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Abstract: Neural networks have been shown to be effective in modelling time series, with 
applications in the forecasting of electricity consumption. In applying neural networks to 
weekly electricity consumption data, several issues, such as selection of network architecture, 
network structure and input structure need to be addressed. This paper addresses these issues 
in relation to the current application and also demonstrates that considerable value is to be 
gained from incorporating the lessons learned from linear time series modelling into the 
current nonlinear analysis. Results for national Irish weekly electricity data demonstrate the 
potential improvements which can be obtained using the neural network approach. 
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1.  Introduction 
 

Linear time series modelling is a well understood science, ranging from the original formalised 
techniques of Box and Jenkins [1] to many recent developments, including techniques dealing 
with nonstationary data, harmonic (sinusoidal) time series and structural component models. One 
of the common factors is the incorporation of some form of parameter identificication technique. 
These linear time series modelling techniques could therefore be described as black-box 
modelling techniques, which take into account some structural information about the data series 
in question. This paper attempts to draw on the structural analysis, while providing a nonlinear 
modelling tool. The introduction of nonlinear analysis presents a number of difficulties, some of 
which are additional to those encountered in linear systems analysis. The main issues to be 
tackled include the choice of nonlinear parameterisation and the algorithm used to determine the 
parameters. Neural networks provide a very general nonlinear parameterisation [2], where a set of 
nonlinear basis functions may be scaled and positioned at various points in the input space, using 
weights and biases. Other possibilities include Volterra [3] and Bilinear [4] representations. 
 
There is considerable economic benefit in obtaining accurate forecasts of electrical energy 
demand. Given accurate demand forecasts, considerable savings are achieved by arranging to run 
only just sufficient generating plant to meet customer demand. However, a margin of reserve is 
provided to allow for forecast inaccuracies and generator breakdown. Further savings are 
achieved by dispatching the generating sets with the lowest unit costs, given detailed information 
regarding the daily demand profile. Forecasting analysis is frequently performed on a yearly 
(strategic planning), weekly (maintainance scheduling) and half-hourly (dispatch) basis. On these 
different time scales, electricity consumption, as a time series, presents diverse characteristics 
across different time scales. In addition, different causal inputs are appropriate on different time 
scales. For example, weather variables provide a significant causal effect on daily and weekly 



profiles, but economic variables, such as GDP, are more appropriate when looking at longer 
trends [5]. 
 

This paper examines the application of 
neural networks to modelling weekly 
electrical energy demand, in contrast 
to the more familiar daily load profile 
problem [6,7]. Weekly demand 
exhibits seasonal characteristics 
(mainly due to lower lighting and 
heating requirements in Summer) with 
a rising trend, indicating the  
progressively larger quantities of 
electrical energy comsumed annually. 
The appropriate causal inputs on this 
timescale are weather variables, the 
primary effect due to temperature [8]. 
Fig.1 shows the consumption in 
Ireland over a ten year period 
approximately. 

 
 

Fig.1: Deamnd profile for Ireland over a ten year period 
 

The technique which will be 
employed is to utilise the procedures used in linear time series analysis to decompose the series 
into its component parts. A nonlinear, neural-network based, model will then be fitted in place of 
the customary linear one. 

 

 
 
2.  Linear Time Series Modelling 
 

For a seasonal time series, such as weekly electrical energy demand, two popular approaches 
which explicitly take into account the seasonal nature of the data can be adopted. The first (more 
traditional) approach involves modelling using the Box-Jenkins [1] methodolody. This procedure 
involves the application of transformations which eases the subsequent modelling exercise, which 
is performed using a model with seasonal and non-seasonal sections. The second method has 
similarities to the first, but segments the model into three distinct parts, each of which contributes 
to the overall model output. Such a model is termed a structural model [9]. Models developed 
using these procedures can be either purely autoregressive (depend only on previous model 
outputs) or can be causal (driven by appropriate inputs). 
 
2.1 Box-Jenkins Methodolody 
 

This general linear modelling approach follows the following procedure: 
 
1. Determination of seasonality of time series and application of seasonal differencing. 
2. Application of further differencing transformations to make the time series stationary. 
3. Investigation of significant inputs to use as causal variables with the model. 
4. Determination of orders of seasonal and non-seasonal regressors. 
5. Identification of model parameters. 
 

The univariate Box-Jenkins model is derived from the general SARI(p,d)(P,D) (seasonal 
autoregressive integrated) model which can be written as: 
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where: Yt  is the time series  
 

  is a differencing transformation required if the data is 
nonstationary. d is the degree of non seasonal differencing, D is the degree of seasonal 
differencing, and L is the number of seasons in a year, 
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2φ φ φ  is the seasonal autoregressive operator of order P. 
 

