information about 

the cost function to be minimised; the cost function is normally a function that depends on the 

square of the error between the process and model parameters. A number of such gradient 

algorithms have been defined (such as the Newton-Raphson and Gauss-Newton algorithms); 

Ljung [1] outlines these algorithms in detail. Applications of these algorithms to estimate the 

process model parameters in both open loop and closed loop environments have appeared in the 

literature. Open-loop applications, in both the time domain and frequency domain, have 

previously been dealt with by O’Dwyer and Ringwood [2], [3], amongst others; this paper 

concentrates on the application of the algorithms to estimate the model parameters in a Smith 

predictor structure. Marshall [4] and Bahill [5] reduced the mismatch between the process time 

delay and the model time delay, in such a structure, using a Gauss-Newton gradient algorithm; 

just one of the modifications of this approach subsequently proposed is that defined by 

Romagnoli et al. [6], who propose the use of a Newton-Raphson algorithm for the application. 

This paper takes a more unified approach to the problem by considering the estimation of the 

process parameters in a generalised model structure. 

 

2. Development of the gradient algorithms  
  

 Marshall [4] and Bahill [5] have developed a parameter identification algorithm to 

estimate the corresponding model parameters and time delay of a first order lag plus time delay 

(FOLPD) process, in a Smith predictor structure. In the development of the algorithm, the 

authors assume that the plant output is linearly related to any changes in the plant parameters 

i.e. 

y t y t e t
p p
( , ) ( , ) ( , )α α α+ = + +∆α ∆α       (1) 
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with y t
p
( , )α + =∆α  process output after a change ∆α  in parameter α , y t

p
( , )α =  starting 

value of process output = model output y t
m

( ) . e t( , )α + ∆α  may be estimated in a number of 

different ways; two such methods are as follows: 

 

e t
y

p
( , )α

∂

∂α
+ ≈∆α ∆α      (2) 

 

 e t
y yp m( , ) .α
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
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




∆α ∆α05     (3) 

 

Marshall [4] and Bahill [5] use equation (2) in their development of the identification method 

for updating the gain, time constant and time delay of a FOLPD process model. The authors 

develop a Gauss-Newton gradient method based on approximating the Hessian matrix as a 

function of ∂ ∂αy
p

. This development is provided in detail by O’Dwyer [7]. 

 Alternative gradient algorithms may also be defined by using equation (3) in the 

development, for example (as it is a straightforward matter to analytically calculate ∂ ∂αy
m

). 

In addition, the Hessian matrix may be approximated as a function of appropriate second partial 

derivative as well as first partial derivative terms, giving a Newton-Raphson gradient algorithm. 

Five alternative algorithms are so defined by the authors. Following the example of Marshall 

[4], all six algorithms may be represented in block diagram form (O’Dwyer [7]). 

 

3. Parameter estimation - simulation results  

 

 The algorithms defined have been simulated, for updating all of the parameters 

separately, using the SIMULINK package. It was decided to simulate the algorithms for seven 

process/model combinations, in a Smith predictor structure; the processes considered include 

high order, underdamped and non-minimum phase processes, which were modelled by 

equivalently ordered models or mismatched FOLPD and second order system plus time delay 

(SOSPD) models, as appropriate. The PI and PID primary controllers used (in the Smith 

predictor) are specified to be robust to the possible process/model parameter mismatches 

considered.  

 In each simulation, the excitation signal at the servo input is of band limited white 

noise form; such a signal was determined to be sufficiently exciting so that appropriate 

parameter updating is achieved. In all cases, the individual model parameters are updated at 

discrete intervals using a dedicated s-function in SIMULINK; the gradient algorithm 

implementations, which are in continuous time are also effectively set up in continuous time in 

the SIMULINK environment (by choosing a small step size for the simulations). 

 

3.1 Time delay estimation 

 

 Representative simulation results are provided in Cases 1 to 5. 

