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ABSIRACT

The solution to the shape control problem for

a 8Sendzimir mill, utilieing the As-U-Roll
shape actuators, 1s well understood. The
tapered first intermediate rolls, however,

provide a more powerful shape control device.
This paper describes a control philosophy
utilising both the As-U-Rolls and filrst
intermediate rolls as shape control
mechanisma. A robustness result for the
design is developed, which is useful, since
such a mill ig normally used to roll a large
numbex of materials, and a single controller
must therefore be employed for many different
schedules. Pinally, a variety of simulation
results are presented, showing the transient
responaes and performance of the multivariable
shape control system.

1. JINTRODUCTION
The shape control problem (the control of
internal strip atress) in Sendzimir mills,
utilising the As-U~Roll (AUR) actuators, has
been studied in some depth {13, [2] and indeed
a shape control scheme, previously described
[3]), utilising the AUR's . i# now approaching
the final commissioning stages. Automatic
shape control by Tmeans of the first
intermediate rolls (FIR's) as a shape control
device has, to date, received -relatively
little attention. Fig.l shows the location of
both sets of actuators on the Sendzimir mill.
The first intermediate rolls may be moved in
or out of the rolling clustexr, and since they
possess a taper (see Fig.2), they can affect
the roll bending profile in the mill and hence
the shape profile [4). Their primary function
is to control shape at the strip edges, and it

is the edge =zones of the satrip which are
covered by the tapered part of the rolls. Due
to their proximity to the strip, the FIR's

provide a very powerful shape control device,
and can produce high order bkending in the
workrolls. This is in contrast to the
As-tJ-Rolls, whose bending effects are smoothed
out by the stiffness of the intervening second
intermediate and back-up rolls (see Fig.l).
The relative importance of the FIR's as a
shape control device is increased when
congideration is given to the mechanical
restrictions which inhibit certain profiles
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being set up on the AUR's. These limitaticons
arise due to the danger of fracturing the
back-up roll shaft by demanding extreme (and
opposite) displacements in adjacent actuators.
A certain amount of Bsafety tolerance is
achieved by limiting the AUR actuator profiles
to fourth ordexr {through parameter isation
[1]1), but an analysis by Dutton [3] has shown
this to be insufficient. The FIR's, on the
other hand, do not suffer from such relative
positional restrictions (within their range of
movement) .

2. I
The Sendzimir mill model has been adegquately
described elsewhere [3][5][6] and merely the
form of the final (linearised) transfer
function model is given here as:

¥m = 9(28)[Ga Ci] up (1)
where

Ym = Measured shape profile (e RP)

-]
uy = actuator inputs (e R?)
G, (€ K**®) and Gy (e R®**?) are matrices of
linearised constant gains, relating roll-gap
shape profile to actuator inputs (for AUR's
and FIR's respectively) = The scalar transfer
function g(s) has the form:

e~ 718
g(s) = (2)
(L + 2.08)(1 + 728)(1 + 748)
where Ty, = D/v ' Ty = Dy /v

D = dist. from roll-gap to shapemeter(2.9%1im)
D, - distance from roll-gap to coiler (5.32m)
v = strip velocity in metres/second

73 corresponds to a shapemeter time constant,
varied for the different strip speeds as:

| speed (mys) | 0> 2| 2->5]{ 5> 15 |
| 1.43 | 0.3 |

| 75 (secs) 0.7¢ |

3. SHAPE_FROFILE PARARMETERISATION
Though the shapemeter output is modelled as an
8-point profile, the actual shapemeter
produces a number of outputs ranging from 17
to 31, depending on strip width. In order to
provide a consistant number of outputs, a
shape profile parameterisation is used.
Instead of controlling the actual shape ox
stress pattern, a number of parameters, or
attributes, of the shape profile ate
controllied. Following a least squares
analysis based on a number of equally-spaced
available measurements [3], [5}, the best
parameter fit is given by the Gram polynomials
[71. The first four Gram polynomials
(exciuding the =zeroth order) are roughly
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linear, gquadratic, cubic and guartic in form.