The lags p and P are determined using correlation analysis, as are the degree of the differencing 
operators, d and D. The seasonality of the data, L, is usually known a priori, or may also be 
determined using correlation analysis. A variety of methods may be used to determine the model 
parameters in the Φ(B) polynomials, iterative least squares proving a popular approach. 
Following model construction, t-ratio tests may be used to assess the significance of the model. 
 
 
2.2 Structural State-Space Models 
 

Structural models adopt a different methodology than in Section 2.1 by modelling the trend and 
seasonal components, rather than removing their effect prior to modelling using transformations. 
A structural time series model consisting of a trend and a seasonal component may  described by  
 

   y k t k p k( ) ( ) ( ) ( )k= + +ε      (4) 
 

where t k( )  is a linear trend, p k( )  a seasonal component and ε( )k  a zero mean, serially 
uncorrelated  white noise component. A generalised random walk (GRW) model [10] can be used 
to model the trend behaviour t(k). The state-space form of the GRW model is defined by  
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where α β γ,    and  are constant parameters; t(k) is the trend at sample k, d(k) is a second state 
variable and η η1 ( ) ( )k  and 2 k are zero mean, serially uncorrelated discrete white noise inputs. An 
integrated random walk (IRW) is obtained with α β γ η= = = =1 01; ( ) k . 
 
If the seasonal component is well defined and stationary it can be modelled by a periodic random 
walk (PRW) or a differenced periodic random walk (DPRW) model [10]. The DPRW model is 
defined by: 
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where s is the seasonal period and η p k( )  is a zero mean white noise disturbance input. If the trend 
component is represented by an IRW model and the seasonal component is represented by a 
DPRW model, then the complete state-space model is defined by the following: 
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In order to perform a prediction, a Kalman filter is used over the identification data set to provide 
initial state estimates for the model. Covariances for the (process) noise sources 
η η1 ( ) ( )k  and 2 k and the measurement noise, ε( )k , are determined using maximum liklihood 
optimisation. 
 
 
3.  Time Series Modelling Using Neural Networks 
 
3.1 Network Input Structure 
 

A total black-box approach to neural network 
modelling of dynamical systems or time series 
would be to utilise a model of the form shown in 
Fig.2, with tapped delay lines for input and output 
variables forming the input to the neural network. 
Such an approach is common in a variety of time 
series and model-based control system 
applications [11,12]. However, such an approach 
may disregard structural information about the 
dynamical model available from linear analysis. In 
the current study, an effort is made to incorporate 
information on an effective input and model 
structure suggested by linear time-series modelling 

techniques 
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Fig.2: Network with classical input structure 
 

 

3.1.1 Box-Jenkins Model 
For the Box-Jenkins methodology in Section 2.1, two nonlinear options are possible. Expansion 
of equation (1) gives: 
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A corresponding nonlinear model for the structure in equation (8) could now be defined as: 
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This model will be termed a NNBJ type ‘A’ model. Alternatively, defining Zt as: 
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a model (NNBJ type ‘B’) of the form: 
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results, where the neural network is 
used to model data which has already 
been subject to seasonal and one-step 
differencing. To obtain the final 
forecast, the output from the neural 
network must be appropriately 
integrated, using seasonal and one-
step integration. As an example, Fig.3 
shows a neural network forecasting 
model using a form corresponding to 
equation (9). Compared to Fig.2, the 
input structure had been modified so 
that the network is focussed on the 
most effective inputs. This generally 
also results in fewer inputs overall, 
resulting in reductions in training 
times. For a model of the form of 

equation (9), the total number of inputs is (P+D)(p+d+1)+ p+d. For a ‘standard’ autoregressive 
(AR) model of the form of Fig.2, it would be usual to choose inputs which span a season i.e. L 
inputs. In the current example, this would yield 52 inputs for the AR model, with only 31 and 21 
inputs respectively for models based on equations (9) and (11). 
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Fig.3: Network with ‘Box-Jenkins’ input structure
 

 
3.1.2 Structural Model 
For the structural state-space model presented in Section 2.2, the approach is to let the linear 
sections (IRW + DPRW) model the trend and seasonal components, with the neural network used 
to model the remaining residuals in εk. This concurs roughly with the model presented in (11). 
However, in order to ensure a good training set for the network, a state-space smoothing 
algorithm [13] is employed to back-smooth the state estimates resulting from the Kalman filter, 
since the estimates from the filter will be poor during initial convergence. The output [t(k)+p(k)] 
from the smoothed state estimates are then subtracted from the identification data, with this 
difference providing the network training set. Since the network is now dealing with 
(approximately) data which has been de-trended and de-seasonalised, an input structure similar to 
that in equation (11) can be used. 
 