Case 1: Model G e e s
m

s sm− −= +τ 2 1 0 71 4. ( . ) , primary controller ( )G s
c
= +175 1 1 0 7. . . In the 

figures, process time delay τ
p
 = 1.2 seconds and non-delay process G G

p m
= . The Gauss-

Newton (1) algorithm refers to the algorithm formulated by Marshall [4] and Bahill [5]; the 

other algorithms have been formulated by the authors. 
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      Figure 1: Model time delay updating       Figure 2: Model time delay updating 

 
  

 The figures show that the algorithms facilitate a reduction in mismatch between the 

process time delay and the model time delay.  

 

Case 2: G e e s G s s sm
s s

c
m− −= + + = + + +τ 2 1 4 5 4 5 117 1 1 4 07 2 73 1 052( . . ), . ( . . ( . )) . G Gp m= . 

       Figure 3: Model time delay updating      Figure 4: Model time delay updating 

 
 
 

Case 3: G e e s s s s s s s s
m

s sm− −= + + + + + + + +τ 2 1 18 137 567 1403 2103 1846 856 1582 3 4 5 6 7 8( ) , 

G s s s
c
= + + +214 1 1 9 75 331 1 0 61. ( . . ( . )) . G G

p m
= . 

       Figure 5: Model time delay updating      Figure 6: Model time delay updating 

 
 

A similar comment to that made in Case 1 applies to the simulation results above. 

 

Case 4: G e e s
m

s sm− −= +τ 2 1 0 71 4. ( . ) , ( )G s
c
= +175 1 1 0 7. . . In Figure 7, τ

p
 = 1.2 seconds and 

G s
p
= +16 1 05. ( . ) ; in Figure 8, τ

p
 = 1.6 seconds and G s

p
= +2 4 1 0 9. ( . ) . 

       Figure 7: Model time delay updating        Figure 8: Model time delay updating 
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 Figures 7 and 8 show that these algorithms facilitate a reduction in mismatch between 

the process and the model. These are significant results, as the non-delay process and model 

parameters are different. 
 

Case 5: Model G e e s
m

s sm− −= +τ 196 1 6 71 84. ( . ). . The process corresponding to this model is 

( . ) ( . . )2 4 5 1 85 22 5 182 3+ + + +−s e s s ss ; the model has been obtained from the frequency domain 

identification technique outlined by O’Dwyer and Ringwood [3]. ( )G s
c
= +684 1 1 6 7. . . In 

Figure 9, G s s s s
p
= + + + +( . . ) ( . . . )12 31 1 59 157 12 62 3  and τp  = 0.7 seconds; in Figure 10, 

G s s s s
p
= + + + +( . . ) ( . . )2 8 61 1 11 29 3 2342 3  and τp  = 1.3 seconds. 

        Figure 9: Model time delay updating         Figure 10: Model time delay updating 

 
 

 Good fitting between the processes and their models is seen if the phase plots of the 

processes and models are obtained at higher frequencies. This implies that the model time delay 

estimates are appropriate, if it is desired to reduce the mismatch between the process and the 

model, as the time delay will be the dominant influence on the phase plot at higher frequencies. 

However, it is normally desirable when using a Smith predictor to reduce the mismatch 

between the process and model time delays; the matching of the process and the model at 

higher frequencies means that the difference between the process and the model, fed back in the 

Smith predictor, is small at these frequencies. This is not desirable, bearing in mind the large 

mismatch between the process and model time delays. Thus, the gradient algorithms may not be 

suited for updating the time delay in a Smith predictor structure, if the process and model 

orders are different. 

