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Abstract

Gaussian beam mode analysis (GBMA) offers a more intuitive physical insight
into how light beams evolve as they propagate than the conventional Fresnel
diffraction integral approach. In this paper we illustrate that GBMA is
a computationally efficient, alternative technique for tracing the evolution
of a diffracting coherent beam. In previous papers we demonstrated the
straightforward application of GBMA to the computation of the classical
diffraction patterns associated with a range of standard apertures. In this paper
we show how the GBMA technique can be expanded to investigate the effects
of aberrations in the presence of diffraction by introducing the appropriate
phase error term into the propagating quasi-optical beam. We compare our
technique to the standard diffraction integral calculation for coma, astigmatism
and spherical aberration, taking—for comparison—examples from the classic
text ‘Principles of Optics’ by Born and Wolf. We show the advantages of GBMA
for allowing the defocusing of an aberrated image to be evaluated quickly, which
is particularly important and useful for probing the consequences of astigmatism
and spherical aberration.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The classical diffraction theory of aberrations is usually presented in terms of Fresnel diffraction
integrals in advanced physics courses, as in ‘Principles of Optics’ by Born and Wolf [1]. In the
analytical technique presented below, propagating beams of coherent light can be considered
to be composed of a linear sum of Gaussian beam modes (GBM) [2] in the paraxial limit
(when Fresnel diffraction pertains). Re-synthesizing the beam at any plane by adding together
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Figure 1. The image may be distorted after reflection from the off-axis mirror. A contour plot of
the object and the image illustrates possible effects of phase distortion on beam quality.

the correct combination of modes allows us to gain valuable physical insight into the typical
characteristics of diffraction, i.e. beam spreading and intensity pattern evolution. GBMs can
also be traced very easily and very efficiently through a beam guide that consists of a line of
focusing elements (lenses and mirrors). In a perfect non-aberrating beam guide, the modes
maintain their character without distortion or scattering. The modes do, however, suffer order-
dependent phase slippages with respect to each other as they propagate. This allows evolution in
the shape of a complex optical beam which, in effect, consists of a combination of pure modes.
GBMA enables diffraction patterns to be determined computationally without the need for any
numerical integrations. Therefore, in the teaching of optics through computational physics,
this approach offers a less intensive method. In this section we introduce a brief background
to optical aberrations and how they were classified and analysed traditionally. In section 2 we
present a simple alternative GBMA technique to the established methods for analysing such
effects.

When non-ideal phase-transforming components are used in an optical system, a
deterioration in the quality of any diffraction-limited images results (see figure 1). Perfect
phase-transforming off-axis mirrors, for example, will suffer from such effects if the input field
is defocused (for example, if the input object is longitudinally displaced in the system) [3].
Paraxial or Gaussian optics are only approximately correct in describing image formation and,
in the derivation of paraxial equations, the approximations sin§ ~ § and cos § &~ 1 are made
for small angles. This leads to normal perfect imaging, derived in elementary ray-tracing
analysis. If the next term is considered in the expansion, then we have third-order theory, in
which case sin 8 ~ § + /3 and cos § &~ 1 — §2/2 are the lowest-order terms. The aberrations
that affect image quality are generally most important in the third-order approximation [4].
These aberrations have been classified by Ludwig von Seidel and are referred to as Seidel
aberrations [6].

For coherent systems the phase errors due to the distorted wavefront can also be expanded
in a series of Zernike polynomials [1]. Clearly, such aberrations will affect the phase front
of a pure GBM, causing the modal power to be scattered into other modes and resulting in a
distorted beam pattern. This then suffers shape evolution and is no longer a pure mode. In
GBM theory, power scattering between adjacent modes can be used to measure the level of
aberration introduced to the optical beam.

The departure from ideal diffraction-limited imaging is one of the principal consequences
of such phase aberrations. To illustrate this, figure 2 shows two phase fronts at the exit pupil of
an optical system: W1, which is perfectly spherical; and W2, which is an aberrated phase front
(the figure follows the convention and notation used in [1]). The ideal spherical wavefront
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Figure 2. An illustration of aberration in terms of a Gaussian spherical wavefront.

produces a perfect diffraction-limited Airy spot at the image plane [5]. Wavefront W2 is an
example of a more realistic wavefront, which is aspherical and whose shape represents the
actual effect of the optical system.

