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 Abstract 
 
 A number of approaches have been proposed for parameter and time delay estimation of process models in 
single input, single output (SISO) control systems using gradient descent algorithms; some of these approaches involve 
the selection of a rational polynomial that is used to approximate time delay variations. This paper takes a generalised 
approach to the investigation of the most appropriate choice of the rational polynomial, and the gradient descent 
algorithm, to be used. 
 
1. INTRODUCTION: 
 
 The identification and control of many processes are frequently complicated by the time varying nature of both 
the process model parameters and the time delay. One strategy developed for the on line estimation of the parameters (by 
Kurz and Goedecke [1], Wong and Bayoumi [2] and De Keyser [3], amongst others) is to overparameterise the model in 
the discrete time domain. An identification algorithm (e.g. recursive least squares) may then be used to estimate the 
model parameters, and the time delay may be estimated based on the leading coefficients of the numerator polynomial 
converging to zero. However, the number of parameters that need to be estimated increases as either the time delay or the 
sampling frequency increases, which slows convergence of the estimates. 
 An alternative strategy was proposed by Durbin [4], in which the process is assumed to be modelled by a first 
order lag plus time delay (FOLPD) model. The time delay variation from a starting value is approximated by a rational 
polynomial, and a Gauss-Newton gradient descent algorithm is used to estimate the model parameters (including the time 
delay). The treatment in this paper is based on the above proposal, with the focus being on the most appropriate rational 
polynomial, and gradient descent algorithm, to be used.  
 Gradient methods of parameter estimation are based on updating the parameter vector by a vector that depends 
on information on the cost function to be minimised. The cost function is normally equal to the sum of the square of the 
error between the process and model outputs. In the more general algorithms, the update vector depends on the cost 
function, the partial derivative of the cost function with respect to the parameter vector and the second partial derivative 
of the cost function with respect to the parameter vector; an example is the Newton-Raphson algorithm. Other algorithms 
use an estimate of the second partial derivative of the cost function with respect to the parameter vector (e.g. the Gauss-
Newton algorithm and the Levenberg-Marquardt algorithm). A popular algorithm for estimation purposes is a special 
case of the Gauss-Newton technique known as the steepest descent method; this algorithm is used for time delay 
estimation by Elnagger, Dumont and Elshafei [5]. Another, simpler, estimation algorithm is the least mean squares 
(LMS) algorithm in which the update is a function of the first partial derivative of the error with respect to the parameter 
vector. 
 The gradient algorithms are implemented by finding the partial derivatives of the error between the process 
output and the discretized model output, with respect to the gain, time constant and time delay index value (time delay 
index equals time delay divided by sample period). The partial derivatives are subsequently used to update the model 
parameters. However, prior to calculating the partial derivative of the error with respect to the time delay index value, the 
time delay index variation (from a starting time delay index value) is approximated by a rational polynomial. The most 
appropriate rational polynomial to use may be determined by finding the relationship of the mean squared error (MSE) 
function between the process and model outputs, to the time delay index parameter; this relationship, which is 
determined both graphically and analytically, must  be unimodal for successful application of gradient descent 
algorithms, as must the relationship of the MSE function to the gain and time constant values, respectively.  
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2. THE CHOICE OF A RATIONAL POLYNOMIAL: 
 
 The time delay variation, r, may be approximated by two separate first order rational polynomials, namely the 
first order Taylor’s series approximation and the first order Pade approximation (see Appendix A). The MSE function 
between the process and model outputs was calculated analytically, when the time delay variation was approximated by 
each of these approximations in turn; it was discovered that the MSE performance surface was unimodal with respect to 
all parameters when the first order Taylor’s series approximation was used (see Appendix B). This result was confirmed 
by calculating the mean square value of the error over a large number of samples, for these conditions. 
  The use of the first order Pade approximation produced a non-quadratic MSE performance surface, which in 
general is non-unimodal. The model in the z domain, using this approximation, has two poles; one pole is at e T TC− , 
which is always stable (TC = time constant, T = sample time). The other pole is at e T r− ⋅( . )0 5 ; however, this is unstable 
when r < 0, where simulations that calculate the mean squared value of the error over a large number of samples confirm 
the non-unimodality to be located. In addition, even if r > 0, unimodality is only possible theoretically if r TC< ⋅2 . Thus, 
the first order Taylor’s series approximation for the time delay variation is the most appropriate one to use.  
 The use of higher order approximations for the time delay variation is conditioned on the use of a higher order 
model for the process than a FOLPD model (for example, a second order lag plus time delay model); some second order 
approximations that may be used are the Taylor’s series approximation, the Pade approximation and the Laguerre [6], 
Product [6], Direct Frequency Response [7] and Marshall [8] approximations (see Appendix A). It was discovered that 
when the mean squared error was calculated for varying time delay index values over a large number of samples for the 
second order approximations above (and using a second order lag plus time delay model), unimodality was achieved only 
when a second order Taylor’s series approximation was used. As before, unimodality is related to the location of the 
poles of the model (in the z domain) for each approximation taken; the poles are always within the unit circle when the 
Taylor’s series approximation is used, are on the unit circle when the approximation defined by Marshall is used, and are 
outside the unit circle for r < 0 (and depending on the approximation used, other ranges of r values) when all of the other 
approximations are used. The conclusion is that if the process is modelled by a second order lag plus time delay model, 
then either a first or second order Taylor’s series approximation for the time delay variation is appropriate.  
 