Shape profiles corresponding to the higher
order polynomials are not reguired to be
controlled and more importantly, attempts to

set up high-order roll bending in the mill can
cause ctacking of the back-up rolls. For this
reason, a transformation is also used to limit
the number of control inputs to the AUR
actuators. This tranasformation is similar to
that for the outputs, but in this case four
control inputs are used to control eight
actuators {(hence limiting the bending to
fonurth order) . A transformation matrix,
corresgponding to eight available measurements,
evaluated from the Fisher and Yeatea tables
[8] is: :

-0.54 -0.38 -0.23 -0.08 0.08 0.23 0.38 0.54

0.54 0.08 -0.23 -0.38 -0.38 -0.23 0.08 0.54
~0.43 0.31 0.43 0.18 -0.18 -0.43 -0.31 0.43
0.28 -0.53 -0.12 0.3¢ @¢.36 -0.12 -0.53 0.28

= p (3)
The linearised (and parameterised) mill TFM is

given as:
G(8) = g(s) P[G,PT PGy} (4)

4. A
In this approach, the FIR's are used to
control different shape parameters than the
AUR's, and a cross-coupling term is used to
alleviate interaction problems. The multilevel
control structure is shown in Fig.3.

4.1 Design.approach

In this approach, two parameters are
controlled by each actuator aet. It is not
important at this stage how the parameters are
allocated, the prime consideration being that
the FIR and AUR parameterisations are mutually
orthogonal. The Gram polynomials, mentioned
in Section 3, are used for shape profile
parameter isation., The matrices P; and P, will
be used to represent the AUR and FIR paramet-
erisations respectively, where P,, P, € R**5.
The treasoning behind the maltilevel structure
is relatively straightforward. Since the FIR
system hase only two inputs, it can, at most,
control only two shape parameters. The FIR
loop, therefore, is chosen as the independent
loop, and is diagonalised with respect to the
parameter set P;, in the arrangement shown in
Fig.3, using K; & R**Z,

However, some undesireable shape components in
the range space of P; are produced at the
roll-gap by the FIR's, since they have no
control over this parameter set. From
knowledge of 63, these components may be
evaluated, and the parameter demand in the AUR
loop adjusted accordinglg via the
cross-coupling term, Kip & R**%,

The AUR loop (dependent loop) can, unlike the

FIR's, control all four parameters, since it
has eight inputs (reduced to four by the
parameterisation). For the current
configuration, however, only two parameters
(corresponding to F,) ate required to be
controlled. The demand in the parameters

correaponding to P, are set to zero, therefore
ensuring that no undesireable .shape components
in the range space of P, are produced at the
roll-gap by the AUR's. The AUR -<controller,
Kq € R8%4 (shown in Fig.12), as a result, has
four inputs, two of which are =zero. An
expression for the equivalent 2-input/8-output
controller, Kz € R**? (shown in Fig.4) may
be obtained {5] as:

Ka = (0:-0,04710,)7°1 + (Q2-9:10:-1Q,) "% (5)
where Q1 = P3C4PT , @, = P,G,PT
Q3 = PaGaPT , Q4 = P,GLPT
Theorem
The aystem is diagonalised by the choige of
controllers K;i, Kp' and Kj, as follows:
Ky = (P,04)"* (6)
. Ka; = (PGaP%) 1 (7)
where - 1 8
[gz] . (8)
Kia = P1Gj(PGs) " (9
Prgaf )
Ignoring the plant dynamics (#ince the
dynamics in each path are identical), the

aystem forward path transfer
may be written (from Fig.3) as:

F = [g:][GaPT Gii[ga -Eixia]

[PlcaPTKa ngiKi'PlcaPTKaKia]
P,GaPTK,

function matrix

; (10)
PzGiKi“P zcaPTKaKia !
where F e R4"*
Por the system to be diagonal, it is requirea
that:
F = 14
Equivalently, if F is partitioned as:

F
N 5 (11)
with obvious identification of F,, F,, F,, and
F¢ € R®*%, then the required conditions on F,,
Fu, Fy and F, are:

Fy =Fg=1, ,» Fy=F;=0 (12)
Examining each term in turn:
(i) For block F,: Using (5):
F1 = 009170204 7Q3) "2402(0,~0,0272Q4) ™Y (13)

Applying the Householder inversion formula
[10] to the term (Q;-0,Q, 'Q;) ! yields:

(9170205 7103) "1 =0, T 401 7102 (047020, 72Q,) T20,0, "2
=0;7 - 0:700,(02010;, 10,0 2 (14)

substituting back for (0;-0,0.7'Q,)" % in
gives:

Fio= 0100:7% - 0:7702(02-0,0.710) 1)

+ 02(05-0,0;7104) 7
= I - 0,(0,-010:7700) ™1 + 02(0,0,05 710, 2
(15)

(13)

‘ -1,
(ii1) For block F,:

Fa = Q2(0:-0,0.7105) 7™ + 04(0,-0:0,720,) 2
= (92057 1-0,04 7N T ¢ (020,710,057 !

