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Abstract
We present a novel efficient algorithm for scaling the
frequency content of an audio signal by any desired
factor in the range 0.5 (minus one octave) to 2.0 (plus one
octave) enabling a recording to be played in any desired
key without affecting the tempo. The algorithm uses an
adaptive overlap-add (AOLA) technique to realise the
desired frequency scaling without affecting the duration.
Informal listening tests show output quality equal to that
of a conventional overlap-add algorithm used in many
commercially available systems, but offering significant
computational saving relative to that algorithm. The
algorithm is also used to simultaneously scale both the
tempo and key of a recording.

1. Introduction

Transposing a piece of recorded music consists of scaling
its frequency content by a fixed multiplicative factor.
Such a modification allows the piece of music to be
played back in a different key without affecting the tempo
(speed). This can be useful, for example, in situations
where a musicianship student (instrumental or vocal)
wishes to practice along with a previously recorded piece
(instrumental, orchestral and/or choral part(s)) in a key of
their choice. The tempo and key of a recording are
generally set at those intended by the composer. Often,
only the most proficient musicians can play a piece at its
intended tempo and in its intended key. In the case of a
vocalist, the intended key may not suit their voice. Hence,
a facility to independently control both the tempo and key
of a recording is of potential benefit to both aspiring
instrumental musicians and singers. In recent years a wide
range of products have become available with features to
enable independent control of tempo and key in the
playback of an audio recording. A comprehensive list of
all such products would be exhaustive, however, some
widely used such products include the Entropic Timescale
Modification (ETSM) [1], Goldwave [2], Cooledit [3],
Transcriber [4], Musician’s CD player [5], SlowGold [6].
A more extensive list can be found at [7]. Being
commercial products, the technical details of the time-

and frequency-scaling algorithms used are generally not
disclosed. However, from the limited data available it
appears that most of these products realise their scaling
using methods based on a time-domain process called the
Synchronised Overlap-Add (SOLA) algorithm [8]. For
example, the ETSM system, which performs extremely
well on speech signals, uses a so-called Time-Domain
Pitch Synchronous Overlap-Add (TD-PSOLA) algorithm.
Sample outputs from this system can be downloaded from
the Entropic URL [1].

2. Background

2.1 Frequency Perception

The term pitch is often used in the contexts of speech and
music. The definition of pitch, however, is context
dependent. For example, in the case of voiced speech,
pitch refers to the frequency with which the vocal cords
open and close. For music, however, the definition of
pitch is based on the frequency perception properties of
the human auditory system. For a musical instrument,
pitch is related (but not necessarily equal) to the
fundamental frequency of the note being played. The
pitch of a pure tone is directly related to its frequency. We
perceive a low-frequency tone as having low pitch and a
high-frequency tone as having high pitch. However,
psychoacoustic experiment shows that our judgement of
the pitch of a pure tone is not linearly related to its
frequency. Other non-linear processes are also involved
such as the masking of some frequency components by
others. For these reasons the performance of a frequency-
scaling algorithm is best evaluated by subjective listening
tests. Audio signal processing algorithms such as
perceptual coders are designed to take advantage of
known properties of the human auditory system. A
popular psychoacoustic experiment involves presenting a
listener with a pure tone of frequency f1 and having them
adjust the frequency, f2, of a second tone until its pitch is
judged to be equal to half that of f1. For f1 = 440 Hz, the
average setting of f2 is equal to 220 Hz, indicating that for
low frequencies a halving in frequency corresponds to a
halving in pitch. However, for f1 = 8 kHz, the average