 
3.2 Neural Network Design 
 
3.2.1 Network Architecture and Structure 
 

Network architecture requirements are for a network which can operate recurrently (since the 
time series is autoregressive) and produce a continuous output. In addition the size of the network 
should not be intractable. The latter condition excludes the utilisation of local approximators, due 
to the dimension of the input space encountered in the current application and recurrent Multi-
Layer Perceptrons (MLP’s) were adopted as a suitable network structure [14]. In terms of 
configuration, a three layer structure was adopted with a linear output neuron (effectively 
removing any restriction on output range), while the number of neurons in each layer was 



determined using optimisation across Monte-Carlo runs, with the mean-squared error across a 
validation set as a criteria. Since the time series considered are exclusively unipolar, log-sigmoid 
functions were employed in the nonlinear neurons in layers 1 and 2. 
 
3.2.2 Neural Network Training 
Two important aspects of network training which must be considered here are the choice of 
training algorithm and the training cessation point. A standard LMS gradient technique with 
backpropagation was employed for training, which also included a momentum term and adaptive 
learning rate. Faster techniques, such as the Lervenberg-Marquardt algorithm [15] were also 
examined, but found to be extremely sensitive to initial conditions and local minima. This can be 
overcome, to some extent, by utilising sufficient Monte-Carlo runs, but this extra computation, 
combined with the slower computational speed of such algorithms was found to more than offset 
any gains in convergence speed. 
 
Neural networks trained for time series applications are typically trained using single step 

rediction criteria. However, this does not 
lways determine the weight set which 

optimises the multi-step prediction 
performance of the network. One reason 
for this is that backpropagation training 
with multi-step criteria are difficult to 
design and can be computationally 
intensive, particularly when the prediction 

horizon is long. A compromise is to train the network for single-step performance, but examine 
the multi-step performance during training. Fig.5 shows the variation in single step sum-squared 
error (SSE) and the multi-step mean absolute error (MAE) over the validation set and test set 
(over which the prediction is to be performed, see Fig.4). Note that the variation in the multi-step 
criteria for the 
validation and test 
portions are consistent, 
allowing a stopping 
point (weight vector) to 
be chosen based on the 
validation set which will 
give good multi-step 
performance when 
doing the actual 
forecast. For example, a 
choice of weights at 
epoch 5180 gives a 
multi-step performance 
value 0.01825 while the 
corresponding value at 
epoch 5188 is 0.02090 
(approximately 14% 
worse), in spite of the 
fact that the singe-step 
SSE suggests that a 
choice of weights at 
epoch 5180 is 
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Fig.4: Time series data segmentation 
 

 
 

Fig.5: Variation in single- and multi-step criteria during training
 



particularly bad. 
 
4.  RESULTS 
 
Model type MAF Linear MAF Neural Network 
Autoregressive (52 inputs) 1.1101x104 1.2481x104

Box-Jenkins 
 

1.0691x104 0.9040x104   NNBJ type ‘A’ 
0.6587x104   NNBJ type ‘B’ 

Structural State Space 0.7687x104 0.7198x104

 

Table 1:  Comparative results for linear and neural models 
 

 

 

 
Ten Monte-Carlo runs were used in the training of the neural networks, in an attempt to decrease 
the sensitivity to initial conditions. Table 1 compares the multi-step (52 step ahead) forecasting 
results for linear and neural models. Figs.6 and 7 demonstrate qualitatively the improvement 
achieved. While it is interesting to note that there is significant improvement in the use of neural 
networks with Box-Jenkins and Structural models, it is perhaps more dramatic the effect that the 
choice of input structure has on performance. In particular, note the poor performance of the 
‘classical’ autoregressive (with inputs formed from the past 52 week’s demand) model. The 
neural version of this, which incidentally is inferior to its linear counterpart, has a much poorer 
performance than (either linear or neural) Box-Jenkins or Structural models.  
 
Initial results for causal models using HDD [8] and average temperature inputs along with the 
examination of a further data set from a regional power board in New Zealand confirm the benefit 
of utilising structured inputs when forecasting seasonal weekly electricity demand profiles. 
 
 
5. Conclusions 
 
This paper addresses the issue of utilising neural networks for forecasting weekly electrical 
energy demand, which is a seasonal time series. While it is shown that benefits exist in utilising 
nonlinear modelling tools, such as neural networks, evidenced by the results given, perhaps the 
most important lesson is to incorporate ideas from linear seasonal time series analysis, which are 

Fig.6: Forecasts using Box-Jenkins models 
 

 

 
Fig.7: Forecasts using Structural models

 



well founded. Many open questions still exist in terms of choice of network structure and there is 
scope for improvement in training algorithms which can hopefully give us algorithms with good 
convergence speed while having the capability to achieve global minimums, irrespective of initial 
conditions. However, for time series modelling, which is basically an off-line model calculation, 
achievement of global minima in the performance surface remains the priority. 
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