= 0 (16)

{iii} For block F,:
Fa = PyGiKj - PGP KaKia {17)
It has already been shown in (15) that

P1GaPTK, = I,, giving:
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Fa = PyGiKj - Kig (18)
Using (6) and (9) yields:
Fy = P1Gi(P,64) 1 - P1G3(P,G4)" = 0 (19)
(iv) For block F,:
Fo = P304Ky - P,GaPTH K, (20)
Using equation (i16) and (10) gives:
Fg = P,GiKj = P,G3(P,6i) % = 1, (21)

and it may be concluded that the system shown
in Fig.3 is diagonal foxr the controller
choices of (6) to (9). The overall controllier

matrix is:
a' Ka'Kia
Ccl = .
1] Ky

The system has therefore been reduced to four
identical SIS0 systems in parallel, each with
forward path transfer function g(s)k(s), k{(s)
being chosen to give suitable stability and
dynamic performance characteristics.

4.2 Parameter Allocation
A number of combinations
are to be controlled by each actuator set,
exist. Though 6 (= %C,) combinations are
possible, only one case will be examined here,
one other case being documented in [5}.
Writing P, the transformation matrix given in
Section 3, as:

(22)

of parameters, which

PT = (py Pz PsPa) i P1:/P2:Pasby € R (23)
the case under consideration may be identified
as:

Pa)

P, T = (p, ?,T = (p,

that is, the AUR's

P2) ’

controlling the linear and
quadratic shape parameters, and the FIR's
~controlling the cubic and quartic shape
parameters. This choice of P, and P, accords

with rolling practice (manual shape control),
where the AUR's are used to control up to (and
including) second order shape profiles, the
FIR's being used to control shape at the strip
edges (high order profiles). The reasoning
behind this practice is that by setting up low
order profiles on the AUR's, the restrictions
regarding their relative movements are not
violated, allowing their full potential to be
realised. By using the FIR's to control the
high order (edge) profiles, their best
potential is realised, since their influence
is greatest at the strip edges.

5.
it will be shown later that the design
presented in SBection 4 has poor robustness to
variations in the mill gain matrices. The
following section presents an alternative
diagonalisation procedure with improved

robusthess properties.

5.1 Denjgn Approach

The closed-loop structure which will be used
in this design procedure is shown in Fig.4 The
linearised (and transformed) plant transfer
function matrix excluding dynamics is given
from (4) as:

(24)

G = P[GaPT  Gy]

noting that € ¢ R**®. Let a right invexss,
N ¢ R*™%, be defined such that:

[PGaPT PG4I N = I, (25)
Rgain, the system has been reduced to four
SIS0 systems in parallel, each with forwarg
path transfex function g{s)k(s).

5.2 Choice of .a Right Inverse

It can be shown [1] that PCaPT (¢ R**%) is fuii
rank and hence that the matrix G (given in

(24)) s full row xrank. Therefore, a right

inverse, N, exists but is not necessaraily

unigue [10]. The resulting design freedom may

be exploited by minimising the norm of the

control inputs to the plant. This helps to

ensure that actuator wear is kept to a minimum

and that the actuators are restricted to their

working range. The required right inverse
which minimizes uTu is evaluated as:
cz = oT(eeT) ™! (26)

6. DYNAMIC PRECOMPENSATOR DESIGN
k(s) was designed for low, medium and high
speed plants using a combination of freguency
response and simulation trials. Fig.6 shows
the frequency response for the uncompensated
and compensated systems. The controller
transfer function (for a single loop) is:
ky (1 + 2.0s) :

k(s) = 27)
(1 + 1000s8)(1 + 0.9s)

where k; is given as:

|strip speed (m/s)| 0 > 2| 2 ->5 | 5 -> 15}
I K, I

Note that a simple gain scheduling technique
igs used in k(=) for changes in strip speed.
If finer tuning is regquired, k; could be made
a continuous function of strip speed. Good
steady-state response is ensured by placing a
pole at s = 0.001.

100 | 200 | 500 |

7. ROBUSTNESS ANALYSIS
Gauge reduction on the Sendzimir
Rolling Mill is a multi-pass, multi-schedile
process. For each steel c¢oil rolled, a
particular schedule is chosen according to
strip width, initial gauge, final gauge,
quality and material of the coil. The
schedule also specifies the number of passes
the strip will undergo to achieve the reguired
reduction in gauge. Since the perxcentage
reduction varies with the pass number, and the
hardness of the .material increases as it is
reduced, the mill matrices, Gy and Gy, are a
function of pass number. It is not practical
to store a precompensator matrix for each
schedule and pass, and hence a smaller subset
must be used. It is important to have a
measure of the allowable variations in the
elements of G, and Gj to see to what extent
this simplification may be achisved while

20-roll cold

maintaining stability. It is also important
to know the extent to which the modelling
inaccuraciee in the mill matrices will be
tolerated. For the currxent problem, an

analysis based on element variations in Gy
1s appropriate. The advantage of using elemsnt
data is that the information on the system

structure 18 retained in addition to the
pogition and relative magnitudes of the
errors. Furthermore, data on the errors in
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the elements of Gp 1is 1readily obtainable.
This type of approach has recently been shown
to be a wuseful and viable route to robust
design in general [11],[12].

