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Abstract

If the infimum of the conformal k-Jacobian on the homotopy class of
a map between compact Riemannian manifolds vanishes then the map
factors rationally through the k-skeleton of the target manifold.
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1. Introduction

It follows from the Sobolev inequality that a map f : Mm → X between connected
compact Riemannian manifolds M and X, m = dim(M), is nullhomotopic if its
differential df has sufficiently small Lr-norm for some r > m. In fact, the diameter
of the image of f is bounded by diam(im(f)) ≤ C‖df‖r with some constant C
depending only on M , X and r > m. In the conformal case r = m this simple
argument fails. A map f with arbitrary small ‖df‖m can have arbitrarily large
image. But by a theorem of White [10] there is a constant ε > 0 depending on
the geometries of M and X such that f is nullhomotopic if ‖df‖m < ε.

We consider the analogous question for the Jacobian in place of the Lr-norm.
For k ∈ N and r ∈ R+ these are the functionals

(1) Jr
k : C∞(M, X) → R+

0 , Jr
k(f) =

∫
M

φ(df)

where
φ(df) = | df ∧ . . . ∧ df︸ ︷︷ ︸

k

|r/k = σ(df∗df)r/2k

and σk(df
∗df) denotes the kth elementary symmetric polynomial in the eigenval-

ues of df∗df . If r = m = dim(M) this functional is invariant under conformal
changes of the metric on M .

In more general framework, for functionals E : C∞(Mm, X) → R+
0 we are in-

terested in the information on the homotopy class of f detected by the infimum

Ẽ : [Mm, X] → R+
0 , Ẽ(f) := inf{E(g)|g : Mm → X, g ' f} ,

in particular in the consequences of Ẽ(f) = 0.
We write E1 >> E2 if limν E1(fν) = 0 implies limν E2(fν) = 0 for any sequence

(fν)ν in C∞(Mm, X). Among the Jacobians the Hölder inequality gives estimates

(2) Jr
1 >> Jr

2 >> · · · Jr
l >> · · · >> Jr

m

and Jr1
l >> Jr2

l if r1 ≥ r2. With respect to >>, the Jacobian Jr
1 (f) is equivalent

to the Lr-norm of the differential and Jm
m >> vol(im f). If f is homotopic to a
1
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map f̃ : M → X l−1 ⊂ X into the (l − 1)-skeleton X l−1 of a triangulation of X

we obviously have J̃r
l (f) = 0 for any r. The converse is known to hold in the

extreme cases l = 1 and l = m of (2) if r ≥ m. It follows from a theorem of

Pluzhnikov, [7], and White, [10], that J̃r
l depends only on the restriction of f to

the [r]-skeleton of a triangulation of M .

Let f : Mm → X be a map with J̃m
l (f) = 0. In [2] it is shown that f behaves

homologically like a map into the (l − 1)-skeleton X l−1 of a triangulation of X,
i.e. induces 0 in homology of degree at least l. It is also shown there that f does
not need to be homotopic to a map into X l−1. Counterexamples produced in
[2] arise from torsion elements in the higher homotopy groups of spheres. This
suggests that f factors rationally. We prove:

Theorem 3. Let X l−1 be the (l−1)-skeleton of a triangulation of X and assume

that π1(X
l−1) = 0. Let f : Mm → X be a map with J̃m

l (f) = 0. Then the
rationalization fQ : M → XQ is homotopic to a map fQ : M → X l−1

Q into the
rationalization of the (l − 1)-skeleton of X.

Remarks

(1) Theorem 3 extends a result of Rivière in [8] who showed that the Hopf

invariant of a map f : S4k−1 → S2k is estimated by J̃4k−1
2k . For maps

between spheres the rational homotopy type is controlled by the Hopf
invariant.

(2) For the Jacobians Jr
l (f) with l ≥ 2 and arbitrary large r one easily con-

structs surjective maps Mm → X l with J̃m
l (f) = 0. Thus a simple argu-

ment based on a Sobolev-type inequality is not available in this case.