The deformation of the real wavefront from the ideal wavefront is usually described by an
aberration function, ®. Consider figure 2, in which a monochromatic point source Py produces
a perfect paraxial image at the point P} at the image plane. We define the z-axis as lying along
CP7, where C is the centre of the exit pupil. The off-axis distances to the object point source
Py and the image point P} are represented by the off-axis distances Yo and Y7, respectively.
The intensity at an arbitrary point P in the vicinity of the image plane can be written (assuming
a/R < 1, where a is the radius of the exit pupil and following [1]) as

1 2
/ / exp(i(kcb —vpcos(¢p — ) — %u,o2>>,o dpde¢
o Jo

where u = 27”(%)21, v = %”(%)wxz +y2, ¢ = arctan(y/x), and x, y and z are co-ordinates
with respect to the perfect image point (see figure 2). p = r/a and ¢ define the cylindrical
co-ordinates at the exit pupil. Note that this approximation is equivalent to Fresnel diffraction
(i.e. paraxial propagation) if it is assumed that the effective optical axis of the system is now
given by CP7 and that the angle made with the optical axis is small. Thus, the exit pupil is
regarded as approximately perpendicular to the chief ray CP}. The same approximations are
made in the derivation of GBM (i.e. the Fresnel approximation) and therefore it should be
possible to investigate the application of a modal approach to the propagation of aberrations
and the formation of distorted diffraction-limited images.

The function @ represents the appropriate phase error term (aberration function) at the
exit pupil. A perfectimage i (p) has the form of the ideal diffraction pattern for a point source
(i.e. an Airy pattern when ® = 0). For a non-perfect situation, ® is given by the expansion

=" A,,r"cos" §, 2)

l,n,m

2

ey

: 1
l(P)=F

where A),  is a constant and the lowest-order contributions can be expressed in terms of the
Seidel coefficients.

These Seidel (or primary) aberrations are divided into five different categories, namely
spherical aberration, coma, astigmatism, curvature of field, and distortion. An expression for
each of the primary aberrations is given in table 1, taken from [6].
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Table 1. The five primary Seidel aberration functions.

Type of aberration Representation (P)
Spherical aberration ~ Br*

Coma Fr3 cos(¢)
Astigmatism Cr? cos?(¢)
Curvature of field Dr?

Distortion Er cos(¢)

The Seidel coefficients B, C, D, E and F associated with the different types of aberration
describe the relative magnitude of the aberration. For the general case, we can write

® = Brt*+ Fricos¢ + Cr?cos’ ¢ + Dr* + Er cos ¢. 3)

Rather than a simple power series, the aberration function ® can also be expanded in terms of
a complete set of orthogonal circle polynomials, referred to as Zernike polynomials. Zernike
polynomials have the advantage for coherent systems of being orthogonal over the unit circle
and, in optimizing optical design, are useful in balancing aberrations to maximize the intensity
at the Gaussian focus. A full description of the application of Zernike polynomials can be
found in [1].

In section 2 we detail GBMA background theory and consider the details of applying
GBMA to the image-forming qualities of a beam that suffers from various Seidel aberrations.
In section 3 we apply the GBM theory to specific examples of primary aberrations and compare
the results with classical diffraction integral predictions, as presented in [1].

2. GBM analysis of phase aberrations

In GBM theory a monochromatic coherent beam can be represented by a scalar field E that
can be written as a linear sum of independently propagating modes ¥,,,. The field at any plane
z is simply given by

Eo(r,,2) = Y AnWa(r, ¢; W(2), R(2)), “

where W and R are beam parameters that depend on z and A, are the mode coefficients [7]. If
the field E is known at some reference plane z, then the mode coefficients can be calculated
using the appropriate overlap integral of the general form

A= / / Eo(r, ¢, 20) W2, (ry 6: W (z0), R(z0))r dr dg. )

For example, at the uniformly illuminated circular exit pupil of an optical system, the mode
coefficients are given by equation (5) on setting Ey(r, ¢, zo) to be unity over the aperture
area. To incorporate the Seidel phase aberrations into GBMA, it is most convenient to use the
associated Laguerre Gaussian modes ¥,, = W, of the form

2(2 — 8on)n! 272\ 2 272 2
Yna(r, ¢; W(2), R(2)) = ( ) Lﬁ( ) exp< )

W@+ o)l \ W()? W) WG
2
x exp(—jk( . )) exp(j(2n +a + 1) A (2)) expljag). ©)
2RE)

where L¢ (x) are the associated Laguerre polynomials of order n and degree o [8]. The beam
radius, W(z) (or beam-width parameter), and the phase-front radius of curvature, R(z), are
functions of distance z and are given respectively by

W2(z) = W§[1+< < ﬂ and  R(2) =z[1+ (”W‘%)z} %
nW& ’ AZ '
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where A is the wavelength of the radiation and W, is the minimum value of W, which occurs at
z = 0 and is referred to as the waist position. The value of W is usually chosen to maximize
the power in the fundamental mode [7]. In this way, the fundamental mode can be used as
a zeroth-order approximation to the intensity distribution, and W gives the scale-size of the
beam. In such a description, the waist will coincide with a focus. These modes, W, ,, will
propagate through an optical system without scattering and the output field at the image plane
can be reconstructed by resuming the modes as in [2].

