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AB~'TRACT 

Manipulator ann construction has changed little over the decades and is unlikely to 
change radically in the near future. The mechanical design necessary to achieve dexterity 
results in a system with complex dynamic properties. However, many manipulator 
manufacturers choose to ignore this complexity, concentrating on the mechanical design 
aspectsratherthan the design of the dynamic controller. In most cases, simple 
fixed-parameter single-loop PID compensators are utilised. In spite of the fact that the 
compensators are implemented on programmable devices, there is simply not enough 
processing power available to implement an improved dynamic control strategy. 

A multiprocessor controller has been developed which allows all the hierarchical 
levels of a manipulator controller to be implemented. The major advantage of the new 
controller is its ability to handle complex and time consuming dynamic algorithms for 
positioning of the robot end effector. Tilis has been accomplished by adopting a 
master/slave multiprocessor configuration comprising a 20 MHz IBM PC/AT (80386) 
with a number of DSP cards based around the NEC 77230 floating-point DSP chip. 
Analog and digital input/output interfaces are provided for reading position signals and 
providing command signals. 

Tile motivation for the provision of such a controller was the desire to implement 
linear and nonlinear self-tuning control strategies. Both centralised (multivariable) and 
decentralized (single-loop) control strategies are considered and the new controller caters 
for both schemes by virtue of (a) the master/slave configuration with individual DSP 
boards for each joint, and (b) inter-board commurlications, allowing joint interactions to 
be catered for. 

In the paper, some of the identification algorithms required to support the nonlinear 
sclf-turling strategies are described and real-time results presented. These results 
demonstrate the operation of the new controller and indicate some of its capabilities. 

ROBOT CONTROL SYSTEMS 

Commercial robot systems arc generally restricted in terms of modifications to 
hardware and software for real time control. This may be acceptable in worlcspaces 
where the repetition of a limited sequence of motions is all that is required. In both 
flexible manufacturing and in robotic research environments, however, the primary 
considerations are ease of modification, adaptability and programmability. These three 
characteristics are essential in order to manufacture a new product for the evaluation of 
a new sensor system or robot control algorithm. 
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NEW ROBOT CONfROL SYSTEM 

The PUMA 560, because of its two distinct hardware levels, offers what is known 
as dccelllralizcd control structure. Such structures have been widely accepted [3 J by the 
robotics Industry due to ease of implementation and tolcrencc of failure. 111e main 
advantage, however, of such a stmcture is that it allows for easier implementation of 
the control layers discussed. For this reason, it was decided that U1e new hardware 
stmcture should be a predominantly decentralized one. Also the new control structure 
should offer tl1e following: 

I) floating point processors to perform mathematical calculations 
with high precision and at high enough speed for real-time 
control, · 

2) interfacing hardware which is compatible with the existing 
unimation hardware, 

3) software that can be written in a single high-level language, 
4) a memory capacity sui table for large program storage, 
5) an ability to implement multivariable control via interprocessor 

communication. 
6) the ability to provide real-time path planning. 
7) the ability to connect sensory devices through serial, parallel 

or bus interfaces. 

Finally, on top of all tllese requirements tlle new control stmcture must be 
economically viable. Otllerwise it is not a realistic alternative to tlle existing control 
structure as far as tlle robot manufacturer is concemed. 

Hardware Options 

Numerous implementations of the control structure's upper level have replaced tlle 
existing upper level computer witll a more powerful central computer. In one example 
tlle LSI-11!02 was replaced by U1e more powerful LSI-11/23 in conjunction with a 
Microvax. This combination provides tlle user witll full floating-point capabilities, 
high-level language capabilities and an abundance of memory space. 11lc implementation 
of such a system effectively doubles tlle cost of tlle original system [4], making it 
economically impractical. More recent implementation such as tlle TUNIS and SIERA 
have replaced the existing upper level witll powerful personal computers (PCs). Botll of 
tllesc systems are capable of offering tlle capabilities just mentioned above but at a 
fraction of tlle previous cost. For this reason it was decided to usc a personal computer 
to in1plement tlle new upper level. 