 Overall, the full panorama of simulation results (O’Dwyer [8]) show that when the 

order of the process equals that of the model, the mismatch between the model time delay and 

the process time delay is significantly reduced, irrespective of the match between the process 

and model parameters. When the order of the model differs from that of the process, then the 

model delay is updated to a final value. The performance of the six algorithms is more difficult 

to compare, though it is obvious that there is little to be gained (comparing Figures 1 and 2) in 

using a Newton-Raphson algorithm instead of a Gauss-Newton algorithm. On balance, taking 

the full panorama of simulation results obtained (O’Dwyer [8]), the Gauss-Newton (1) time 

delay updating algorithm is the most appropriate algorithm to use, with the Gauss-Newton (2) 

algorithm being the least appropriate one to use. It is interesting that it takes a long time for the 

model time delay to converge to the process time delay in most cases, even when the order of 

the process and model are the same. The oscillatory convergence pattern is a factor in this 

disappointingly slow convergence rate; an alteration in the learning rate of the gradient 

algorithms would improve this situation. 
 

3.2 Estimation of the non-delay parameters 

 

 The six algorithms for separately updating the gain and the time constant have been 

simulated individually, for the process-model combination in which both the process and model 

are in FOLPD form. Representative simulation results that show the updating of the model gain 

and model time constant are shown in Figures 11 and 12; these results, and other supplementary 

 = Gauss-Newton (1) 

 

 = Gauss-Newton (1) 

 

Time (seconds) Time (seconds) 
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simulation results provided by O’Dwyer [8], show that convergence of the model gain to the 

process gain occurs, for all of the gradient algorithms, when the non-gain model parameters are 

equal to the corresponding process parameters. However, if the non-gain model parameters 

differ from the corresponding process parameters, the model gain does not converge to the 

process gain (unlike the behaviour of the model time delay in corresponding circumstances). 

Similarly, convergence of the model time constant to the process time constant occurs when the 

non-time constant model parameters are equal to the corresponding process parameters for all 

of the algorithms; however, if the non-time constant model parameters differ from the 

corresponding process parameters, the model time constant does not converge to the process 

time constant. The simulation conditions for gain updating are 

G e e s
m

s sm− −= +τ 2 1 0 71 4. ( . ) , ( )G s
c
= +175 1 1 0 7. . , τ τ

p m
= ,  process time constant T

p
 = model 

time constant T
m

 and process gain K
p

 = 1.6; the simulation conditions for time constant 

updating are as above with τ τ
p m
= ,  K

p
 = model gain K

m
 and T

p
 = 0.5 seconds. 

 

         Figure 11: Model gain updating   Figure 12: Model time constant updating 

 
 

 

4. Analytical exploration of the algorithms used 

 

 An analytical exploration of the gradient techniques was performed in discrete time, for 

a number of process and model structures. These calculations are done in discrete time as 

integer values of the process time delay appear as appropriate power terms on the numerator 

transfer function of the process and that a standard procedure has been defined to calculate the 

mean squared error (MSE) surface, by Widrow and Stearns [9], in the domain. The closed loop 

gradient algorithms are, of course, defined in continuous time; the application of the analysis 

performed in the discrete time domain will need to take this into account. 

 It is required to prove that the MSE between the process and the model output is 

unimodal with respect to the relevant process parameters, and is minimised when the 

appropriate model parameter equals the equivalent process parameter. 

 

4.1 Non-delay model parameter estimation 

 

Theorem 1: For a first order discrete stable system, the MSE performance surface is minimised 

when the model gain equals the process gain and the model time constant equals the process 

time constant if (a) the model time delay index equals the process time delay index (b) 

measurement noise is assumed uncorrelated with the process input and output and (c) the input 

to the process and the model is assumed to be a white noise input. The model time delay index 

is the model time delay divided by the sample time. 

