
Gaussian beam mode analysis of partial reflections
in simple quasi-optical systems fed by horn antennas

J. Anthony Murphy a,*, Neil Trappe a, Stafford Withington b

a Experimental Physics Department, National University of Ireland, Maynooth, Co. Kildare, Ireland
b Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, UK

Received 14 November 2002

Abstract

Low-level reflections are particularly troublesome in sensitive high-resolution spectral line receivers in the submil-

limetre and terahertz wavebands, giving rise to baseline ripple on spectra which is hard to distinguish from wide lines. In

typical systems for submillimetre-wave astronomy, for example, a lens or flat dielectric plate is often used as a cryostat

window placed close to a feed horn. Partial reflection from such interfaces can give rise to return loss at the horn throat,

which is considerably higher than for the horn radiating into free space. A full scattering matrix approach based on a

combination of standard waveguide modes and quasi-optical Gaussian beam modes can be used to analyse standing

waves due to partial reflections, in which track is kept of both the backward and forward going components of the

propagating fields. In this paper, we consider how such an analytical tool can be set up and we present typical examples

of interest in which horn antennas feed simple components including windows, lenses and reflecting central blockages.
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1. Introduction

In this paper we extend a theoretical framework

based on Gaussian beam mode analysis [1] to the

modeling of partial reflections and standing waves
in submillimeter and terahertz quasi-optical sys-

tems fed by horn antennas. Gaussian beam modes

can be thought of as the beam-guide analog of

conventional waveguide modes [2], where a beam

guide consists of a number of focussing elements

spaced so as to ensure that the propagating beam

is always quasi-collimated. Both because of trun-
cation and aberrational effects, realistic optical

components disturb the pure modal propagation,

just as a step does in a waveguide. At such optical

components power is scattered between modes

[3,4]. Gaussian beam mode analysis can be applied

to any quasi-optical system in which there are

partial reflections by also including the backward

travelling modes. Such an analysis is necessary to
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have a more realistic description of the operation

and performance limitations of a complete system

resulting from the presence of non-ideal optical

components. To this end an analogous mode

matching scattering matrix approach to that ap-

plied in wave-guide discontinuities and horn an-
tenna modeling can be developed [1,5]. In such a

description free space propagation of Gaussian

beam modes is most conveniently represented

using propagation ‘‘scattering’’ matrices, which

are diagonal (as in waveguides of uniform cross-

section) and take account of the modal phase

delays.

Another level of complexity is introduced by the
fact that most optical systems typical of the sub-

millimeter and terahertz bands are coupled to horn

antenna feed structures (typically single moded

corrugated horn antennas). Any reflections from

horn antennas do not occur at a single well-defined

plane, so it is necessary to consider the questions

about ‘‘how far’’ into the horn an incoming

field propagates before being reflected. This can be
tackled by combining an electromagnetic ap-

proach based modal analysis of the feed structure

with a beam guide modal analysis of the optical

system, as will be discussed in Section 2. In Section

3, we consider specific examples of partial reflec-

tions from transparent windows and lenses (of fi-

nite thickness), as well as at reflecting blockages of

the beam (such as occurs in the center of the field
for an on-axis Cassegrain antenna system, for ex-

ample). All of these components give rise to low

level standing wave effects, which are a particular

nuisance for heterodyne systems.

2. Theory

The modal matching technique can be regarded

as a method for obtaining the overall transmission

and reflection properties of any guide structure in

which modes of propagation can be defined. In our
case the guide structure consists of a horn feeding

a quasi-optical system. Any section of the system

(or the system as a whole) is represented by a single

scattering matrix [S] with the reflection and

transmission characteristics determined by the

equation:

½B�
½D�

� �
¼ ½S11� ½S12�

½S21� ½S22�

� �
½A�
½C�

� �
: ð1Þ

[A] and [B] are vectors containing the forward and

reflected mode coefficients, An and Bn, respectively,

at the input side. [C] and [D] are vectors of the

mode coefficients, Cn and Dn, of all the modes at
the output plane. Clearly, the modes at the output

plane are not the same (in terms of scale size) as

the modes at the input plane. They also may not be

of the same form (i.e in the sense of whether free

space or waveguide).