System Description 

11lc personal computer chosen was an lntel-bascd 80386 IBM compatible personal 
computer. The features which govemcd tlle choice of this personal computer included 
tlle presence of : 

1) a 32-bit architecture (data and addressing), 
2) a clock speed of 20 MHZ, 
3) the ability to add a floating-point coprocessor (80387), 
4) l megabyte of RAM, 
5) an 80 megabyte harddisk and 
6) seven parallel expansion slots. 



Most commercial robots, like the PUMA 560, arc sold with a dedicated 
programming language which run on a dedicated hardware configuration. As a result, the 
characteristics mentioned above arc not present In the PUMA 560. This necessitates the 
design of a new more flexible controller for this robot. Shortcomings can occur in 
three main areas: the controller software; the controller hardware and in the control 
algorithm used to control the robot. 

The Unimation Control System 

In the case of the PUMA 560 industrial robot, a limited fom1 of task-space control 
is provided by VAL2 (Victor's Assembly Language). As an operating system, VAL 
provides the necessary input/output to control the robot, retrieve data from 'the floppy 
disk and to interact with the user via the terminal or a teaching pendant. Despite the 
relative case of usc and its capabilities, the VAL based system is seriously lacking in 
tetms of flexability, expand ability and is devoid of the ability to implement powerful 
real-time task space control. 

The Unimation control hardware [2] consists of an LSI-11/02, and six Rockwell 
6503 micmprocessors each wilit a digital--to-analog converter (DAC), a current 
amplifier and joint position feedback sensors. The hardware is hierarchically arranged. 
The upper level of the system hierarchy consists of the LSI-11/02 microcomputer which 
serves as a supervisory computer, while the lower level of the hierarchy consists of 
the 6503 Rockwell IJ}'s and the remaining hardware just mentioned. 

This PUMA 560 hardware suffers from some limitations. These have been 
described by Goldenberg [I] : 

1) both levels of the controller hierarchy contain only fixed 
point processors, 

2) the existing memory in both levels is inadequate to support large 
programs, 

3) the instruction speed of the Rockwell 6503 ~s and the LSI-11/02 
are inadequate to implement computationally complex control 
algorithms and finally, 

4) it is impossible to add additional sensors to the robot. such as 
vision and tactile sensors, without a complete redesign of the 
lower level. 

From this list of limitations it can be seen that if a more flexible hardware control 
structure, capable of implementing complex real time control, is required, then the 
existing Unimation controller hardware must be replaced with a more flexible altemative. 

The PUMA 560 controller is basically a position plus derivative control method. 
One of the main disadvantages of such a method is that the feedback gains are constant 
and prespecified. It does not have the capacity to update the feedback gains under 
varying payloads. An indusUial robot such as the PUMA 560 is a highly non-linear 
system. One can see that these nonlincarities arc due to inertial, gravity and other 
coupling effects. As a result the positions , velocities and accelerations of the PUMA's 
joints are dependent on the magnitude and variations in these effects. This control 
algorithm, with it's fixed feedback gains, fails to take these variations into account. In 
fact, the PUMA moves with noticable vibrations at reduced speed [I] because of the 
controller gains being too high. This makes the robot suitable only for perfonning 
simple pick and place tasks that do not have a great deal of precision. To improve the 
performance of the robot it is, therefore. necessary to replace this control algorithm with 
one that is capable of tracking some or all of nonlinearities present. This algorithm 
should also be implemented using floating-point arithmethic to achieve higher precision. 
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From this list of features it can seen that the new upper level offers a 
development and storage environment suitable for large progr.nn generation. It also offers 
a fast execution speed for such programs, even if they coruain floating-point calculations. 
·nJC expansion slots offer the ability to add extra memory and the ability to interface 
the new lower level. 