If it is assumed that phase aberration is now introduced into the propagating beam at some
particular plane z’, then we can relate the input beam,

Ein(r,¢,2)) = ZA, W (r, ¢; W, R), )

to the aberrated output beam Eoy (7, ¢, z') = Epn(r, ¢, 7') exp(ik®(r, ¢)). The effect of the
phase error term can be determined by recalculating the true mode coefficients of the output
beam using

r=a =21 r=a ¢=2m
B, = / / {Eou(r, o)W rdrdg = / / {Ein(r, ¢) exp(ik®)} W, r dr de.
0 0 0 0
)

This is computationally efficient, although equation (9) does not emphasize the modal
scattering introduced by the aberrations. An alternative viewpoint is to regard the component
modes as being distorted and scattered. Thus

Eou(r, ¢,7)) = AW, (r, ¢; W, R)IPS = T A, (W, (r, p; W, R) exp(ikd (1, $))}. (10)

Clearly, the distorted modal field \Iln? = W, exp(ik®(r, ¢)) is no longer a true mode, but can
itself be represented as a sum of true modes

\Iln]?islorled — \Ilm exp(ik(b(r’ ¢)) — Z Smm/ \Ilm/, (1 1)

Snm can be thought of as elements of a scattering matrix responsible for describing the
aberrating effects introduced into the general beam mode set. These elements are given by

Spm = / W, (r, ) explik® (r, @)1V, (r, ¢)r dr do. (12)

The output field mode coefficients, B,,, are now given by B,, = XS,y A,v. This approach is
more computationally intensive, as a much larger number of integrations is required. However,
clearly the S,,,  are input-field independent and describe the aberrating effect of the optical
system on the basis set of GBMs themselves (rather than the particular combination that makes
up the input field). Thus, if the scattering matrix for a given aberrating optical system is known,
then the effect on a range of fields (i.e. the appropriate B,,) can quickly be calculated.

GBMs are particularly powerful when examining the fields not just on the image plane
(Fourier plane of the exit pupil) but also at other planes in the vicinity. This is particularly useful
when it comes to examining images that suffer from spherical aberration and astigmatism.
Away from the image plane, the beam is of course still expressed as a modal sum, E(r, ¢) =
YB,V,,(r, p; W, R). The width of the beam, W, scales accordingly with distance z away
from the image plane, and the modes suffer relative phase shifts that result in changes in the
beam shape.

The dimensionless ‘optical parameters’ u and v that are used in equation (1) relate the
displacements (with respect to an origin at the perfect image point) along the longitudinal z-axis
(u) and on the transverse (x, y)-plane (v). The relationships between u and v and the (x, y, z)
displacements can, interestingly, be rewritten in terms of the parameters of the component
GBMs (beam-width W and the phase-slippage term A¢go [7]). Assuming a modal waist of
beam width W, at the paraxial image point, the phase-slippage parameter for propagation at
distance z away is given by [2]

A
Ad)oo = tElIl_1 < Zz). (13)
7 Wy
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This phase-slippage parameter reduces to 7 /2 as the distance z becomes large (if, for example,
the exit pupil is in the far-field of the perfect image plane). In that case, the relationship
between beam-width parameters at the image and the exit pupil, Wgp and W), are given by

AR
Wy = ,
T WEP

where R is the phase radius of curvature at the exit pupil. Thus, it can easily be shown that the
relationship between u and the phase slippage is

(14)

2
= tan(Aqsoo)(WiEp) . (15)

This is a convenient relationship when expressing the variation of the intensity pattern with
displacement u away from the image plane. A Fourier transformation of the exit pupil field is
appropriate when the exit pupil is in the far-field of the image plane. When the exit pupil is in
the near-field (sometimes the case in long-wavelength far-infrared quasi-optical systems) the
situation is more complicated, as the true image plane does not coincide with the beam-waist
position.

3. Examples

In this section we compare examples analysed using classical diffraction integrals with the
corresponding results computed using GBMA. Three specific classical aberration types are
analysed: coma, astigmatism and spherical aberration. The aberration function ® in each case
is taken for the examples presented in [1] (Chapter IX ‘The diffraction theory of aberrations’).