setting of f2 is equal to 1300 Hz. Pitch determined by
comparing two tones in this way is called ratio pitch.
Because ratio pitch is related to our sensation of melodies,
it was assigned the dimension mel. Therefore, a pure tone
of 125 Hz has a ratio pitch of 125 mel and the tuning
standard, 440 Hz has a ratio pitch of 440 mel. For
frequencies below 500 Hz, the ratio pitch in mels is
numerically equal to the frequency in Hertz. At higher
frequencies, however, the curve bends more and more to
reach a ratio pitch of only 2400 mels at a frequency of
16000 Hz. The mel-scale spectrogram is based on using a
parallel filterbank to resolve the frequency content of a
signal into mels and has been used in the analysis of
speech and other audio signals for many years. There are
two theories relating to the perception of pitch, namely,
the timing (or temporal) theory and the place theory [9].
The timing theory suggests that pitch is perceived in
terms of time-synchronous firings of the neurons
connected to the haircells near the basilar membrane
apex. The place theory suggests that spectral information
is decoded via the basilar membrane locations of the
neurons that fire most. The two theories warrant a
distinction between two types of pitch, namely, normal
pitch and spectral pitch. Normal pitch corresponds to the
fundamental frequency of a sound and spectral pitch
corresponds to the frequency distribution of the sound
energy among the overtones or harmonics of the
fundamental frequency component. Normal pitch is often
referred to as residue pitch or virtual pitch as it can be
perceived even in the absence of its fundamental
harmonic. It is believed that the eight lowest harmonics
influence the perception of pitch. The timing theory is
limited to low and middle frequencies because the
synchronisation of neural spikes to tonal inputs
disappears above 4-5 kHz due to neural firing latency
effects. A shortcoming of the place theory is that it cannot
explain the high pitch resolution of the ear at low
frequencies. It is believed that both processes operate in
parallel, with one or the other dominant depending on the
frequency content and type of sound. The pitch of pure
tones depends not only on frequency, but also on other
parameters such as the intensity, which is generally
expressed as Sound Pressure Level (SPL) [9]. For
example, if a 200 Hz tone is presented at 80 dB(SPL) and
40 dB(SPL) alternately, the louder tone is judged as
having slightly lower pitch than the softer one. However,
at 6 kHz this effect is reversed i.e. a 6 kHz 80 dB(SPL)
tone produces a slightly higher pitch than a 6 kHz 40
dB(SPL) tone. Hence, although frequency is the major
cue in pitch perception, it is also influenced to a small
extent by sound intensity.

2.2 Musical Scales

For thousands of years people have expressed themselves
through music as well as speech. Many totally different
languages evolved with different civilisations. In a similar
way, many different musical scales came into being.
However, closer inspection of seemingly different scales
reveals characteristics common to almost all scales,
suggesting perhaps that music is a natural form of
expression. The oldest and most popular musical
instrument is the human voice. The Greeks used the
octave (a frequency ratio of two), whereby a low voice
was accompanied by a second voice, one octave above it.
In musical nomenclature, a ratio of two pure frequencies
or tones is called an interval. Certain specific intervals are
given names, e.g. the ratio 3/2 is called a fifth and the
ratio 4/3 is called a fourth. Helmholtz [10] notes that
‘…unpractised singers, when they wish to join in the
chorus to a song that does not suit the compass of their
voice, often take a fifth to it’. He cites this naturally
occurring phenomenon as ‘proof that the uncultivated ear
regards repetition in the fifth as natural.’ Helmholtz also
notes that ‘such an accompaniment in the fifth and fourth
is said to have been systematically developed in the early
part of the middle ages.’ This systematic development
formed the basis of much modern music theory. An
important observation of this development was the
splitting of the octave into two equivalent sections called
tetrachords (meaning four strings in Greek). The
tetrachord is defined as a series of four notes having an
interval of a fourth between the first and last, i.e. the ratio
of the highest to the lowest frequency notes in the
tetrachord is 4/3. For the modern major scale, the two
tetrachords are as shown in Figure 1.

c  d  e  f    g  a  b  c'