To replace U1e lower level of the conuuller architecture it was necessary again to 
choose a processor with high speed floating-point capabilities. One option considered 
was the option chosen by Goldenberg [1]. This implementation uses a PC to implement 
both levels. 111is means that the tasks of the upper and lower levels have to be 
executed serially and not in parallel like the existing control stmcture. Considering, the 
high speed sampling required for robot control, this serial execution of tasks limits the 
complexity of both U1e upper and lower level tasks. One solution which has become 
more popular in recent years is to use advanced signal processors (ASPs) to · im plcment 
this level. TIIC reawns for their rise in popula•ity include [5] the reduction in 
operation and development time which they offer. As well as this, recent advances in 
VSLI technologies have meant cheaper ASP chips. 

For these reasons, it was decided to use an ASP configuration to implement the 
lower level of the controller. The ASP chosen for U1is level was the NEC ~tPD77230 
[6]. The ~tPD77230 is capable of processing digital signals at high speeds and with 
good accuracy. It can execute aritlunetlJic operations with 32-bit, floating point data (8 
bits for exponent and 24 bits for mantissa) or 24-bit, fixed-point data at !50 
us/instruction. Its intema\ circuitry comprises of a multiplier (32 x 32 bits), an ALU (55 
bits), an insuuction ROM (IK by 32 bits) and one pair of data RAM pointers (512 
words by 32 bits each). The ~tPD77230 can operate in two modes : master or slave. 
By operating in master mode the processor's insuuction area occupies 8K words by 32 
bits of memory. In addition, it allows for three stage pipelining and provides a 
dedicated data bus for intemal RAM, a multiplier and an ALU. Such an arrangement 
makes the pmcessor suitable to process algorithms in which a few operations (such as 
addition of tcnns) occur repeatedly. TI1csc are the type of operations that occur in the 
more complex control algorithms such as the computed torque method [7]. In [ 6] it was 
found that a single ~tPD77230 was capable of achieving throughput rates of 1,350 
sctpoints per second and by utilizing the pipelining nature fully it was found that this 
algorithm could achieve a throughput of 2,220 sctpoints per second. These figures 
produce cDntroller san1pling rates of 0.740 mS and 0.450 mS respectively. These 
sampling rates arc much faster than the existing controller which implements a much 
simpler PD control algorithm. These timing statistics, coupled with tbe fact that the 
computed torque method is one of the most computationally complex robot control 
algorithms means that a j.I.PD77230-based lower level is well capable of implementing 
real-time control algorithms for robotic controi.A block diagr.nn of the system is shown 
in Fig.\. 

Since the new hardware contiguration is a hierarchical, multi-processor system, and 
as a result it requires a considerable amount of ifller-processor communication to 
perfonn its robot control function. Fortunately, since the two le~e.ls in the new PUMA 
560 controller arc "off-the-shelf' items, usc can be made of existing software tools to 
achieve the inter-processor communication desired. 

This type of robot control hardware, with a persooal computer as the upper 
hardware level, allows for easier implementation in bod! industrial and educational 
environments. This is due to UlC general familarity with the persooal computer operating 
system and hardware. By using a commercially available operating system (MSDOS) 
with the robot control hardware, one can speed up the development process and the 
learning curve of potential users, since features such as file management, batch file 
generation and on line debugging tools are available. 



Performance 

The calculation functionality of the new hardware can be defined in terms of the 
speed at which the basic operations such as add, subtract, divide and multiply can be 
performed on fixed and floating-point data. For the pet~onal computer the fixed point 
operations were found to take three clock cycles to execute (i.e., 150 ns). Double 
precision floating point additions were found to take IOIJ.S and multiplications 
approximately 32 IJ.S each. 

In the lower level computational functionality involves ~PD77230 board's ability to 
perfonn floaling and fixed point addition, subtraction, division and mulliplication. For 
fixed point data these calculations were found to take one instruction cycle or 150ns. In 
the floating-point case, addition and subtraction take five instruction cycles, with 
multiplication taking six instruction cycles. This means that the lower level is capable of 
pcrfonning thousands of additions and multiplications in one millisecond. The· advantage 
can be seen more clearly if one examines the algorithms developed in [8],[9] and [10]. 
These algorithms arc among some of U1e most computationally complex available, yet 
prelimenary calculation suggest that these algorithms can be implemented in real-time 
using the ~PD77230 boards. In the case of [8] and [9] these calculations show that 
both could be implemented in times less than 0.5 ms, while [10] could be implemented 
in a time which is less than 0.8 ms. The same algorithms, if implemented on the 
existing Rockwell 6503 ~Ps would require that the sampling interval be increased by a 
factor of ten. Such high sampling intervals are unsuitable for real-time control. 