2.1. Non-scattering beam guide propagation

In a cylindrical beam guide coupled to a conical

horn (smooth walled or corrugated) it is most

appropriate to use Associated Laguerre Gaussian

modes, which for a wave travelling in the positive

z-direction (away from a waist at z ¼ 0) have a

mathematical form given by

Wa;cos
n ðr;/; zÞ

Wa;sin
n ðr;/; zÞ

( )
¼ Wa

nðr; zÞ
cosða/Þ
sinða/Þ

( )

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2� d0nÞn!
pW 2ðnþ aÞ!

s
2
r2

W 2

� �a=2

� La
n 2

r2

W 2

� �
exp

�
� r2

W 2

�

� exp

�
� ik z

�
þ r2

2R

�

þ ið2nþ lþ 1Þ arctan pW 2

kR

� ��

�
cosða/Þ
sinða/Þ

( )
: ð2Þ

a is an integer representing the degree of the La-

guerre polynomial. W and R are the beam width

parameter and phase radius of curvature, respec-

tively, and D/00 ¼ arctanðpW 2=kRÞ is the phase

slippage for the fundamental mode between the

waist and the plane of interest (see, e.g., [2]). A

mode travelling ‘‘backwards’’ in the negative z-
direction, Wa;ð�Þ

n can be obtained by choosing the

appropriate monochromatic modal solution for

the Helmholtz equation, and is equivalent to set-

ting z ! �z. This changes the sign of kz and R, but
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not W . The appropriate sign for the phase slippage

also changes in (2), if it is assumed that the phase

slippage is zero at the origin of z. Therefore, the
relationship between a forward Wa;ðþÞ

n and a back-

ward travelling mode with the same propagation
characteristics (i.e. waist at the same position and

of the same size) can be expressed as Wa;ð�Þ
n ¼

½Wa;ðþÞ
n �
. It is assumed that for both sets of solu-

tions the time dependence factor is included in the

same expðþixtÞ factor.
The phase evolution associated with lossless

propagation in a quasi-optical system is conve-

niently incorporated into a propagation matrix [P ],
which operates on the mode amplitudes (as in

the case of a true scattering matrix) such that,

½P11� ¼ ½P22� ¼ ½0� and ½P12� ¼ ½P21� ¼ ½V �. This is the
same as for waveguide modes in a uniform wave-

guide [5]. Here [V ] represents a diagonal matrix

of on-axis phase evolution terms of the form

Vmm ¼ expðiDUnaÞ, where for Laguerre modes m
represents a mode of order n and degree a. For
modes travelling in a uniform beam guide of

length d the relevant phase term is: DUna ¼ �kd þ
ð2nþ a þ 1ÞD/00. The on-axis phase slippage of

the fundamental mode with respect to a plane

wave, D/00, depends on the input beam parame-

ters (Rin and Win), as well as the quasi-optical beam

guide configuration (most conveniently expressed

in terms of an ABCD matrix) [6,7], and is given by:
D/00 ¼ �ArgðAþ B=qinÞ, where 1=qin ¼ 1=Rin �
jk=pW 2

in, with the subscript ‘‘in’’ implying para-

meters at the input plane. The submatrix [V ]
transforms the vector of input amplitudes Am and

Cm into a vector of amplitudes Dm and Bm so that

Dm ¼ VmmAm and Bm ¼ VmmCm.

2.2. Propagation in dielectrics and reflections from

dielectric interfaces

In a non-scattering beam guide the assump-

tion is made that all lenses are perfect phase

transformers. If one is interested in dealing with

real lenses, but can still assume paraxial quasi-

collimated propagation, then two additional phys-

ical effects have to be adequately accounted for,
these being partial reflection at the dieletric inter-

faces and propagation in the finite thickness of the

dielectric material.

As a Gaussian beam mode enters a dielectric

medium there is a sudden change in the wave-

length from ko to kn ¼ ko=n in the medium. This

results in a change in the phase curvature for the

beam from R0 in free space to Rn ¼ nR0 in the

medium (assuming a flat interface), where n is
the refractive index of the medium. It turns out to

be convenient for propagation inside a dielectric to

introduce a reduced complex phase radius of cur-

vature q0 ¼ q=n, on which the ABCD matrix oper-

ates. This is convenient as q0 does not change for
the beam across a flat transverse dielectric inter-

face, since

1

q0n
¼ n

Rn

� i
nkn
pW

¼ 1

R0

� i
k0
pW

¼ 1

q0o
;

where subscript �n� refers to inside the medium at

the interface and �o� refers to outside the medium

in free space. This follows the convention of

Siegman [7], in which he uses reduced radius of
curvature R0 ¼ R=n.