First
tetrachord

Second
tetrachord

Figure 1: Major Scale Tetrachords

Each note in the second tetrachord is one fifth (ratio of
3/2) above the corresponding note in the first tetrachord.
This division of the octave into two equivalent sections is
common to almost all scales from different civilisations
and historical periods. The choice of interim notes within
(and also possibly between) the two tetrachords, however,
varies and many different scales based on different such
choices exist.
Much of the early work on musical scales is credited to
the Greek philosopher and mathematician, Pythagoras
(c.569 – c.475 BC). He used a monochord (a hollow box
with a single string stretched between two supports near
the ends as shown in Figure 2. A third support, called a



bridge, could be moved to any point in between, dividing
the two string segments into any desired ratio (l1/l2).

l1
l2

bridge

Figure 2: Monochord

He studied the sounds produced by striking one segment
and noticed that the frequency of the sound was inversely
proportional to the length of the vibrating segment. He
also noticed that by striking both segments
simultaneously, the sensation produced by the resulting
sound varied between pleasant and unpleasant depending
on the position of the bridge. The sound was pleasant
when the ratio of the segment lengths, (l1/l2), was equal to
the ratio of two small integers. This means that the ratio
of the two frequencies is also equal to the ratio of two
small integers (equal to the reciprocal of the string length
ratio, i.e. l2/l1). This condition is called consonance or
harmony. He also noticed that the unpleasant sounds were
associated with frequency ratios equal to the ratio of large
integers, a condition called dissonance or disharmony.
Deciding whether a sound is pleasant or not is a
subjective issue and there is no clearly defined transition
between consonance and dissonance. Pythagoras chose a

set of frequency ratios (intervals) of the form mn 23
where n and m are integers. For example, the

Pythagorean whole tone is equal to 9/8 = 32 23  and the
so-called Pythagorean diatonic semitone is equal to

256/243 = 58 32 . Note that the choice mn 23  covers
any combination of multiple fifths and fourths. The so-
called major scale is defined by the intervals: tone, tone,
semitone, tone, tone, tone, semitone. Using the
Pythagorean whole tone and the Pythagorean diatonic
semitone, the Pythagorean C major scale results, as
shown in Table 1.

c d e f g a b c’

1
3

2

2

3
6

4

2

3
3
4

2
3

4

3

2

3
7

5

2

3 2

Table 1: The Pythagorean C Major Scale

In Table 1, we express the intervals or ratios in a form
which emphasises the fact that the second tetrachord
notes (g, a, b, c’) are a fifth above their first tetrachord

counterparts (c, d, e, f), i.e. g = (3/2)c, a = (3/2)d etc.
Other musical scales developed in various parts of the
world. In many of these early scales, the use of intervals
of less than a tone was avoided, which resulted in a
variety of scales based on intervals of a tone and a tone
and a half. These scales generally had five intervals per
octave and as such are often referred to as pentatonic or
five-tone scales. An example of such a pentatonic scale is
the major scale with the fourth and seventh notes missing.
Much Arabian music is based on dividing the octave into
16 or 17 unequal intervals. Hindu music has 22 divisions
per octave. In the sixteenth century an Italian
mathematician named Zarlino, modified the Pythagorean
scale by replacing the notes based on large integer ratios
by nearby ones based on smaller integer ratios as shown
in Table 2. These modifications formed the basis of the
so-called just diatonic scale.
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Table 2: The Just Diatonic (C Major) Scale