IDENTIFICATION OF THE PUMA 560 
PARAMETERS USING THE DSP BASED HARDWARE 

The dynamic control of an industrial manipulator involves the determination of the 
inputs (torques or voltages) for UJe actuators which operate at the joints so that a set of 
desired values for Ute positions and velocities for the manipulator is achieved. Virtually 
all fonns of dynamic control involve the use of a system model for the design of 
control algorithms. In the case of adaptive/self tuning control, the model used is 
generally a discrctizcd one which takes the fonn of a time series model containing any 
linear and nonlinear tenns which might be present in the system. 

A General Time Series Model of the PUMA 560 

The time series model for each joint has the form: 

y(kT) = A() + Aty[(k-I)TJ 
+ A2y[(k-2)T] ...... + B1u[(k-I)T] 
+ B2u[(k-2)T] ...... + j[kT] + M(kT) 

where u(kT) is the model input, or joint voltage, and y(kT) is UJC output or joint 
position at lime kT. Ai and Bi are coefficients of the linear portion of the model, fl..) 
is the discretized joint nonlinearities contained in the torque terms of the robot model 
and M(.) represents modelling errors. 

An autoregressive moving averages (ARMA) model can then be assumed for each 
joint based on this time series model. It takes the fonn of the following difference 
equation 

y(k) = A(q· 1 )y(k) + B(q· 1 )u(k) + h(k) + e(k) 

where k refers to the sampling interval of the discretization. The term h(k) represents a 
forcing term including the nonlinear effects present in the torque terms. In the equation 
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the Cll'Or e(k) represents a zero mean white noise. A{q· 1) and B(q· 1) are polynomials 
wiU1 q· 1 being U1c backward shift operator. 

Tests Pcrfonncd 

The first three joints of the PUMA were put through a series of tests, the results 
of which were used for the identification of the model parameters. Joims one to three 
were put through U1eir full joint range at two different speeds. 

I) slow trajectory unloadcd,(V AL speed 50) and 
2) fast trajectory unloaded,{maximun VAL speed I 00). 
The parameters of the time series model were estimated from the input/output 
pairs using four different on-line estimation methods. 

Metlwd 1: Recw·sive /.east Squares (RI.S) 

By assuming the coupling tcnns are small and that the PUMA 560 system 
parameters arc slowly time-varying [II] with negligible measurement noise. it is possible 
to apply the simplest form of RLS to the identification of this robot's parameters. This 
model can be w1ittcn as: 

y(k) "' A{q·1 )y(k) + B{q· 1 )u(k) + c(k) 

If the parameter vector e and the regressor information vector <I> are defined as 

and 

<I>T = [ y(k-l), ...• y(k-n); u(k), ... ,u(k-n+l)] 

the model can then be written as: 

y(k) = eT.<l>(k.J) + e(k) 

The parameter estimation problem is to find the estimates of tbe unknown 
parameters which minimize the loss function: 

m 
E{8j) = _l ~ ( ei(k) f 

m+l 1=l 

where Cj(t) is the prediction error in the parameters of joint i and m is the number of 
parameters being estimated. The principle underlying least squares is that by minimizing 
the prediction error it is possible to minimize what is unexplained in the model. The 
solution to the Least Squares problem is furnished by the following recursive equations: 

P(k) =_l_l P(k-1) . £{k-l~(k-J)$T(k-ll£{k~ 
ll t ll + $ (k-l)P(k-l)$(k-l) 

where P is the covaricnce matrix (2nx2n) of the estimation errors and where 1J. is what 
is known as the forgetting factor. The P matrix is the positive dcfmite measure of the 
estimation error and its elements tend to decrease as the estimates converge to their tme 
value. It is therefore necessary to initialize the elements of this matrix to some large 
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value when the initial estimates are poor. The forgetting factor J.t is set to a value less 
than unity to ensure the estimation procedure continues to track parameter variations (i.e. 
the procedure docs not fall asleep). 