Proof:  The process difference equation is  

y(n) e y(n ) K ( e )u(n g ) w n
T T

p

T T

p

s p s p= − + − − − +− −
1 1 1 ( )    (4) 

 = Gauss-Newton (1) 

--  = Gauss-Newton (2) 

..   = Gauss-Newton (3) 

Time (seconds) 

Kp  

Tp  

Time (seconds) 

 = Gauss-Newton (1) 
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with τ
p p s

g T= , T
s
 = sample period, g

p
=  process time delay index and w(n) = measurement 

noise. The model difference equation is (assuming the previous process output is used in its 

calculation)  

y n e y n K e u n g
m

T T

m

T T

m
s m s m( ) ( ) ( ) ( )= − + − − −− −1 1 1    (5) 

 

with g
m

 = model time delay index. The procedure defined by Widrow and Stearns [9] may be 

used to calculate the MSE performance surface as follows: 

 

E e n r r
j

G z z G z z G z
dz

z
yy ww m uu m yu m

[ ( )] ( ) ( ) [ ( ) ( ) ( ) ( ) ( )]2 10 0
1

2
2= + + −−∫π

Φ Φ    (6) 

 

with e n y n y n
m

( ) ( ) ( )= − ,Φ Φ
uu uu

n

n
yu yu

n

nz r n z z r n z( ) ( ) , ( ) ( )= =−

=−∞

∞

=−∞

∞
−∑ ∑ , r n

yy
( ),  r n

uu
( )  and 

r n
ww

( )  are the autocorrelation functions of y n u n( ), ( )  and w n( )  respectively; r n
yu

( )  is the 

cross-correlation of y n( )  and u(n). The model G z
m

( )  corresponds to the output y n
m

( ) . 

 Using the residue theorem to calculate the closed curve integral, the MSE function is 

calculated (from equation (6)) to be (O’Dwyer [7]): 

 

E e n
K e

e

K e

e

K K e e

e e
e

p

T T

T T

m

T T

T T

p m

T T T T
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T g g T
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s p
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The MSE function is minimised when ∂ ∂E e n K
m

[ ( )]2 and ∂ ∂E e n T
m

[ ( )] ( / )2 1  equal zero 

simultaneously. The required calculations, determined by partially differentiating equation (7) 

(O’Dwyer [7]), show that T T
m p
=  and K K

m p
=  (assuming g g

p m
= ).                        

 A corollary to this theorem is that if the process time delay index, g
p
, is not equal to 

the model time delay index, g
m

, then the MSE function is not minimised when K K
m p
=  and 

T T
m p
= . A further corollary to this theorem is that the MSE function is not minimised when 

K K
m p
=  unless g g

m p
=  and T T

m p
= , and the MSE function is not minimised when T T

m p
=  

unless g g
m p
=  and K K

m p
= . In a closed loop environment, the excitation signal to the process 

is not of white noise form; nevertheless, it is interesting that the simulation results in Section 

3.2 show that the conclusions indicated do apply to the closed loop identification case, provided 

the process input is sufficiently exciting. This is a less conservative criterion than that given in 

the theorem. 

 

4.2 First order model time delay index estimation - non-delay parameters known 

  

 Elnagger et al. [10] prove that for a first order discrete stable system of known gain and 

time constant, the MSE performance surface versus time delay is minimised when the model 

time delay index equals the process time delay index, provided the measurement noise is 

uncorrelated with the open loop process input. The resolution on the process time delay is 

assumed to be equal to one sample period. The authors also show that the MSE surface is 

unimodal with respect to the time delay, and that this unimodality exists for any change in the 

process input (such a signal is consistent with the types of signals present at the process input in 

closed loop applications). These conclusions conform with the simulation results in Figures 1 

and 2. 
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4.3 First order model time delay index estimation - non-delay parameters unknown 

 

 Elnagger et al. [11] show that for a first order discrete stable system of unknown gain 

and time constant, the MSE performance surface versus time delay is minimised when the 

model time delay index equals the process time delay index. The input signal to the process is 

assumed to be white, though the authors state that this is a sufficient condition, rather than a 

necessary condition. However, the authors do not explicitly show that the MSE performance 

surface is unimodal with respect to the time delay, which is a requirement for the use of a 

gradient algorithm for time delay estimation. It is therefore appropriate to prove the following 

theorem. 