Note that the intervals between consecutive notes of the
just diatonic scale are equal to 9/8 (called a just major
tone); 10/9 (called a just minor tone) and 16/15 (called a
just semitone). The ratio of a just minor tone to a just
semitone is equal to 10/9 ÷ 16/15 = 25/24. The chromatic
scale is derived from the just diatonic scale by including
the notes which are spaced by the interval 25/24 above
and below (ratio = 24/25) the existing notes. A problem
with the chromatic scale however, is that for example C#
and Db are close but not quite equal. The same applies to
D# and Eb etc. The equal-tempered scale (often called the
tempered scale) is based on a simplification of the
chromatic scale whereby C# is set equal to Db and D# =
Eb etc. This is achieved by dividing the octave into 12
equal intervals. If the frequency ratio associated with any
one of these intervals is equal to some value, r, then r
must satisfy the equation r12 = 2, therefore, r = 2(1/12) =
1.059463. This interval is called the tempered semitone.
The Modern piano is constructed and tuned to give seven
octaves of the tempered scale. Orchestral instruments are
also constructed and tuned to the tempered scale,
although most allow less than seven octaves, e.g. the
concert flute gives three tempered octaves. There are two
major reasons for constructing and tuning instruments to
the tempered scale. Firstly, sharps and flats are combined
in a single note. Secondly, (and more importantly for our
application) the equal interval between all consecutive
notes means that a piece of music can be played in any
key, i.e. it can be transposed up or down in frequency by
a desired number of tempered semitones without affecting
the consonance of the chords (or harmonies) in the piece.



This means, for example, that a piano accompaniment can
be played in a key to suit a person’s singing voice. Our
objective for the music key transposition application is to
develop an algorithm to enable the frequencies of a piece
of recorded music to be scaled to any other key on the
tempered scale within one octave of the original key.

2.3 Musical Instrument Digital Interface (MIDI)

Musical Instrument Digital Interface (MIDI) was
developed in the early 80’s as a communication protocol
to allow electronic musical instruments (synthesisers) to
interact with each other. In its original form, MIDI
allowed two synthesisers to be connected together such
that a note played on one could sound on the other also
(as if it had been played on both). The MIDI information
consists of data bytes which control such things as when
to start and stop playing a note, how loud to play it etc.
The format of the MIDI information was well suited to
storage and generation on a computer and computer
manufacturers quickly developed MIDI plug-in boards for
their products. Nowadays, a computer with such a MIDI
interface can control a chain of synthesisers. Up to sixteen
synthesisers can simultaneously play different tracks (or
parts) in this way. MIDI files can also be played on a
standard multimedia PC through the use of a software
synthesiser [11]. The quality of the reproduction depends
on the sound card and synthesiser program. Many
programs are available which can produce good quality
renditions of MIDI files and also convert them to other
audio file standards such as .WAV files [12]. Within a
MIDI file, the data relating to note frequency and duration
are stored separately so that it is a trivial matter for a
MIDI file player to play the piece slower or faster without
changing the key. Similarly, the piece can be played in a
different key without changing the original tempo, or if
required, both the tempo and the key can be
independently set to any desired values. One system
which uses this feature of MIDI as a music study aid is
the Maestro system [13]. Another useful feature of MIDI
is that one or more of the sixteen tracks in a MIDI file can
be switched off (muted). For example, the lead instrument
could be muted leaving only the accompaniment which
the practising musician can play (or sing) along with at
their desired tempo and in their desired key. A
shortcoming of MIDI is that, being synthesiser input data,
it cannot reproduce a human voice sound. Also, no
synthesiser to date comes close to rendering a piece of
instrumental music with the ‘feeling’ of an accomplished
musician. Narrowing this gap remains a major challenge.
Nonetheless, with the increasing availability of low cost
multimedia PC’s, software synthesisers and MIDI data
files [14], aspiring musicians can enhance their practice
and performance with MIDI.

