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Introduction 
Sigma-delta modulators are based upon the idea of using feedback to improve the effective 
resolution of a coarse quantiser, commonly a 1-bit quantiser [ I ] .  The modulator is a discrete-time 
system and thus suited to VLSI implementation. The most basic sigma-delta modulator is the first 
order, or single-loop, modulator. This modulator consists of a single feedback loop from the 
quantiser to the input of a discrete-time integrator. It can be shown that the effect of the integrator 
and the feedback loop is to null the quantisation noise at zero frequency, and so for low-frequency 
inputs it is possible to obtain a high signal-to-noise ratio at the output. This noise-shaping function 
is one of the major advantages of sigma-delta modulation. It is possible to enhance this noise- 
shaping by increasing the number of integrators and adding additional feedback loops from the 
quantiser to the inputs of these new integrators. In this manner it is possible to obtain very good 
noise performance at low frequencies. 

Sigma-delta modulators can be categorised by the number of integrators in the system and by the 
number of feedback loops from the quantiser. A sigma-delta modulator with only one feedback 
loop to the input of the transfer function is commonly called a single-loop modulator (Figure 1).  
Another more recent form of classification is based on the filtering function of the modulator. It is 
possible to design the transfer function such that there is a null in the noise power at a frequency 
other than zero, obtaining faithful conversion of high-frequency narrowband signals. These 
modulators are called band-pass modulators [2] and correspondingly the traditional form is called 
low-pass sigma-delta modulation (Figure 2). 

Due to the noise-shaping ability of sigma-delta modulators and the linearity of the output with 
respect to the input, they have become popular as the modulation scheme for oversampled analog- 
to-digital and digital-to-analog converters [ 13. A sigma-delta modulator requires only simple 
analog components that are insensitive to circuit imperfections. Complex digital circuitry is then 
used to produce a high precision digital representation from this low-noise coarse quantisation. 

In the past sigma-delta modulators have been analysed using linear analysis techniques [3]. In  
these approaches the quantiser is replaced by an additive white noise source and then standard 
linear systems analysis is applied. This approach can provide good estimates of noise performance 
but it is unable to explain much of the behaviour of sigma-delta modulators, especially such 
phenomena as instability, integrator spans, quantiser switching frequency, idle tones, strong limit 
cycle behaviour and chaos, which are inherently non-linear. To examine these problems it will be 
necessary to utilise some of the many non-linear analysis techniques now available. A full rigorous 
non-linear analysis of these systems using any one technique would be very difficult, if not 
impossible. An alternative is to identify specific problems, such as instability, and to apply the 
most suitable non-linear analysis technique to the problem. Three main approaches have been 
applied to the non-linear analysis of sigma-delta modulators: spectral analysis (noise and signal 
performances), geometric analysis (stability analysis and integrator spans) and non-linear dynamics 
(limit cycle behaviour). 
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Spectral Analysis 
This form of analysis was pioneered by Gray [4, 51 and was extended by He, Kuhlmann and Buzo 
[ 6 ] .  In [4] Gray considered the first order low-pass modulator, which is defined by the single 
difference equation 

U,+, = un + x n  - sgn(Un 1 (1) 

where U is the state variable and x,, is the input. Gray proved the equivalence between the first 
order modulator with constant input and the circle map. The circle map is a well known function in 
non-linear dynamics and ergodic theory. Using this equivalence it was possible to explain some of 
the basic behaviour of the system, for example, the fact that rational inputs lead to a limit cycle. 
Gray, through the solution of a system of non-linear equations, was also able to determine the true 
quantisation noise behaviour and then proceeded to develop the overall noise spectrum. It was 
shown that the assumption of white quantisation noise was incorrect, as there was a strong 
correlation between the input and the output bit pattern. This work was then extended by Gray and 
He et a1 to cover double-loop systems with both constant and sinusoidal inputs. 

The extension of this work to systems other than the first order single-loop modulator required the 
assumption that the quantiser never overloads. This is only applicable to systems with multi-bit 
quantisers, as these may be designed not to overload. Another drawback to this approach is the 
difficulty in extending the analysis to systems with more than two loops. This approach is limited 
to noise spectra but to date it is the best approach available for this analysis, other than linearising 
the system. One important result of this analysis was the identification of the optimal FIR filters 
for the output of a sigma-delta modulator, and that the commonly used sinc filters are close to 
optimal. 

Geometric Analysis 
In this approach the trajectories of the integrator outputs are analysed. This approach is primarily 
concerned with stability and identifying the integrator spans of second order systems [7, 81 and 
some third order systems [9 ] .  This approach depends on identifying regions in state space (where 
the state variables are the integrator outputs) where the mapping function of the modulator is 
affine. Within these regions the trajectories of the outputs of the integrators lie on parabolae 
(Figure 3). The difficulty lies in identifying the behaviour of the trajectories upon crossing 
between the piecewise-linear regions. The approach promoted independently by Hein and Zakhor 
[7] and Wang [SI concentrated on the second order low-pass system and considered the trajectories 
as continuous curves. They showed that for all inputs of constant value in the range ( - 1 , l )  there 
was some maximum size of parabola beyond which the trajectories collapsed down to be within 
this maximum parabola. In this manner they proved that the second order modulator was stable for 
inputs within the range (-1.1) and they were also able to develop strong bounds for the maximum 
value that the integrator outputs may reach (Figure 4). 