7.1

In the following analysis,
a precompensater matrix, K(s) € R(2)%*%, has
been designed for a nominal plant, G(s), but
that G§ and Gy are sub;act to pezturbations
Ay € R™*® and Ay e R®®? respectively. Note
that:

it is assumed that

E(s) = K k(8) (28)
where K € R®*? ig the diagonalising controller
(described in Sections 4 and 5), and k(s) the
dynamic precompensator (described in Section
6). It is assumed that k(s) stabilises the
plant dynamic transfer function, g(s). Let a
transformed perturbation matrix, A, be
defined as:

(29)

4 = [PASPT, PA4]

The atability of the feedback system is

descr ibed by the return difference:
I1, + g{s)k(8)P[(G5+4,)PT, (Gi+A1)IK] =
|1.49(8)k(8)P[G,PT, GjIK+a(s)k(=)P[APT, Ay1K|

= |al|s] (30)

whexe
A =1, + g(s)k(s)P[caPT, 61K
B=1,+{g(8)k(8)P[a,PT,4;]1K) *g(e)k(s)P[C4PT,C4]K

Clearly, system stability is determined by the

'B' determinant, since the 'A' determinant is
merely the return difference of the
unperturbed system. By noting that:

[PG.PT  PEy) K = I, (31)

which is true for both the multilevel and the
right-inverse controllers, the stability of
the perturbed system is determined by the
condition:

1, + (1 + gk)"lgkak} # 0 for Re(s) = 0 (32)
substituting from equation (29) and dropping
the s-dependence for clarity. The condition in

(32) may be replaced by the more conservative
condition: 4
1> ) [Fey(a] 1 =r =4 (33)
j=1
where EEQ are the elements of the matrix F(s)
€ R(s) ¢ given by:
F{s) = (1 + gk) ‘gk 8K (34)

Since F(s8) is strictly proper and analytic and
bounded in the interior of D, the suprema are
achieved on the imaginary axis, and the
frequency dependent condition of (33) may be
replaced by the frequency independent
condition:

4
Y sup 1725 G | 1y =4
J=1 w=0

Defining the maximum value of the closed loop
frequency response as:

1> (35)

v = sup {(1 + gk) gkl (36)
w=0 :
the condition expressed in (35) becomes:
4
1> Z&IT(AK)rjI (37)
Given the perturbation, 4, the controcller
matrix, K, and ¥ (from a Nicholl's c¢hart), it

is possible to determine the stability of the

perturbed system by examining the inegualities

given in (54). For the two cases under
consideration, the controller matrix, K,
becomes:

K=cCl (38)
where C1 1s given in (22) for the multilevel
controller, and _

K=c2 (39)
where €2 1is given in (26) for the right
inverse controller.

7.2

An example is taken  here, whereby a
diagonalising controller matrix, K, calculated
for BSchedule X Pass 1, is to be used with a
plant corresponding to Schedule Y Pass 1. It
is required to evaluate the inequalities of
(37) for this case to dQetermine if astability
is retained. No intermediate numerical

results are provided but the calculation route
is as follows:

(1) Evaluate Ay and  Aj from the mill
matrices pertaining to the different
schedules. )

(ii) Evaluate the transformed perturbation
matrix, &4.

(i1ii) Caleulate ¥, the maximum wvalue of the
closed loop freguency response from a
Nicholl's Plot.

(iv) Evaluate the product AK and multiply by

v to give the ineguality coefficients.
(v) Sum the resulting coefficients over the
rows and test for stability.
The resulting inequalities, calculated for
both controllers C1 and C2 are as follows:
Controller €i: Controiler C2:

1> 0.7114 i) 0.4499
1 » 0.8932 1) 0.2612
1 > 0.6601 1> 0.4078
i > 0.8547 1> 0.4073

The above inequalities were evaluated using a
value of ¥ = 0.99 (obtained from a Nicholl's
Chart), pertaining to a medium speed plant.
Simulation results for this mismatched case
are given in Section 8. 1t is seen that, for
the mismatched case under consideration, the
inequality set is satisfied., indicating that
stability is retained. For some cases,
however, it has been shown [5} that though
stability is retained {(confirmed by simulation
tests), the inequaliy set has not been
eatisfied. This is due to the conservatism
built into the analysis via equation (33). In
such cases, gystem stability (or rather
instability) must be confirmed by simulation
testsa, Note, however, that when  the
inegqualities are satisfied, stability is
guaranteed.