3. TIME & FREQUENCY SCALING

If a signal is sampled using sample frequency, fs samples
per second, and then played back using a different
conversion frequency, fp, the duration of the signal will be
scaled by the factor, fs/fp and the frequency content of the
signal will be scaled by the factor fp/fs. Time-Scale
Modification (TSM) of an audio signal consists of
modifying its duration without affecting its perceived
frequency content. Similarly, Frequency-Scale
Modification (FSM) consists of modifying its frequency
content without affecting its duration. In 1985 Roucos [8]
presented the Synchronised Overlap-and-Add (SOLA)
algorithm for speech TSM. With this approach,
overlapping segments (or frames) of the input signal are
first extracted, a frame being typically several pitch
periods in duration. By decreasing the overlap between
successive frames, time-scale expansion is realised.
Similarly, by increasing the overlap, time-scale
compression is realised. In the original SOLA algorithm
[8], the segment alignment was optimised by computing a
normalised cross-correlation measure, R, for a range of
possible alignment offsets and then choosing the offset
for which R is a maximum, indicating maximal similarity
between overlapping segments. High quality combined
with moderate computational load has made the SOLA
algorithm the choice for many speech and audio TSM
systems. We present an alternative TSM algorithm which
offers a significant reduction in computational load
without loss of quality. If a signal is time-scaled by some
factor, TS, and then played at TS times its original sample
rate, the net effect is to scale the frequency content by the
factor, TS, without affecting the original duration, i.e.
FSM. We use this approach to realise frequency-scale
modification.

3.1 Adaptive Overlap-Add (AOLA)

Referring to Figure. 3, the solid trace of plot (a)
represents a rectangular windowed segment of the input
signal. The window length, w, is chosen such that it will
accommodate at least two cycles of the fundamental
frequency of harmonic music. For non-harmonic music,
the choice is not critical and w can be left equal to the
value chosen to satisfy the above harmonic condition. We
used w ≈ 46 ms. Assuming we wish to scale the duration
of this segment by some desired expansion factor, de, the
steps involved in the algorithm are as follows:

1.  The windowed input segment (a) is duplicated and
the duplicate aligned with (a) as shown in plot (b). The
alignment criterion is based on aligning the two largest
peaks or troughs.
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Figure 3: Adaptive Overlap-Add

2.  A synthetic segment, (c), is produced by fading
gradually from (a) to (b) in the overlapping region. The
natural expansion factor, ne, is given by the ratio of the
lengths of (c) and (a) as indicated.
3.    The rectangular window is stepped forward in time
by st = |CD| = w.(1-ne)/(1-de) and the new step-size
segment of the original concatenated with (c) as
indicated (dotted) such that the next segment to be
expanded is the length-w portion of (c) above BD, see
plot (e). Repeat from step 1 until the end of the signal
being scaled is reached.

Rationale: Plot (d) represents the desired length to
which we wish to time-scale (a), i.e. w.de. The segment
of (c) above AB has been time-scaled by the desired
factor, de, and is output from the time-scaling window.
For each step of the window we repeat the peak search
and update ne.
Assuming ne to be approximately equal to its last value,
segment BD of (c) expands in the same way as (a) to
length |BF| ≈ w.ne. Step size portion CD of (c) expands
to length |EF| ≈ |CD|.ne, but we require it to be expanded
by factor de. To achieve this we must apply our natural
expansion factor A times where ne A = de. If segment CD
is to have A applications of natural expansion factor, ne,
before leaving the expansion window, then from plot (f),
the step size, st, must satisfy the following equation
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As ne is continuously varying, (1) (and (2)) is an
approximation. In fact, each of the ne and st terms in (1)
are slightly different. By updating ne and hence st for
every step of the window, the algorithm accurately
adapts to the local signal characteristics.
For time-scale compression the approach is similar. In
this case the peaks or troughs are aligned as before but
the sections of (c) to the left and right of the central
overlapping section are discarded leaving a naturally
compressed segment. If the input segment has a natural
compression factor, nc, and the desired compression
factor is dc, then equation (2) becomes
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For simultaneous time- and frequency-scaling by factors,
TS and FS respectively, the procedure is a simple
modification of the above frequency-scaling procedure.
The frequency-scaling by factor FS is realised by playing
the signal at FS times its original recording rate. This
however, scales the duration by factor 1/FS which must be
compensated for by the AOLA TSM. That is, the
necessary TSM factor is TS times FS.