Pinault and Lopresti extended this approach to include the class of inputs consisting of a constant 
input of magnitude less than 1 and of an arbitrary sum of finite amplitude sinusoids [ 101. This was 
the first time it was shown that the second order modulator was stable for sinusoidal inputs. The 
bounds produced are interesting but not very useful as they tend to infinity as frequency tends to 
zero. 

A more recent approach by Farrell and Feely [ 1 I ]  considers the trajectories as discrete points along 
a parabolic curve. This complicates the analysis of the behaviour of the trajectories in the 
transition region between the half-planes. It is possible to remove the time component from the 
entrq positions of the trajectories in these transition regions. Using this technique all possible 
parabolae can be identified in the new half-plane. If this approach is used for both half-planes, an 
iterative approach can be developed to identify the maximum size of the parabolae. This is similar 
in principle to that of Hein, Zakhor and Wang, but as it acknowledges the discrete nature of the 
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trajectories much tighter bounds can be achieved (Figure 4). One of the results of this more 
detailed analysis is that the range of all possible values for the integrator outputs can be determined 
(Figure 5) and the existence and stability of limit cycle behaviour can be defined [ I  I]. This 
approach has been extended to include the case of chaotic sigma-delta modulators. Chaotic 
modulators may be obtained by placing one of the poles of the integrators of the second order 
modulator outside the unit circle. This has been suggested as a means of reducing the problem of 
idle tones, but has a penalty in dynamic range of input and stability. Current work on this approach 
has shown that it can be extended to cover the full range of time-varying inputs including 
sinusoidal and square-wave inputs. Second order modulators may go unstable under certain time- 
varying inputs. Linear analysis can not determine what types of inputs will result in instability. A 
future avenue for development would be to use the approach of Farrell and Feely to determine the 
conditions under which the second order low-pass sigma-delta modulator may become unstable. 

Non-Linear Dynamics 
The principles of non-linear dynamics were first applied to sigma-delta modulators by Feely and 
Chua [ 121. The strength of non-linear dynamics is that it provid insightful information into the 
behaviour of non-linear systems and thus can give useful inform' xi about limit cycle effects and 
idle tones. Gray had shown that limit cycles arise from rationai inputs. Feely and Chua, using 
symbolic analysis, proved that as the integrators become less perfect, the value of inputs close to 
the simplest rationals, for example 0, 0.5, 0.25, fall into the limit cycle behaviour associated with 
those rationals, leading to a reduction in accuracy. This effect is best shown in a plot of input 
against output which results in the well-known "devil's staircase" (Figure 6). 

Feely [ 131 first analysed the band-pass sigma-delta modulator with the state equation 
U, = 2u,-, U,,= + ~ c o s ~ ( x , , - ,  - sgn(U,,-, >> - (x,-: - s g n ( ~ , - ~  1) (2) 

Feely identified the fixed and low order period points of this map. It was then possible to show 
that if a trajectory started close to these fixed points the trajectories would move elliptically around 
these points. Outside these regions, the behaviour of the trajectories becomes fractal in nature. An 
example is shown in Figure 7 where cos0 = -0.158532 and with zero input. This work was then 
extended to consider sinusoidal inputs [14]. The importance of these results is that a single ellipse 
or a finite number of ellipses is equivalent to the limit cycle behaviour in the low-pass modulators. 
If  the systems is capable of locking into an ellipse or a finite number of ellipses, then a loss of 
accuracy may result. This potential loss of accuracy can be avoided only by identifying the 
conditions under which such behaviour can arise. This would not be possible using any linear 
technique. 

Conclusion 
The behaviour of even the simplest sigma-delta modulator is complex and difficult to analyse. 
Non-linear analysis techniques can provide an understanding of some of the unexpected behaviour 
of these apparently simple looking systems. No one approach will yield all the required results so 
it is important to have an understanding of which approach is useful for the specific problem under 
investigation. The various approaches discussed in this paper are all useful in their own way. They 
can be extended to some degree to consider other tasks but primarily spectral analysis is suitable 
for noise performance and spectra, geometric analysis for bounds and stability and non-linear 
dynamics for limit cycle behaviour and other behavioural effects. 

This paper has concentrated on the sigma-delta modulator but the discussion can be generalised to 
include other systems. The sigma-delta modulator shares many features with other discrete-time 
processes in digital signal processing, for example digital filters [15], and digital phase lock loops 
[16]. In recent years there has been significant growth in the application of non-linear analysis to 
many different systems. Many new techniques have being developed, enabling a deeper 
understanding of these complex systems to be obtained. 
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Figure 1 : Single-loop sigma-delta modulator with I-bit quantiser. 
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Figure 2: The noise performance of low-pass and band-pass modulators respectively. 
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Figure 3: The parabolic trajectories of the outputs of the integrators and their 
transition regions 
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F i p r e  4: A comparison of the bounds obtained by Hein and Zakhor [7], by Farrell and Feely [8] and from 
the  maxima obtained from simulation. 
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Figure 5: A plot of the values that the integrator 
outputs may take and the boundaries on these values 
that can be detennlned using the approach of [ 1 I ]  
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Figure 6: A -mph of the average output versus input 
for a leaky first order S i  modulator 
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