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ABSTRACT

The shape control problem, for a Sendzimir Cold Rolling
Mill, is multivariable. The plant transfer function matrix, has
the special form: G(s) = g(s)Gp, where g(s) is a scalar
transfer function and Gy, a square matrix of constant gains.
Gp, however, is not invertible, but the system is
diagonalised using an -eigenvector/eigenvalue decomposition
resulting in a scalar frequency respomse design problem. An
important consideration in shape control systems is the
robustness of the design due to the wide range of materials
rolled, reflected in changes in the elememts of Gp. To - this
end, a development is included which represents the
robustness of the design, with respect to emors in Gp, in
terms of a set of strict inequalities.

L INTRODUCTION

In shape control, the internal stress profile across a steel
strip is measured at discrete (regular) points using
differential tension measurements and influenced using
bending of the mill rolls (Fig.1). Good shape control can
substantially improve the material quality and reduce
wastage. In the paper, it is shown that the plant inputs
annd outputs should be transformed to give a reduced
dimension problem and a suitable transformation is suggested
by an inspection of the eigenvalue spectrum of the mill
gain matrix, Gp,. The transformations are similar in form to
those chosen by Grimble and Fotakis [1] with process
requirements in mind. The control law developed here,
however, is computationally simpler and provides a natural
basis for the robustness development.

The Sendzimir mill processess more than 3500 different
material sizes and types. Since it is desireable to use one
controller with a number of different mill schedules, it is
important t0 have a measure of the allowable variations in
G which retain stability (note that g(s) is constant for a
given strip speed).

2. SENDZIMIR _MILL MODEL

'I‘trmxllnsmodelledasanSxSmmxof(lmnmd)
constant gains, Gy, [2] (representing the between
the 8 hydraulic actuators (Fig.1) and the shape profile at
the rollgap at the 8 modelled points) in series with a scalar
dynamic eclement, g(s) as:

0-0.582 s

G(s) = (1

(1 + 0.2s)(1 + 1.06s)(1 + 0.74s)

The delay term represents the transport delay from the
roll-gap to shapemeter, and the poles represemt (from left to
ngm)d:e(hnemsed)aauamr,stnpandshapanem
dynamics respectively. The coefficient values (strip speed
dependent) are for medium strip speed (5 -> 10 m/s) [3].
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3. EEEDBACK CONTROL DESIGN

An eigenvaluefeigenvector decomposition will be used to
(pseudo-) diagonalise the system. A typical eigenvalue
spectrum for Gy, is (14.9, 99, 52, 14, 02, -0.06, -0.05,
-0.006). The general profile of the co! i first 4
eigenvectors follow 15t -> 4 order polynomial profiles
respectively (see Fig.2). Note that the eigenvalues satisfy the
seperation condition:

min |Aj!
1i¢4

B = >>  max 1AL =

5¢i¢8

%) 2

The control objective is to design a umity negative feedback
system (so that incoming strip disturbance profiles are
offset), with forward path compensator K(s). Ideally, Gy
could be diagonalised by the transformation:

T-1 G, T = diag {A, M3, .... Ag} 3)
with a scalar precompensator ki(s) used to dynamically
compensate each individual loop. However, the ‘high-order’
profiles are known to be difficult to control, since high
gains (p is small) and high order bending (physically
undesireable) are required. Therefore, in accordance with the
seperation condition (2), the transformation matrices are

partitioned as:
[Vi]
T = [T Tal , Tl Va “)
where Ty , Tp ¢ RSx4 Vi, Vo e R4x8

If an orthonommal eigenvector set is chosen,

G(s) =Ty [g(s)diag{ri}ici¢al V1
+ Ty [g(s)diag(hjls¢isl V2 (5)
T1 Gi(s) V1 + T3 Ga(s) Va (6)

Choose K(s) so that the output contribution from the high
order bending is ignored as:

K(s) =

Ty diag{ki(s)}1¢i¢a V1 )

(a) to reflect the fact that acceptable control gains will have
little effect on the high order bending modes, and
(b) to avoid generating high order bending
If the same response and accuracy in each loop is required,
choose
Aiki(s) = k(s) , (8)

For a medium speed plant (as an example), k(s) was
determined from classical techniques to be:

1¢i ¢4

k(s) = 0.4(s + 0.7)/(s + 0.001) 9)

Simulation results for the full nonlinear model show the



performm of the controller. The inpwt (disturbance) profile
is constant (but nonzero) and the target (reference) shape
profile is uniformely flat (for orders 1 -> 4). Fig3 shows
the shape profile variations with time and Fig4 shows the
parametric  (parameterised profile) variations with time.
Control is applied after 5 seconds and it can be seen that
the transient and steady-state performance is satisfactory.
oNrdOte that the residual profile in Fig.3 is of (relatively) high
er.

4. A ROBUSTNESS RESULT
It is assumed that a precompensator matrix K(s) has been
designed for a nominal plant G(s) = Gpyg(s), but that Gy
is subjected 10 a matrix emor, A. The stability of the
system is described by the return difference as:
11g + (Gp + A)g(s)K(s)1 =

iIg + GK1.ilg + (I + KG)-1KgA1 (10)

dropping the s-dependence for clarity. A necessary condition
on A to retain stability is thus:

1Ig + (I + XG)-1KgA) = 0 for Re(s) » 0 (11)
Noting that KG = T;V; gk(s) and using the identity:
ilg + ABI = tInp + BA| , Ae REXD | B pIXA

the condition in (11) may be replaced by:

1 14+(14+gk) - 1gk{A; - 1}V1AT;1 = O for Re(s) » 0 (12)
This condition may be replaced by a frequency independent
sufficient condition based on the fact that a diagonally
dominant matrix is nonsingular:

4 )
1> jgl ;1;8 IFpjGwit , 1¢r ¢4 (13)
where
F(s) = (1 + gk)-lgk VAT (14)

since F(s) is strictly proper and analytic and bounded in the
interior of D. Such a condition may be expressed in
elemental form as:

8§ 8
z z Crpq lqu| ’

R 1¢r¢4

1 > (15)

4
and crpq = sup 1gk/(14+gk)1 J_Elm,-ln(vl),p('rl)qju

The stability of the perturbed system is indicated by the
four inequalities expressed in (15). Note that a Nicholl's
chart may be used to determine the supremum over freq.
The above robustness result has been shown {3} to be an
accurate prediction for the stability of the perturbed system.

5. CONCLUSIONS

A diagonalizing precompensator, exploiting the natural
bending modes present in the mill, has been developed. The
com); is computationally simpler than that of Grimble
and Fotakis .[1] (4 mults. Vs. 16 mults. and 12 adds),
since the wansformations themselves perform  the
diagonalisation - Kj merely equalises the dynamics in each
path.Arobusumsresunwasdevelopedtodetenmneﬂn
allowable reduction in controller numbers and this‘ is also
useful in predicting allowable modelling inaccuracies in Gp.
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Pig.l : Sendzimir Mill
Shape Control System

Pig.3 : Shape Profile Variations
With Time.
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Fig.4 : Shape Parameter Variatioas
With Time.