4. SOLA vs AOLA Comparison

4.1 Computational Load Comparison

In the original SOLA algorithm [8], the segment
alignment was optimised for the m-th input frame by
computing a normalised cross-correlation measure Rm(k)
for a range of possible alignment offsets, k, and then
choosing the offset, Km, for which Rm(k) is a maximum,
indicating maximal similarity between overlapping
segments. The normalised cross-correlation measure
Rm(k) can be expressed as :
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In (4), x(n) represents the sampled signal to be time-
scaled and y(n) the time-scaled signal. Sa represents the
analysis interframe interval or step-size and Ss, the
synthesis step-size. If the time-scale factor is α, then Ss =
αSa. L represents the length of the overlapping portions of
x(n) and y(n). Clearly the value of L varies with k. This
variable overlap is one reason why the normalization
denominator term in (4) is needed.



The normalization also prevents loud portions of the
signal from producing deceptively large cross-correlation
measures relative to those produced during quiet portions.
In the original system of Roucos, Rm(k) was computed for
offset values, k, in the range 20 to 130 samples. The
computational load associated with the SOLA algorithm
is due mainly to the multiple computations of the Rm(k)
term. A useful simplificationoften used to reduce this
computational load is to use  sum-of-magnitude terms in
the denominator, i.e. to use a simplified normalized cross-
correlation measure )(kRm′  given by:
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Also, in practice, an FFT-based fast convolution process
[15] is used in computing the numerator of (5) reducing
the number of multiply operations. For the purpose of
calculating an approximate computational load estimate,
we make two simplifying assumptions, namely, that the
analysis frame step-size has a default value of N/2 and
that the search range of alignment offset, k, is from k = 0
to k = N/2, where N is the number of samples in the
analysis frame. Based on these assumptions it can be
shown [16] that the computational load associated with
SOLA time-scale expansion (α > 1) is as shown in Table
3 and that the load associated with SOLA time-scale
compression (α < 1) is as shown in Table 4.

N SOLA AOLA A/S (%)

Mult.s αN(log2N+3/2) αN/2 5.3

Add.s αN((3/2)log2N+3/4)-2) αN/4 2.0

Comp.s αN/2 α2N 400

Table 3: Computational load comparison (αα > 1)

N SOLA AOLA A/S (%)

Mult.s αN(log2N+5/2) αN/2 4.8

Add.s αN((3/2)log2N+13/4)-1) αN/4 1.6

Comp.s αN/2 α2N 400

Table 4: Computational load comparison (αα < 1)

To compute a rough estimate of the AOLA
computational load we assume the window length, w,
corresponds to the SOLA frame length, N, (sample
periods) and the number of multiply and add operations
needed to realise the overlap-add cross-fade are the same
as for SOLA. The number of comparisons needed to find
the two largest peaks or troughs within the N-sample
frame is equal to  2N  and this is further  weighted by the

TSM factor, α. The key saving is achieved by replacing
the normalized cross-correlation multiply and add
operations with an additional 3N/2 comparisons. Tables
3 and 4 also show the approximate relative
computational burden of the AOLA method compared to
the SOLA method. The comparative measures are shown
as functions of the segment length, N and the TSM factor
α. The right-hand column shows the ratio of the AOLA
to SOLA computational load for a frame length, N =
2048 sample periods.

5. Results

5.1 AOLA vs SOLA Sound Quality Comparison

We applied the AOLA algorithm to a selection of music
signals for TSM factors in the range 0.5 to 2.0
(corresponding to FSM factors in the range –1 to +1
octave). We also used a commercially available SOLA-
based TSM system to realise equivalent time-scale and
frequency-scale modifications. The sound quality of the
AOLA outputs were deemed equal to the SOLA-based
system outputs for both radio- and CD-quality audio.