3. CONVERGENCE OF THE MODEL PARAMETER AND TIME DELAY ESTIMATES: 
 
 It has been shown above that if the process is modelled as a FOLPD model, the most appropriate approximation 
to use for the time delay variation is a first order Taylor’s series approximation. The following theorems show that the 
correct process delay (to the nearest integer multiple of the sample period) and the correct process parameters may be 
identified, under these conditions. 
 
Theorem 1: For a first order discrete stable system of known parameters, when the time delay variation is approximated 
by a first order Taylor’s series approximation, and if the measurement noise is uncorrelated with the system input, then 
the MSE performance surface is minimised when the model time delay index equals the process time delay index. The 
resolution on the process time delay is assumed to be equal to one sample period. 
Proof:  The process difference equation is  
 

y n e y n K e u n g w nT TC
p

T TC
p

p p( ) ( ) ( ) ( ) ( )= ⋅ − + ⋅ − ⋅ − − +− −1 1 1   (1) 
 

 with TCp =  process time constant, Kp = process gain, gp =process time delay index and w n( ) =  noise term. 
The model difference equation is  
 

y n e y n
K g g T
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u n g K e

g g T
TC
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T TC m m p

m
m m
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m
m
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with TCm =  model time constant, K m = model gain and gm = model time delay index. 
If the parameters are known, then TC TC TCp m= =  and K K Kp m= =  and therefore 
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The MSE performance surface, E e n[ ( )]2 , may then be calculated to be equal to 
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where r nu ( ) and r nw ( )  are the autocorrelation functions of u and w, respectively. Therefore, E e n rw[ ( )] (2 0)=  for 
g gm p= . Now r r n nu u( ( )0) ≥ ∀  and  for g gm p> , E e n rw[ ( )] (2 0)>  since r g g r g gu p m u p m( ) ( )− + > −1 . For g gm p<  , it 

may be shown by comparing the size of the individual terms that E e n rw[ ( )] (2 0)>  for all values of gm and g p . Thus, the 
minimum value of the MSE function occurs at g gm p=  and the coloured noise has no effect on the estimated delay 

value. The only situation that arises for which E e n rw[ ( )] (2 0)=  for g gm p≠  is when the input has a flat autocorrelation 
function, which corresponds to a constant level input. Thus, any input change is sufficient for correct delay estimation.       
                     
This theorem is similar to one developed by Elnagger, Dumont and Elshafei [5], for a FOLPD system in which the time 
delay is not approximated. 
 
Theorem 2: For a first order discrete stable system of unknown parameters, when the time delay variation is 
approximated by a first order Taylor’s series approximation, and if measurement noise is assumed to be absent, then the 
MSE performance surface is minimised when the model time delay index equals the process time delay index, provided 
certain conditions are observed on the model parameters.       
Proof: From Appendix B, it may be shown that ( )g g Tm p− ⋅  is minimised when 
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If the time delay is calibrated as integer multiples of the sample period, then g gm p=  when 
 

TC

T

K

K

e e

e
em p

m

T TC T TC

T TC T TC
T TC

p m

m p

m

2

1 1

1
1 1

2

⋅
⋅ ⋅

− ⋅ −

−
− −













<
− − ⋅

− −
−( ) ( )

( )
( )     (6) 

 
If K a Km p= ⋅ , TC b TCm p= ⋅  and T TCm= ⋅01.  then it may be shown that a and b must satisfy the equation 
  

1 6309 1 1 4756 1 00 1. ( . ) ( ).+ − ⋅ − >− ⋅a e ab .       (7) 
 