In the general case we require the same type of

relationship for the reduced complex phase radii

of curvatures q0in and q0out between input and out-

put planes as in free space, i.e.

q0out ¼
Aq0in þ B
Cq0in þ D

:

The corresponding appropriate ABCD matrix

for propagation in a dielectric medium is

f1; d=n; 0; 1g. For a curved interface between two

media of refractive indices n1 and n2 the appro-

priate matrix is given by f1; 0; ðn2 � n1Þ=Rsurf ; 1g,
where subscripts 1 and 2 refer to incident and

transmission regions, respectively, and Rsurf is the

radius of curvature of the interface with the usual

convention for R positive. In the generalised case

the phase slippage is given by

D/na ¼ ð2nþ a þ 1ÞArg
�
�A� B

q0in

�
:

For paraxial beams we can approximately as-
sume that, for each point on the interface, the re-

flected and transmitted electric fields are given by

the Fresnel equation for normal incidence: Erefl ¼
qEinc, where q ¼ ðn1 � n2Þ=ðn1 þ n2Þ, and Etrans ¼
sEinc, with s ¼ 2n1=ðn1 þ n2Þ. For the transmitted

field this simply implies for the forward going
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wave that ½S21� ¼ s½dlm�. The case for the reflected
field is more complicated since the phase front

curvature is reversed on reflection, so modes are

scattered. Erefl can be written in terms of the modes

travelling in the backward direction Erefl ¼P
i Blw

ð�Þ
l , which have their waists coinciding with

those for the forward going waves. Writing Einc as

a sum of modes travelling in the forward direction

Einc ¼
P

i Alw
ðþÞ
l , implies the Bl can be derived

from the scattering relationship: Bl ¼
P

j ½S11�lmAm,

where

½S11�lm ¼ q
Z
A
fwð�Þ

m g
wðþÞ
l rdrd/;

and A represents the interface surface over which

integration takes place. With respect to integration

over the tangential plane, the typically spherical

interface introduces extra spherical phase error

terms of expð�idðrÞÞ. For the forward travelling

wave dðrÞ ¼ þpnr2=koRsurf , with Rsurf being the
radius of curvature of the surface and n the re-

fractive index of the medium in which the reflec-

tion occurs. Thus,

½S11�lm ¼ q
Z
TP

fwð�Þ
m g
 expði2dðrÞÞwðþÞ

l rdrd/;

where now the integration is over the tangent

plane and the phase errors for both waves are in-

cluded.

2.3. Transformation of waveguide modes to free

space modes

At the horn aperture the forward going wave-

guide modes are launched into free space while the
backward propagating waveguide modes can be

coupled to the horn antenna. We therefore need to

consider how to combine the horn and beam guide

mode matching techniques by deriving the ap-

propriate transformation matrices. The transverse

electric field etotal at the mouth of the horn can be

written as a linear sum of TE and TM modal

fields. If one is considering conical horns (both
smooth walled and corrugated) the waveguide

segments are cylindrical. For such cylindrical

waveguides of radius a, the transverse electric

fields of the corresponding TE and TM modes

are

eTEl ¼ J0ðp01lr=aÞiþ J2ðp01lr=aÞ½cos 2/iþ sin 2/j�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pa2ðJ1ðp01lr=aÞ

2 � J2ðp01lr=aÞ
2Þ

q ;

eTMl ¼ J0ðp1lr=aÞi� J2ðp1lr=aÞ½cos 2/iþ sin 2/j�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pa2ðJ2ðp1lr=aÞ2Þ

q ;

ð3Þ
where p1l represents the lth zero of J1ðzÞ, and p01l
represents the lth zero of J 0

1ðzÞ. The constant of

proportionality has been chosen for convenience

to make
R
A



eTE=TMl



2rdrd/ equal to unity. On or-

dering the guide modes by their cutoff wavelength,

so that those of odd order are TE while those of

even order are TM we obtain

etotal ¼
X
l

ale
TE
l þ ble

TM
l ¼

X
n

Ane
G
n ; ð4Þ

where A2n�1 ¼ an, A2n ¼ bn, e
G
2n�1 ¼ eTEn and eG2n ¼

eTMn .