5.2 AOLA vs MIDI Comparison

We recorded a professional pianist playing a short piece
in its intended key (D) and at its intended tempo (120
beats per minute (bpm)). We also recorded it being played
in D at tempos 60, 90, 150 and 180 bpm and at 120 bpm
in keys Bb (-4 semitones), C (-2 semitones), E (+2
semitones) and G (+5 semitones). We applied the AOLA
algorithm to the 120 bpm, D recording to realise
equivalent time- and frequency-scaled versions of the
original. The AOLA outputs corresponding to 90 and 150
bpm and keys C and E were deemed almost equal to the
corresponding originals while the outputs corresponding
to 60 and 180 bpm and keys Bb and G were deemed good
but inferior to the corresponding originals.

6. Discussion

In the study of musicianship, the ability to independently
control the tempo and/or key of a recording can
encourage and enhance a practice session. Musical
Instrument Digital Interface (MIDI) allows such control
for instrumental music, provided the recording is
available in MIDI file format and that the music student
has access to a suitable synthesizer or multimedia PC. In
many cases the recording is in some digital audio format
other than MIDI, such as a CD or WAV file. Converting
from a digital audio format such as WAV to MIDI is very
difficult. For example, [17] attempts WAV to MIDI



conversion for instrumental recordings, but requires thirty
minutes to convert one second of the input WAV file on a
133 MHz Pentium with 32 Mbytes of RAM. It also
requires 200 Mbytes of hard disk space and only works
on mono digital audio at sample rates up to 22050
samples per second. We have presented an algorithm
which allows efficient time-scale (tempo) and frequency-
scale (key) modification of a digital audio signal
(instrumental and/or voice). This algorithm uses a fixed
length rectangular stepping window and a simple peak
alignment criterion to track the local natural scaling factor
and adapt the window step size. The desired TSM factor
is realised by the appropriate number of applications of
the constantly varying local natural scaling factor. The
local natural scaling factor estimate is updated at sub-
pitch period intervals giving accurate pitch tracking and
high quality in the output scaled signal.

7. Conclusion & Further Work

In the future, the home hi-fi unit will interface to the
home PC and MIDI files will be widely available.
However, if an aspiring musician wants to accompany a
favorite CD track at their desired tempo and key, a real-
time high quality time-scale / frequency-scale
modification algorithm will be needed. We have
presented the basis of such an algorithm. In the future we
plan to investigate further refinements to the algorithm
such as applying it on a subband basis for improved
quality. We also plan to investigate its real-time
implementation.

8. References

[1] http://www.entropic.com/products/etsm/etsm.html
[2] http://www.goldwave.com/
[3] http://www.syntrillium.com/cep/index.html
[4] http://www.janetdavismusic.com/trnskr.html
[5] http://www.ronimusic.com/muscdpl.html
[6] http://www.worldwidewoodshed.com/
[7] Pages 2 and 3 of

http://www.justjazz.com/manuscripts/transcribe.pdf
[8] Roucos, S. and Wilgus, A. M.: ‘High-quality time-scale

modification for speech’. IEEE proceedings on acoustics,
speech and signal processing, March 1985.

[9] David M. Howard and James Angus: Acoustics and
Psychoacoustics. Focal press. 1998

[10] Hermann Helmholtz: On the Sensations of Tone. Original
German Edition 1885. Dover pub. (translation), 1954.

[11] http://www.yamaha-xg.com/english/xg/s-synth/s-
synth.html

[12] http://www.eden.com/~mitchell/index.html
[13] http://www.everythingmusic.com/
[14] http://www.midifarm.com/
[15] Burrus, C. S. and Parks, T. W.: DFT/FFT and Convolution

Algorithms and Implementation. John Wiley & Sons, 1985

[16] B. Lawlor and A. D. Fagan: ‘A Novel Efficient Algorithm
for Audio Time-Scale Modification’, Irish Signals &
Systems Conference, NUI Galway, 1999.

[17] http://www.hitsquad.com/smm/programs/AMA_Win95/