3.1. Coma

To illustrate GBMA applied to classical coma, the phase term is introduced at the uniformly
illuminated exit pupil of the system (uniform top-hat field) and then this field is propagated
to the Fourier image plane to observe the effect. We can apply equation (9) to calculate
the appropriate mode coefficients. Figure 3 illustrates how the reconstructed aberrated beam
appears at the image plane. Since the exit pupil is uniformly illuminated, Ey is taken to be
a constant for the input field. The scales on the horizontal and vertical axes are expressed in
terms of v, and vy, as in [1], and u = 0O at the image plane.

The coma term is set to ® = 1.4(r3 —2/3r) cos ¢ to compare with results for the resulting
aberration image presented in [1] (figure 9.6(b)). Mode coefficients corresponding to Laguerre
Gaussian modes V,,, (equation (6) above) up to order n = 40 and degree « = 4 are used in the
final summation to guarantee a high level of convergence. The parameters in this particular
example werea = 3.31 and R = 66.7A, where A is the wavelength. The beam-width parameter
at the exit pupil, Wgp, in the GBMA was Wgp = 0.7a. The beam is then propagated to the
image plane, causing a modal phase slippage of A¢,, = (2n + « + 1)7/2. The overall shape
of the comatic field that is reproduced by using GMBA agrees well with that of [1] (figure 3(a)
above). The characteristic coma shape is also illustrated in the 3D plots.

3.2. Astigmatism

As a second example, we introduce an astigmatic phase error to a beam and compare the
beam at the image plane with the result presented in [1] using the classical diffraction integral
(equation (1)). Astigmatism arises when an object point lies an appreciable distance from the
axis of symmetry, causing any incident cone of rays to strike the entrance pupil (e.g. mirror)
asymmetrically [9].

For the GBMA of astigmatism, the phase term is again introduced at the exit pupil of the
system (to a uniform top-hat field, as in the previous example of coma) and then this field is



The Gaussian beam mode analysis of classical phase aberrations in diffraction-limited optical systems 409

s
oy o
S
G
e
<
%

)
TR T T
R
G AT
el

Figure 3. The image of the pupil plane for comatic aberration (a) plotted using a diffraction integral
approach (equation (1)) and (b) reproduced using GBMA. The aberration function that is included
is of the form ® = 1.4A(r3 — 2/3r) cos ¢. Ten linear contour levels are used. The same area is
plotted for cases (a) and (b).

propagated to the Fourier image plane to observe the aberrated image. As described in table 1,
to include astigmatism a phase error term of the form exp(iar? cos? ¢) is introduced. Thus,
the coefficients of the uniform field illumination of the exit pupil are given by

r=a ¢=2m
B, = / / Ein exp(iar? cos(¢))W,,r dr de. (16)
0 0

The example of an astigmatic beam, taken from [1] (figure 9.9(b)), is reproduced in both 3D
and as a contour plot. This is illustrated in figure 4, where the aberration function is given
by ® = 0.641r2 cos(2¢), along with the equivalent field, calculated using GBMA. The same
aberrated characteristics are clearly extremely well reproduced in the GBM-reconstructed field,
as in the field obtained by applying diffraction integrals. The input parameters were the same
as for the coma example, i.e. input beam radius W = 0.7a using Laguerre Gaussian modes
W, (equation (6)) of order n = 40 and degree o = 4.

The main advantage of the GBM technique is that, once the coefficients for the aberrated
field are calculated, the image can readily be investigated in the region around the nominal
image plane. The output field can be calculated at any plane simply without any additional
integrations (unlike the diffraction integral method) by resuming the Laguerre Gaussian modal
sum and incorporating the appropriate W, R and A¢,,, [2]. Figure 5 illustrates the evolution of
the astigmatic beam to two symmetrically displaced planes on either side of the image plane.
Between the exit pupil and the image plane, u = 0, the appropriate phase slippage for the
modes is given by A¢,, = 2n +o + 1)/2, since Agpgy = /2.

Figures 5(a) and (c) show the field at planes where u is +=10. This corresponds to phase
slippages of A¢oyo = /4 and 37 /4, respectively, from the exit pupil (or A¢pyy = £m/4
from the image plane). In figure 5(a) the astigmatism is worse in the sagittal plane (tangential
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Figure 4. (a) The image of the pupil plane for astigmatic aberration, plotted using equation (1)
as in Born and Wolf, and (b) reproduced using GBMA. The aberration function is of the form
® = 0.641r% cos 2¢. Ten linear contour levels are used. The same area is plotted for cases (a)
and (b).

best focus) and in figure 5(c) the tangential component of the field is aberrated more severely
(sagittal best focus). As expected, the best overall image is formed in between these cases,
where the overall beam has the best focus (the circle of least confusion).