This gives a lower limit of a = 0.6, with b = 0.1. An upper limit of a and b is undefined, though an upper limit of b = 3.0 
will adequately fulfil the Nyquist criterion. Thus, convergence of the model time delay index to the process time delay 
index is possible when 01 3. ⋅ ≤ ≤ ⋅TC TC TCm p m and 0 6. ⋅ ≤K Km p, where TCm  and Km  are the values of the model 
time constant and gain, respectively, at the start of the identification process.          
  The presence of measurement noise may result in a narrowing of the allowed range of the above parameters. If 
a more conservative bound of 0.5 is placed on g gm p− , then 01 3. ⋅ ≤ ≤ ⋅TC TC TCm p m and 0 8. ⋅ ≤K Km p . 
 It may also be shown that the identification method proposed will only facilitate identification of the time delay 
to a resolution equal to the sample period. A generalisation of Theorem 1 demonstrates that exact identification of the 
time delay, when coloured measurement noise is present, is possible either when the other model parameters equal the 
corresponding process parameters or if the model time constant equals infinity with the process being excited by a white 
noise signal. It is interesting that Elnagger, Dumont and Elshafei [9] prove that unbiased time delay estimation is possible 
in the presence of coloured noise when the model time constant equals infinity, for a FOLPD system in which the time 
delay is not approximated (when the excitation signal is white noise). 
 
Theorem 3: For a first order discrete stable system of unknown parameters, when the time delay variation is 
approximated by a first order Taylor’s series approximation, and if measurement noise is assumed to be absent, then the 
MSE performance surface is minimised when the model gain equals the process gain and the model time constant equals 
the process time constant, provided the model time delay index equals the process time delay index. 
Proof: From Appendix B, it may be shown that when g gm p=  , the MSE function is minimised with respect to Km  when  
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Similarly, it may be shown that under the same conditions, the MSE function is minimised with respect to TCm  when 
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It is straightforward to demonstrate that the MSE function is minimised with respect to both parameters when 
TC TCp m= and K Kp m= .    
                                                        
4. GRADIENT DESCENT ALGORITHMS: 
 
 The following gradient descent algorithms were used for the estimation of the parameters, 
θT

m m mn K n TC n g n( ) [ ( ) ( ) ( )]= 1 , of a FOLPD model. 
 
4.1. Levenberg-Marquardt algorithm / Gauss-Newton algorithm [10]: 
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               and         λ λ( ) . ( ) .n n= ⋅ − +0 995 1 0 005,        (12) 
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with θ α, ∈ ℜn  and H I nxn, ∈ ℜ . In addition, when K m and TC m are being updated, 
 

e n y n e y n K e u n gT TC
m

T TC
m

m m( ) ( ) ( ) ( ) ( )= − ⋅ − − ⋅ − ⋅ − −− −1 1 1     (14) 
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Also, µ = 4.0 (when K m is being updated), µ = 2.5 (when TC m is being updated) and µ = 0.4 (when g m  is being 
updated).  In addition, H I− = ⋅ = =1 0 25 0 001 0 0 90( , ) , . , ( ) .θ δ λ  and θ( )0  = known starting values. The values of µ , δ , 
H −1 0( , )θ , λ(0)  and the equation for λ( )n  quoted were found from simulation results to be appropriate to the 
application. 
 The Gauss-Newton algorithm omits the addition of the δ ⋅ I  term.  
 
4.2. Steepest descent algorithm [10]: 
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and with θ α, ,∈ ℜ ∈ ℜn nxnH . In addition, µ = 4.0 (when K m is being updated), µ = 2.5 (when TC m is being updated) and 
µ = 0.03 (when g m  is being updated). Also, λ( ) . ,n H I= =−0 90 1  and θ( )0  = known starting values. As before, the value of 
λ( )n  and µ quoted were found from simulation. 
 
4.3. LMS algorithm [11]: 
 

θ θ α( ) ( ) ( ) ( )n n n e n+ = + ⋅1      with    α
∂

∂θ
µ( )

( )

( )
.n

e n

n
= − ⋅2    (18) 

 
and with θ α, ∈ ℜn . In addition, µ = 0.25 (when K m and TC m are being updated) and µ = 0.005 (when g m  is being 
updated). These values were found from simulation. 
 
5. RESULTS: 
  
 The simulation results reported below were performed in MATLAB. The starting parameters of the process and 
model were defined to be equal, with K Kp m= = 10. , TC TCp m= = 10.  and g gp m= = 0. A step change is made in the 
process parameters to K TCp p= =2.0, 0 7.  and gp = 100. Noise free conditions were assumed. The time delay index 
variation (which equals 100 in this case) was approximated by a first order Taylor’s series approximation and the four 
gradient algorithms were used to track the changing model parameters.  Limits were placed on the allowed variation of 
the model parameters according to the results of Theorem 2. 
  The time delay index was allowed to vary by up to ten sample periods per sample (which is a form of filtering 
on the time delay index). The values of the time constant and gain estimates were also filtered, by passing the parameters 
through a first order filter given by 
 