At the interface between the horn and ‘‘free
space’’ the description of the field emerging from

the horn must be transformed into a sum involving

free space modes. Because of symmetry the wave-

guide modes of a conical horn will clearly couple

only to free space Associated Laguerre Gaussian

modes for which a ¼ 0 or 2. Thus, we can expand

each waveguide mode as

eGm ¼
X
n

T 0
lmw

0
liþ T 2

lmw
2
l½cos 2/iþ sin 2/j�: ð5Þ

Here T 0
lm ¼

R
A ðw

0
liÞ


 � eGm rdrd/, and T 2
lm ¼

R
A ðw

2
lnÞ


�
eGm rdrd/, where n represents the unit vector

n¼ cos2/iþ sin2/j. Thus, at the horn aperture
we can re-express the overall field etotal ¼

P
m Ame

G
m

in terms of Associated Laguerre Gaussian modes

etotal ¼
X

l

D0
lw

0
liþ D2

lw
2
l½cos 2/iþ sin 2/j�; ð6Þ

where now clearly, D0
l ¼

P
m T

0
lmAm and D2

l ¼P
n T

2
lmAm. The transformation matrix [T ] can be

regarded as the [S21] submatrix component of a

scattering matrix, which transforms the mode
amplitudes associated with waveguide modes into

those associated with beam guide free space

modes. Clearly, in this case ½S12� ¼ ½S21�T, where
superscript �T� represents transpose. Note that for
a horn whose aperture is several wavelengths wide
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one can assume that there is no appreciable re-

flection of the waveguide modes at the aperture of

the horn itself. This is because only the highest

order modes, which contribute little to the beam,

will have a guide impedance appreciably different
from that of free space. This implies that ½S11� ¼
½0�. Similarly, if we assume that any free space

radiation propagating towards the horn, and

which misses the aperture, is absorbed (or at least

not reflected back), then ½S22� ¼ ½0�. The part of the
cross section of the quasi-optical beam that is in-

tercepted by the horn will be coupled to waveguide

modes. If we take the effects of a flat transverse
reflecting horn flange into account then clearly

½S22� needs to be calculated.

3. Examples

3.1. Dielectric windows with corrugated horn feeds

All the elements necessary to analyse some

simple quasi-optical configurations are now in

place. We first consider applying the above theory

to an example case of a corrugated conical horn

antenna which looks through a thin partially re-

flecting dieletric sheet placed close to the horn

aperture (see Fig. 1). This is a set-up that occurs in

practice when detection systems have to be cryo-
genically cooled and any incident radiation is

coupled to the horn through a cryostat window.

We assume in this example that the plane of the

sheet is perpendicular to the axis of the horn and

that there are no matching layers. The partially

reflecting sheet is also assumed to be of uniform

thickness, at least to within a small fraction of a

wavelength. In the example considered, the wave-

length of the radiation is taken to be 1 mm, the

horn aperture has a diameter of 4 k and the axial

length of the horn is 40 k. The dieletric sheet

(n ¼ 2:00) is placed close to the horn at a distance

of 5 k, in front of the horn. The horn beam has a

focal ratio of F3.5, implying the beam has a waist
radius of W0 ¼ k=ph0, where h0 is the semi-opening
angle to the 1=e point in amplitude (so that

ð2h0Þ�1 � 3:5).
To get a feeling for the level of reflections that

might be a nuisance and contribute to standing

waves we consider the reflection submatrix ½Swin11 �00
term for just the window itself as a function of its

thickness (Fig. 1a). This represents the amount of
power carried by the fundamental Gaussian that

is reflected back in the direction of the horn and

therefore can couple well to the horn. It is assumed

here that the Gaussian beam mode set is chosen to

maximise the power carried by the fundamental in

the description of the horn beam.

For an accurate calculation of course we use the

full ½Stotal11 �00 matrix, including the horn plus the
quasi-optical system it feeds, to compute the total

amount of power reflected back at the horn throat

into the waveguide (Fig. 1b). Fig. 2a shows the

power reflection coefficient for the TE11 mode

(fraction of power reflected back along the guide)

as a function of the thickness of the absorber,

expressed as a fraction of the wavelength in the

medium. (Note horn feeds a circular waveguide
with a transition section which produces a free

space return loss of approximately )30 dB.) Also

shown is the reflected power at the window carried

by the fundamental Gaussian j½Swin11 �00j
2
.