3.3. Spherical aberration

As outlined in table 1, the expression for spherical aberration (® o r*) is independent of ¢
and therefore has rotational symmetry about the optical axis. In an optical system, spherical
aberration occurs when paraxial and non-paraxial rays do not converge to a common point
focus (for example, for a single parabolic mirror). The more off-axis rays form an image
closer to the exit pupil than the more paraxial geometric rays, so the image becomes spread
out along the axis, as all rays are not brought to the same focus. The outer rays, which define
the beam envelope, are referred to optically as the caustic surface.

Following the approach of previous examples, we can express an aberrated field at the
exit pupil in terms of the modal coefficients given by

r=a p¢=2m
B, = / / Eo(r, ¢) exp(iakr*)W,,(r, p)r dr dg. a7
0 0

In reality, the use of the parabolic approximation for the phase curvature terms in paraxial
imaging systems also introduces phase errors of the order of r*. This also applies to the
approximations made in [1] in the derivation of equation (1). However, in terms of an optical
system, if we assume that the modes have true spherical wavefronts, then the effect of a perfect
lens/mirror is to match exactly the phase curvature of the input and output modes. No errors
in phase curvature due to the parabolic approximation should therefore occur in the case of a
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Figure 5. An astigmatic beam plotted (a) before the image plane, (b) at the image plane (cf
figure 4) and (c) after propagation through the image plane. The GBM technique of including phase
aberrations allows the beam to be plotted at any plane, once the appropriate mode coefficients are
calculated.

perfect imaging system. If spherical aberration is present, then we assume that its effect on
terms in r* dominates over the neglected terms in the parabolic approximation.

To illustrate the effect of spherical aberration, the image of a uniformly illuminated output
pupil plane is plotted in the axial region of the image (Fourier) plane, following similar plots
producedin [1]. A contour plot of the intensity variation around the image plane (£z) is shown
in figure 6, computed using the GBM technique and based instead on the diffraction integral
described in equation (1). This plot is equivalent to a figure that illustrates spherical aberration
(® = 0.481r*) at optical wavelengths given by Born and Wolf [1] (figure 9.3).

The isophotes (the lines joining points of equal intensity) are shown in the region of the
image between u = £40, where 7 is set equal to zero at the image plane, to observe the effect
of spherical aberration. The GBM modal technique reproduces very well the effects seen in
the field produced using equation (1) and is, of course, much less computationally demanding.
The same beam characteristics are again used as in the optical wavelength example that is
presented in [1].

4. Discussion and conclusion

We have shown that it is possible to include the effect of the primary aberrations in a quasi-
optical beam by introducing the appropriate phase error term into the calculation of the Gaussian
mode coefficients. The main advantage of the GBMA technique over the diffraction integral
method is its powerful ability to reproduce easily the beam pattern evolution in the vicinity of
the image plane. Specific examples of astigmatism and spherical aberration were chosen to
illustrate this. We have shown that, once the coefficients are calculated at the exit pupil of the
system, the field can be reconstructed at any plane (including the near-field) by re-summing the
appropriate Laguerre Gaussian modes in a process. This is less computationally demanding
than traditional diffraction integral techniques.

One possible practical application of this straightforward GMB technique is in the
inclusion of aberrations at real optical components in long-wavelength quasi-optical systems,



412 N Trappe et al

=]
- e
| ©
>
- <
- (o}
T T T T T T T T T T 4
-40 -30 -20 0 20 30 -40 -30 20 0 20 30 40
u
u

Figure 6. Spherical aberration produced in the vicinity of the image plane using (a) the diffraction
integral technique and (b) the GBM technique.

if one has knowledge of the corresponding Seidel coefficients. The use of alternative physical
optics techniques to analyse the distorting effect of an off-axis focusing mirror, for example,
proves to be computationally intensive, because of the large number of integrals that need to
be calculated [10], especially for optically large components [11]. The direct use of GBMA
in analysing the aberrating effect of such off-axis systems also proves to be computationally
difficult [10]. On the other hand, commercial ray-tracing packages can be used to extract each
of the Seidel coefficients associated with any typical optical component. Having used the
well-understood ray-tracing technique to obtain an expression for the aberrating effect of any
mirror, the appropriate aberration function can be introduced into a quasi-optical beam using
the GBMA approach described in this paper.
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