2. Factorization in Rational Homotopy

The proof of Theorem 3 is a computation in suitable relative Sullivan algebras,
along the lines of [5], [6] where the number of homotopy classes of maps f was
estimated by bounds on the dilatation. As before X l−1 denotes the (l − 1)-
skeleton of X. We denote by XQ, X l−1

Q the rationalisations of X and X l−1 respec-

tively. Thus we have maps X → XQ and X l−1 → X l−1
Q inducing isomorphisms

H∗(X, Q) ∼= H∗(XQ, Z) and H∗(X l−1, Q) ∼= H∗(X l−1
Q , Z). We assume that X l−1

is simply connected and l ≥ 2. Then X is also simply connected and the above
rationalisations are unique up to homotopy.

Let Ω(M), Ω(X) and Ω(Xk) denote the respective algebras of differential forms.
By the functorial properties of Sullivan algebras the rationalization fQ : M → XQ
is homotopic to a map F : M → X l−1

Q ⊂ XQ if there is a relative Sullivan algebra

S := Ω(X) ⊗d ΛV ' Ω(X l−1) and an extension F ∗ : S → Ω(M) of f ∗ : Ω(X) →
Ω(M), see [3], [4]. We will first construct a suitable Sullivan algebra S and then
use the estimate on the Jacobian of f to define F ∗.
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2.1. Construction of S

We abbreviate X := Ω(X), Y := Ω(X l−1) and let j : X → Y be the morphism
of commutative cochain algebras obtained by restriction. Up to homotopy we
want to replace j by a morphism j̃ into a relative Sullivan algebra S homotopy
equivalent to Y such that the triangle

X
j̃ //

j

88S = X ⊗d ΛV
m

'
// Y

commutes up to homotopy. A relative Sullivan algebra ([4]) is a commutative
cochain algebra S = X ⊗d ΛV such that there are graded vector spaces Vi, i ∈ N,

V :=
⊕
i>0

Vi =
⋃
i>0

V (i) , V (i) := V (i− 1)⊕ Vi , V (−1) := 0

and homomorphisms

di : Vi → S(i− 1) := X ⊗d ΛV (i− 1)

extending to a differential d : S → S which is nilpotent in the sense that

dV (i) ⊂ S(i− 1) := X ⊗d ΛV (i− 1) where S(−1) := X .

The algebras S(q) are constructed together with morphisms mq : S(q) → Y
which are quasiisomorphisms in degrees increasing with q. To begin, let V (0)

ι
↪→

ker d ⊂ Y be a vectorspace of cycles in Y such that V (0)⊕ im Hj generates H(Y)
as an algebra. Define

S(0) := X ⊗ ΛV (0) with d|V (0) = 0

and

m0 : X ⊗ ΛV (0)
j⊗Λι // Y .

By construction m0 induces an epimorphism Hm0 : H(X ) ⊗ ΛV (0) → H(Y) in
homology.

Proceeding by induction in q, assume V (q) and

S(q) := X ⊗d ΛV (q)
mq // Y

have already been constructed such that Hmq is surjective. Let Vq+1 ⊂ S(q) with
Vq+1

∼= ker Hmq ⊂ H(S(q)) be a vector space of representing cycles where the
degree on Vq+1 is set to be the degree inherited from of S(q) diminished by 1.
The differential d : Vq+1 → S(q) is defined to be the inclusion Vq+1 ↪→ S(q). The
map mq+1 : Vq+1 → Y is a lift of mq ◦ d over dY :

(1) ker Hmq
� � // HS(q)

Hmq //
� _

��

HY� _

��
Vq+1

mq+1

**UUUUUUUUUUU
� � dq+1 //

∼=

OO

S(q)
mq // Y

Y

dY

OO
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Extending mq+1 to ΛV (q + 1) = Λ(Vq+1 ⊕ V (q)) we obtain mq+1 : S(q + 1) :=
X ⊗d V (q + 1) → Y which again induces an epimorphism in homology.