 
Theorem 2: For a first order discrete stable system of unknown parameters, the unimodal MSE 

performance surface versus time delay is minimised when the model time delay index equals 

the process time delay index if (a) the measurement noise is uncorrelated with the process input 

(b) the input to the process is assumed to be a white noise signal and (c) the conditions 

provided in the theorem are observed on the model parameters.  

Proof:  The MSE performance surface, E e n[ ( )]2 , may be calculated to be (with e(n) = process 

output minus the model output) 

 

( ) ( )e e r K e K e r r
T T T T

yy p

T T

m

T T

uu ww

s p s m s p s m
− − − −− + − + − +

2
2 2 2 20 1 1 0 0( ) ( ) ( ) ( ) ( ) ( )+ −− −2 e e r g

T T T T

uy p

s p s m ( )

( )+ −− −2 1e e r
T T T T

uy

s p s m ( ) [ ]− − − − + −− − − −2 1 1K e K e r g g e e r g
m

T T

p

T T

uu m p

T T T T

uy m
s m s p s p s m( ) ( ) ( ) ( ) ( )  

(8) 

assuming that the measurement noise is uncorrelated with the process input. The proof that the 

MSE function is unimodal with respect to the model delay, for g g
p m
>  and g g

p m
< , may be 

done by induction (O’Dwyer [7]); the full proof, together with the conditions required on the 

model parameter values, are omitted due to pressure of space.                        

 This theorem provides an analytical structure that helps to explain the simulation 

results given in Figures 7 and 8 (Section 3.1); it is interesting that these simulation results show 

that convergence of the model time delay to the process time delay is possible, when K K
m p
≠  

and T T
m p
≠ , even when the excitation signal to the process is not in white noise form, or when 

the conditions on the parameter values in the theorem are violated. This shows the conservative 

nature of the conclusions of the theorem. 

 
4.4 Time delay index estimation for a general model 

 

 An analytical framework on the convergence of the model time delay index, in a 

general model structure, may also be put in place for the case where the non-delay process and 

model parameters are identical. The conditions for convergence were first calculated for a 

process and model in SOSPD form, as a prelude to calculating the convergence conditions for a 

process and model of arbitrary order; the conditions for convergence are wider when the 

process and model are in SOSPD form, compared to when the process and model are of 

arbitrary order. The relevant theorems are quoted below and are proven by O’Dwyer [7] in a 

manner similar to the proof of Theorem 2 above. 

Theorem 3: For a second order discrete stable system of known non-delay parameters, the 

unimodal MSE performance surface versus time delay is minimised when the model time delay 

index equals the process time delay index if the measurement noise is uncorrelated with the 

process input. 

Theorem 4: For a general order discrete stable system of known non-delay parameters, the 

unimodal MSE performance surface versus time delay is minimised when the model time delay 
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index equals the process time delay index if (a) the measurement noise is uncorrelated with the 

process input and (b) the conditions provided in the theorem are observed on the model 

parameters. 

 The conclusions reached in Theorem 3 conform with the simulation results given in 

Figures 3 and 4 and the conclusions reached in Theorem 4 conform with the simulation results 

given in Figures 5 and 6. 

 Overall, the conclusions of the theorems conform with the appropriate simulation 

results quoted in Section 3. Indeed, the results of the theorems are more conservative than many 

of the results achieved in simulation. 

 

5. Conclusions 

 

 The work involves the estimation of model parameters (including time delay) using 

gradient methods, in a Smith predictor structure. A reduction in the mismatch between the 

(unknown) process and the model (particularly the time delay mismatch) facilitates an 

improvement in the performance of the Smith predictor. The original contributions of this work 

are as follows: (a) the development of five gradient algorithms for the estimation of the model 

parameters in a closed loop environment, following on from the work done in this area by 

Marshall [4] and Bahill [5], amongst others (b) the estimation of the appropriate parameters of 

a model in the Smith predictor structure, for a variety of processes using the gradient algorithms 

and (c) an analytical exploration of the technique, which demonstrates the appropriateness of 

using gradient algorithms for the identification problem, in certain applications. 
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