Φ Φ Φk k+ = ⋅ + − ⋅1 1α α( )       (19) 
 

with Φk  = vector of previous parameter estimates and Φ = updated vector of parameter estimates. α is a filter factor with 
a value between 0.0 and 1.0. Vogel and Edgar [12] suggest that filtering of the parameter estimates is appropriate to 
prevent relatively large fluctuations of the parameter values that may result in large, sudden changes in corresponding 
adaptive controller parameters. Durbin [4] implements a similar scheme to that given above. The choice of the filter 
factor was defined equal to 0.5 in the simulations. 
 Figures 1a to 4c below show the tracking of changing process parameters using the respective gradient 
algorithms. These results demonstrate that the time delay index estimate must converge before the other model parameter 
estimates may converge, which is in agreement with Theorem 3. As expected, each of the gradient algorithms facilitated 
correct tracking of the changing process parameters. 
 
5.1 Steepest descent algorithm:  
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5.2 Gauss-Newton algorithm: 

 
 
5.3 Levenberg-Marquardt algorithm: 

 
 
5.4 LMS algorithm: 

 
 
6. CONCLUSIONS: 
 
 This paper has shown that the most appropriate choices of first and second order rational polynomials to use to 
approximate the time delay variation of a process modelled by an appropriate model, if the model parameters and time 
delay are to estimated using a gradient descent algorithm, are the first and second order Taylor’s series polynomials, 
respectively. Convergence of the time delay estimate is guaranteed in the presence of coloured measurement noise when 
the model gain and time constants equal the process gain and time constants, respectively. When the model and process 
parameters differ, convergence of the time delay estimate is guaranteed when the starting model gain and time constants 
are within a defined range about the corresponding parameters, in the absence of measurement noise.  The choice of 
gradient algorithm for a particular application depends on the desired speed of tracking and the computational resources 
available. Further work will concentrate on the implementation of the algorithm in the presence of noise and bias inputs, 
and the implementation of the algorithm when the process structure and model structure differ. 
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APPENDIX A: Some first and second order rational approximations for the time delay. 
 
A1: First order approximations: 

                              Taylor: e s r− ⋅ ≈ − ⋅1 s r                    Pade: e
s r
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A2: Second order approximations: 
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          Laguerre [6]: e
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 Direct Freq. Response [7]: e
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APPENDIX B: Analytical calculation of the performance function when the time delay variation is approximated by 
a first order Taylor’s series. 

The process transfer function  G s
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 assuming TD g Tp p= ⋅ ,  T = sample time. 

The model transfer function G s
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with TD g T rm p= ⋅ +  and e r sr s− ⋅ = − ⋅1 . 
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The input to both processes is assumed to be a white noise signal. The procedure defined by Widrow and Stearns [11] is 
used to calculate the MSE performance surface i.e. 
 

E e n
j

G z z G z z G z
dz

zyy m uu m yu m[ ( )] ( [ ( ) ( ) ( ) ( ) ( )]2 10)
1

2
2= +

⋅ ⋅
⋅ ⋅ − ⋅ ⋅ ⋅−∫φ

π
Ψ Ψ    (B3)     

 

with φ φ φyy uu uu
n

n
yu uy

n

nE y n y n z n z z n z( [ ( ) ( )], ( ) ( ) , ( ) ( )0) = ⋅ = ⋅ = ⋅−

=−∞

∞

=−∞

∞
−∑ ∑Φ Φ     

 
Using the residue theorem to calculate the closed curve integral, it may be determined that the MSE performance surface 
is quadratic in r and is thus unimodal in this variable i.e. 
 

E e n A
r

TC
B

r

TC
C

m m

[ ( )]2

2

= ⋅








 + ⋅









+          (B4) 

 

 with     A
K e

e
m

T TC

T TC

m

m
=

⋅ ⋅ −

−

−

− ⋅

2 1

1

2

2
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( )           (B5) 

      

B
K e

e
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m
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T TC T TC
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−
−

⋅ ⋅ ⋅ − ⋅ −

−

−
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2 1

1

2 1 1

1
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2

( ) ( ) ( )
( ) /      (B6)                    

  

C
K e

e

K K e e

e
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e
m

T TC

T TC
m p

T TC T TC

T TC T TC
p

T TC

T TC

m

m

m p

m p

p

p
=

⋅ −

−
−

⋅ ⋅ ⋅ − ⋅ −

−
+

⋅ −

−
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− ⋅
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−

− ⋅

2 2

2

2 2

2

1

1
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1

1

1

( ) ( ) ( ) ( )
( ) ( )   (B7) 

           
Similarly, it may be found that the performance surface is unimodal with respect to the model gain, Km  , and the model 
time constant, TCm . It is not necessary to approximate the time delay variation for these calculations. Plots of the MSE 
performance surface versus each parameter are shown below. 
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