2.2. Extension of f

Let f ∗ : X = Ω(X) → M = Ω(M) and j∗ : X = Ω(X) → Y = Ω(X l−1) be
the morphisms of commutative cochain algebras induced by f : M → X and
the inclusion j : X l−1 ↪→ X respectively. The homomorphism induced by j in
cohomology is an isomorphism in degrees < l − 1, injective in degree l − 1 and 0
in degrees > l − 1. Hence we may choose V (0) ⊂ H l−1(Y) such that

H(Y) = V (0)⊕ im Hj .

The morphism m0 constructed as before then induces an isomorphism Hm0 in
degrees ≤ l − 1. Denote by i(q) the ideal generated by V (0) in S(q). In the
diagram (1) we may split

Vq+1 = V ′
q+1 ⊕ d−1

q+1i(q)

where V ′
q+1 lies in degrees > l − 1.

We will inductively extend f ∗ to maps f ∗q : S(q) →M such that the f ∗q vanish
on i(q). To this end set

f ∗−1 := f : S(−1) = X →M
and assume that we already have constructed the extension

f ∗q : S(q) →M
satisfying estimates

(2) ‖f ∗q ω‖n/r ≤ ε‖ω‖n/r

for all ω ∈ S(q) of degree r, n ≥ r > l − 1. Changing f by a homotopy we can
have (2) with arbitrarily small value of ε.

For any r-cycle σ in M we find a homologous r-cycle σ′ such that
∫

σ′ |f ∗q ω| <

C1

∫
M
|f ∗q ω| where C1 does not depend on f ∗q (see [10], Proposition 3.1 for instance,

or [2], proof of Theorem 3.2). If dω = 0 the Hölder inequality gives an estimate∣∣∣∣∫
σ

f ∗q ω

∣∣∣∣ =

∣∣∣∣∫
σ′

f ∗q ω

∣∣∣∣ ≤ C1‖f ∗q ω‖1 ≤ C1C2‖f ∗q ω‖n/r ≤ C1C2ε‖ω‖n/r

with C2 independent of f . In particular f ∗q ω is exact if dω = 0.
Thus f ∗q (dV ′

q+1) ⊂ dM. Let {ωj}j be a basis for V ′
q+1. We define f ∗q+1 on

Vq+1 by lifting f ∗q . More precisely, choose for each ωj some αj ∈ M satisfying
dαj = f ∗q (dωj) and the estimate (4) of the following Lemma 3. Define f ∗q+1|i(q) := 0
and f ∗q+1(ωj) := αj.

Lemma 3. Let M be a compact n-dimensional Riemannian manifold and denote
by ‖·‖p the Lp-norm of differential forms given by the Riemannian metric. There
is a constant C ∈ R depending on M (but not on β) such that for each exact r-
form β ∈ Ωr(M), β ∈ dΩr−1(M) there is α ∈ Ωr−1(M) with

(4) β = dα and ‖α‖n/(r−1) ≤ C‖β‖n/r .
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Proof: From the Hodge decomposition

Ω(M) = ker ∆⊕ im d⊕ im d∗

the Laplacian ∆ is invertible on im d⊕ im d∗. Let α := d∗∆−1β. Clearly dα = β.
Extending the operator ∆−1 on im d⊕im d∗ by 0 to all of Ωr(M) yields a bounded
operator Lp = W 0,p → W 2,p into the Sobolev space W 2,p, [9]. Also d∗ : W 2,p →
W 1,p is bounded, [1]. From the Sobelev-embedding ι : W 1,p ⊂ Lnp/(n−p) we infer
that

‖α‖np/(n−p) ≤ C‖β‖p

where C := ‖ι d∗∆−1‖op is the operator norm. With p = n/r, np/(n − p) =
n/(r − 1) the assertion follows. •
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