8.
Nonlinear simulation tests were used to aszsess
the performance of the shape control schemes
developed in the preceeding sections. was
non-time varying, and is shown in Fig.7. The
output shape profile variations with time are
shown in Figs.6 and 7 for controllers Q1 and
C2 respectively. The corresponding shape
parameter variations (first to fourth order)
with time are shown in Figs.8 and 9 for C1 and
C2, respectively. Note that control is
applied after the simulation has been allowsd
to run for three seconds. The shape control
for both Cl1 and C2 is good (as seen from
Figs.6 and 7}, the residual profiles
coneisting of high~order shape components.
This may be validated by checking Figs.8 and
9, where the steady-state error is seen to be
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zere for the four shape parameters which are
controlled. Figs.10 and il show the shape
profile and parameter varaitions for a
mismatched C1 controller for the case given in
Section 7.2. These graphs verify that no
instability is present, as predicted by the
get of inegqualities.

9. DISCURIIGN

Two controller designs have been examined, one
of which minimises the control inputs to the
plant. The conseguences of this minimisation
will now be examined more fully. This special
feature of C2 results in the elements of the
€2 matrix being small in magnitude compared to
c1. A gquantitative measure of the magnitude
of the matrix elements is given as the
Euclidean norm [13], which is defined asm:

ety - [ § Sy |7
K = kj (46)
E 151454 k|
where kji are the elements of the given
controller matrix. Calculation of the
Euclidean norm for Ci and C2 gives:
| CONTROLLER | ”K“E |

c1 0.941

c2 0.183

c3 4.423

Table 9

Note the inclusion of a norm wvalue
corresponding to a controller *C3'. c3

corresponds to a multilevel controller, where
the AUR's are used to control second and
fourth order shape profiles (even orders) and
the FIR's are used to control first and third
order profiles-(odd ordets). This controller
is documented fully in [5]. Controller C3 is

included in this section to allew a more
complete controller comparison to be made.
From eguation (37). the robustness of a

particular controller is seen to depend on the
magnitude of the elements of the controller
matrix. Some conclusions, therefore,
regarding the relative robustness of the
various controllers may be made with respect
to Table 9. Contreoller C2 appears to be the
most robust, with Cl and 3 being
progressively less robust. This is
significant, since Ci and C3 bhoth contain zero
blocks (see equation (22)), and hence one
would expect the matrix norms to be small., 1If
the efficiency of a controller is defined as
that which minimises control effort, then some
conclusions regarding the efficiency of the
different controller structures may also be
deduced from Table 9. In controller C2, all
four parameters may be set up on both the
AUR'a and FIR's. The relative distribution of

the parameters on each actuator set is
. determined in an ‘optimal®’ sense so that the
control input norms are minimised. In C1 and

C3 the parameter allocation is fixed initially
and the resulting matrix norms are large. The
exceptionally large norm for C3 indicates the
difficulty of setting up first and third order
profiles on the FiR's and second and fourth
order profiles on the AUR's. It may therefore
be concluded that this structure is
inefficient (validated by simulation results
given in [5]}.

10. CONCLUSIONS
B variety of designs for the shape contzol of
a Sendzimir mill utilising both AUR and FIR

actuators have been developed. The different

Qesigne allow different combinations of shape
parameters to be set up on the different
actuator sets. While the right inverse

controller of Section 5 was shown to have the
besgt performance and robustness properties, a
multilevel structure may be more appropriate
from mechanical or operator considerations
(recalling that the configuration of Section
4.2 corresponds with manual zolling practice).
The robustness of the control philosophies
developed was expressed in terms of a series
of strict linear inequalities, Thesea
inegualities are easily c¢alculated from the
alemental data available via the static model
of Gunawardene [6]. Though the stability
predictions of the analysis is somet imes
conservative, satisfaction of the lnequalities
guarantees stability.

It is envisaged that a singular
decomposition could also have been used to
diagonalise the constant plant TFM. However,
such a decomposition would not have the same
physical significance as the parameterisation

value

presented in Section 3, where the ghape

profile is parameterised in terms of the

natural bending modes present in the mill [2].
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