We see the reflected power in the fundamental

Gaussian for the window is a good approximation

to the amount of power actually reflected at the

Fig. 1. (a) Gaussian beam and (b) horn antenna (corrugated conical) illuminating a partially reflecting dielectric sheet.
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horn throat. This is because a corrugated horn

couples well to a Gaussian beam of the appropri-

ate width. Of course, when the thickness of the

dielectric is zero, the ½Swin11 �00 term for the window is

zero, whereas the reflection coefficient for the real

horn remains finite due to internal reflections

within the waveguide structure. This information

can be vital for understanding the effect of reflec-
tions on the performance of any component in the

waveguide; for example, a mixer diode.

Fig. 2b compares the resulting beam patterns of

the horn for the cases where the total power re-

flected from the dielectric sheet is a maximum and

a minimum. Radiation patterns significantly dif-

ferent in width are observed, which are sensitively

dependent on the dielectric thickness used. In the
case with resonant dielectric thickness, the farfield

pattern of the horn remains unaffected. It is also

noteworthy that when the thickness of the dielec-

tric is such as to cause maximum reflection the

farfield pattern becomes highly Gaussian in shape.

This can be understood in terms of the higher

order modes that are reflected losing power past

the horn aperture and illustrates the importance of
using resonant cryostat windows.

3.2. Lenses with corrugated horn feeds

For a lens both the thickness of the lens and the

curvature of the faces influence the standing wave

effects. Typically in a beam-guide the system of

lenses is used to re-collimate the beam so at least

one the faces of the lens will usually be convex. As

a simple example to probe the scattering technique

presented above we consider the cases of a plano-

convex lens used to recollimate the beam from a

horn. We consider two cases: (a) the convex face is

oriented towards the incident radiation so that the
reflected field tends to scatter into wide angles and

not couples well back into the horn, and (b) the

plane face is oriented towards the horn and the

convex face refocuses the reflected radiation so it

can couple more efficiently to the horn, as illus-

trated in Fig. 3.

We take the same horn geometry as from pre-

vious examples with a horn feeding a lens at a
distance of 30 k from the horn aperture. The lens

has a focal length of 30 k and a refractive index n
of 2.00. The lens diameter was set to 5 W , where W
is the beam radius at the lens face, and the finite

thickness of the lens is varied over one wavelength

of the radiation in the lens medium ðko=nÞ. A plot

of the reflection coefficient at the throat of the

horn j½Stotal11 �00j
2
versus thickness of the lens is

shown in Fig. 4a and b below, for the cases where

the lens has its curved face towards and away from

the horn, respectively. As expected the reflection

coefficient at the throat of the horn varies with the

thickness of the lens as a function of kn. Since the

front and back faces of the lens are not both flat,

Fig. 2. (a) Fraction of power R reflected in the fundamental Gaussian j½Swin11 �00j
2
(bold line) and the reflection coefficient at waveguide

throat j½Stotal11 �00j
2
for the horn as function of the thickness of the dielectric window in terms of wavelength in dielectric (thin line) and (b)

beam pattern for horn antenna for cases where reflection from dielectric is maximum (bold line) and minimum (thin line).
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the elimination through complete destructive in-

terference of the reflected waves cannot be

achieved in this case.

The phase slippage between the modes as they

propagate leads to the slight shifting of the re-

flection coefficient minima from exact multiples of

kn=2. The variation of reflected power with lens

width is similar for both cases. As the incident
radiation is dispersed at the first face of the lens in

configuration (a), less power is directed towards

the horn aperture, as expected. In configuration

(b) the curved face of the lens focuses reflected

power back towards the horn and the reflection

coefficient is greater as expected (5 dB higher).

3.3. Reflections due to central blockages

When a quasi-optical system feeds a Cassegrain

telescope a low level standing wave can be set up

between the detector feed horn and the secondary

mirror of the telescope. This process can be re-

garded as the detector horn being able to observe

an image of itself in the secondary mirror. The

standing wave resulting may give rise to unwanted

frequency sensitivity in either receiving or trans-

mitting systems. The telescope configuration used

in the analysis is shown in Fig. 5 in which an

equivalent lens represents the quasi-optical system.

For this example, an image of the detector horn

aperture is assumed to be produced at the sec-
ondary mirror (for optimized aperture efficiency

Fig. 3. The lens configurations in front of the detector horn: (a) curved face towards horn and (b) flat face towards horn. Configu-

ration (b) should focus more reflected power towards the horn aperture.