Method 2: Modified Rl.S 

This method of is based on the least squares model just desctibed. This more 
comprehensive autoregressive model can be wtitten as: 

y(k) = A(q-1 )y(k) + B(q- 1 )u(k) + h + e(k) 

where h is a forcing tetm intended to include the nonlinear effects of torque-dependent 
tenus. 

In this case, the parameter estimates and the regressors can be written in the 
following vector fonnat: 

and, 

<I>T = [ y(k-l), ... ,y(k-n); u(k), ... ,u(k-n+l);l] 

The autoregressive model can be again written as: 

y(k) = eT.<I>(k-1) + e(t) 

This is the format required to apply the loss function equation for the minimization of 
the prediction error. 

Method 3: Extended Least Squares (EIS) 

This method attempts to estimate a model for U1e noise present in the system, as 
well as the system model itself. This model can be written in time series fotm as 
follows: 

y(k) = A(q·1 )y(k) + B(q·1 )u(k) + C(q-1 )e(k) + d(k) 

where C(q- 1 )is the polynomial containing the parameters of the noise model and d(k) is 
called the loaded disturbance variable. 

In this case, the parameter estimates and the regressors can be written in the 
following vector fonnat: 

<I>T = [ y(k-l), ... ,y(k-n); u(k), ... ,u(k-n+l); 
e(k), ... ,e(k-n)] 

The autoregressive model can be written as: 

y(k) = eT.<I>(k-t) + e(t). 

A second order model structure for both the noise and the system model itself 
means a total of six parameters have to be estimated. 
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Method 4: No111inear Extended Least Squares (NELS) 

TI1is method attempts to estimate a model for the residual as a combination of 
linear and nonlinear functions. This model can be written as follows: 

y(k) = A(q·1 )y(k) + B(q· 1 )u(k) + C(Cf 1 )c(k) 
+ N(k) 

where C(q·1 )is the polynomial containing U1e parameters of the noise model and N(k) is 
a nonlinear polynomial defined by: 

N(k) = n 1u 2(k) + n2 u3(k) 

In this case, UJe parameter estimates and the regressors can be written in the 
following vector fonnat: 

<t>T ~ [ y(k-l), ... ,y(k-n); u(k), ... ,u(k-n+l); 
e(k), ... ,e(k -n);u 2(k),u 3(k)] 

The autoregressive model can be again written as: 

y(k) = eT.<I>(k-1) + e(t) 

and, 

A second order model structure for the system model, the noise model and the 
nonlinearity means that a total of eight parameters have to be estimated. 

Identification Results 

The RLS method is unsuitable for identification of the robot parameters. The 
MRLS method models the robot more accurately but fails to show any substantial 
improvement in convergence time without good initial estimates. The ELS method is 
more accurate than the previous methods and shows rapid convergence even without 
good initial estimates. The method of NELS was found to model the robot most 
accurately and shows similar convergence properties to the method of ELS. 

The graphs above(Fig.l to Fig.4) show the magnitude of the loss function versus 
time. These prove conclusively that the NELS method, with UlC smallest loss function is 
the most accurate method for identification of the robot parameters. 

CONCLUSION 

11lis paper outlines lhe motivation for lhe development of a more flexible control 
structure and discusses the capabilities of this DSP based control scheme. Identification 
results presented show one of lhe controller facilities. 

Future work on this controller involves the implementation and comparision of 
several robotic control algorithms. These algorithms wiU range from the very simple (i.e. 
fixed gain PD control) to the very complex (i.e. computed torque , non-linear self-tuning 
control). The hardware developed is of sufficient speed to implement these complex 
controllers with an adequate sampling period. 
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