Fig. 4. The reflection coefficients at the throat of the corrugated horn as a function of the lens thickness (in terms of medium

wavelength): (a) shows the reflection coefficient when the lens is in the configuration of Fig. 3a and (b) and when the lens is in the

configuration of Fig. 3b. A larger reflection is seen in (b), as the lens tends to focus more energy towards the horn.

Fig. 5. The equivalent optical system used to model standing

waves that can exist between the feed horn and the secondary

mirror of a Cassegrain receiver.
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with a single pixel telescope, see, e.g., [8]). The

horn aperture field is propagated to the Cassegrain

focal plane of the telescope where a waist is

formed. It is then assumed that the secondary

mirror is in the far field of this waist.

A wavelength of 1 mm was again assumed in
the calculation with the same corrugated detector

horn dimensions as in previous examples. The

optical system produces a beam waist at the Cas-

segrain focal plane with a magnification factor of

3. The beam waist at the focal plane is then 3Woh,

where Woh is the Gaussian beam radius of the beam

at the horn. The distance from the Cassegrain focal

plane to the secondary mirror is set to 2.5 m, a
typical distance for large quasi-optical telescopes.

The equivalent optical system is assumed perfect

with no truncation or aberrations introduced to

the beam. The diameter of the secondary mirror is

set to be Wsec=0:89 (where Wsec is the Gaussian

beam radius of the beam at the secondary) to

achieve optimum coupling to a distant source in

the sky (optimised aperture efficiency).
Fig. 6 shows the reflection coefficient for the

TE11 mode (fraction of power reflected back along

the guide) as a function of Dz, an extra distance

propagated between the Cassegrain focal plane

and the secondary mirror. This extra distance in

effect models small displacements (of the order of a

few wavelengths) of the secondary mirror relative

to the rest of the optical system. As can be seen the

reflected power in the waveguide of the horn feed-

ing the system is a function of the extra distance

travelled to the secondary mirror with minima

occurring at half integral values of wavelength.
The maximum reflected power is of the order of

0.3% for the specific example given. The reflected

power in the horn waveguide is never zero be-

cause of the internal reflection internally within the

horn.

In a second example involving a Cassegrain

system, it is also possible to observe standing wave

effects over a finite bandwidth by varying the
wavelength at which the analysis is undertaken

including the bandwidth effects on the feed horn.

Fig. 6. Reflected TE11 mode in the throat of horn feeding

Cassegrain system as the distance between the horn and the

secondary mirror is varied in terms of wavelength. The constant

return loss (bold line) for the horn is also shown.

Fig. 7. (a) The standing wave observed as the wavelength of the radiation is varied between the feed horn and the secondary mirror in

a typical Cassegrain receiver set-up. The constant return loss due to internal reflections within the horn is also shown (bold line) and the

standing wave is seen to oscillate about this reflection coefficient. (b) Smaller bandwidth section showing standing wave oscillating

about reflection coefficient.
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An image of the horn aperture is assumed to be

produced with a wavelength independent optical

system at the secondary mirror located 4 m from

the horn. As the wavelength is varied (around the

design wavelength of 1 mm) Fig. 7a shows a plot

of the reflection coefficient for the TE11 mode at
the throat of the feed horn, along with the return

loss, due to internal waveguide mode reflections.

The return loss for the horn itself does not remain

constant over a finite bandwidth due to the wave-

length dependence on the corrugation depths. The

standing wave present between the secondary

mirror and the feed horn is seen to oscillate about

the horn return loss, seen in more detail over a
smaller bandwidth in Fig. 7b.

4. Conclusions

In this paper, we have presented a powerful

approach based on the mode matching technique

which allows for the full scattering matrix analysis
of quasi-optical systems fed by horn antennas. The

examples considered were of a conical corrugated

horn illuminating a thin dielectric sheet, a lens and

a Cassegrain telescope. The same method can be

easily applied to more complicated optical systems

and to other types of horns, such as smooth walled

conical and Potter horns.

Some approximations are inherent in the ap-
proach, especially with regard to the paraxial nature

of the quasi-optical propagation. Furthermore it is

assumed that there is a smooth transition in im-

pedance to free space at the horn aperture. Further

development of the techniques could address some

of these issues and include the effects of the small

reflections at the horn aperture, for example, as

well as the effects due to the flange surrounding

the aperture. The present approach can also be

extended to low loss and potentially high Q sys-

tems such as two horns coupled well together in

which any mismatches will give rise to strong

standing waves in the system.
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