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Abstract

The aim of the experiment described within this thesis was to generate a molecular beam

of 5-fluorouracil and to investigate the fragmentation processes that were induced by

low-energy electron impact. The apparatus is contained in a vacuum chamber with three

main compartments: the expansion chamber, the collision chamber and the flight-tube.

The expansion chamber is where the molecular beam is produced by a resistively heated

oven containing 5-fluorouracil powder. The molecular beam enters the collision chamber

through a skimmer where it is crossed with a pulsed electron beam. The electron beam has

a pulse width of 0.5 µs providing good time-of-flight resolution. Positive ions produced

by electron collisions with the molecules are extracted into a reflectron time-of-flight

mass spectrometer. The field-free region and the reflector of the time-of-flight mass

spectrometer are both located in the flight-tube. The reflector is positioned at the end of

the flight-tube and directs the ions back into the field-free region towards the detector. A

multichannel scaler triggered synchronously with the electron pulse is used to accumulate

time-of-flight spectra.

Using computer-controlled data acquisition, mass spectra were measured for electron

impact energies from 5 eV - 100 eV in 0.25 eV steps. Ion yield curves for most fragment

ions were determined by fitting groups of peaks in the mass spectra with sequences of

normalised Gaussians. The appearance energies for these ions were determined by fitting

onset functions to the ion yield curves. By comparing the mass spectra and the appearance

energies with those of uracil, new information about fragmentation processes is obtained.

i



Acknowledgements

First of all, I would like to express my special appreciation and gratitude to my supervisor,

Dr Peter J. M. van der Burgt, whose guidance and knowledge was invaluable to me

throughout my research over the past two years. I would like to thank you for the time

you have spent proof reading, what seemed to be, an infinite amount of draft copies of

my thesis, it has been greatly appreciated. I wish to thank Dr Marcin Gradziel for his

contribution to the LabVIEW programs that were used in this experiment.

I would also like to thank the head of the department, Professor J. Anthony Murphy

and the rest of the Experimental Physics academic and technical staff, who have been

incredibly kind in helping me whenever I needed it. A huge thank you must go to my

office-mate Melissa, for the amazing company you brought every day, and for all the times

you shared your food with me. To all of my fellow postgrads: thank you for making this

masters a hugely enjoyable and memorable experience.

I want to thank my girlfriend Aoife, for the unwavering support and constant encourage-

ment you have given me throughout my masters, and to Gavin, for pretending to listen to

me whenever I would discuss my research with you. Finally, The biggest thank you of all

goes to my Mam and Dad, who have been there for me and helped me throughout my six

years in Maynooth University and continue to do so today, something I am very grateful

for.

ii



List of Figures

1.1 The 5-fluorouracil and uracil molecules. . . . . . . . . . . . . . . . . . . 2

1.2 The structure of a biological cell. . . . . . . . . . . . . . . . . . . . . . . 3

1.3 The structure of DNA and RNA. . . . . . . . . . . . . . . . . . . . . . . 4

1.4 The transition from a neutral to an excited state for a diatomic molecule. . 6

1.5 A molecules internal energy distribution P(E) and appearance position. . . 7

1.6 Time scale of events for various electron ionisation processes. . . . . . . 8

1.7 Induced single- and double-strand breakage in DNA. . . . . . . . . . . . 11

1.8 The penetrability of electrons in water. . . . . . . . . . . . . . . . . . . . 13

1.9 Single- and double-strand break yield in DNA. . . . . . . . . . . . . . . 14

1.10 Electron energy dependence for chosen fragments. . . . . . . . . . . . . 17

1.11 Absolute cross section function for the DEA to 5-ClU. . . . . . . . . . . 18

1.12 Onset energies produced by low-energy electrons. . . . . . . . . . . . . . 20

1.13 Appearance energy graphs for 5-chlorouracil. . . . . . . . . . . . . . . . 21

1.14 C 1s photoelectron spectrum of 5-bromouracil, thymine and uracil. . . . . 24

2.1 Components of a mass spectrometer. . . . . . . . . . . . . . . . . . . . . 28

2.2 Linear quadrupole mass analyser. . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Penning trap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Quadruple ion trap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Linear time-of-flight mass spectrometer. . . . . . . . . . . . . . . . . . . 36

2.6 Reflectron time-of-flight mass spectrometer. . . . . . . . . . . . . . . . . 37

3.1 Overview of the molecular beam experiment. . . . . . . . . . . . . . . . 40

3.2 Photo of the molecular beam experiment. . . . . . . . . . . . . . . . . . 41

3.3 Ionisation gauge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Expansion chamber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Collision chamber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

iii



3.6 Electron gun. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7 Electron gun and Faraday cup. . . . . . . . . . . . . . . . . . . . . . . . 47

3.8 Circuitry of the electron gun. . . . . . . . . . . . . . . . . . . . . . . . . 48

3.9 Electron gun settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.10 Electron gun, interaction region and Faraday cup. . . . . . . . . . . . . . 50

3.11 Energy calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.12 Interaction region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.13 Schematic drawing of the reflectron. . . . . . . . . . . . . . . . . . . . . 53

3.14 Reflector assembly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.15 Inside of the flight-tube. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Settings for the extraction pulse and the electron gun pulse. . . . . . . . . 59

4.2 Pulsing arrangement for the DG535 digital delay generator. . . . . . . . . 61

4.3 Calibration graph of the multichannel scaler card. . . . . . . . . . . . . . 63

4.4 The front panel of the getspectrum-3-5.vi program. . . . . . . . . . . . . 65

4.5 The front panel of the Spectra-vs-E-v7.vi program. . . . . . . . . . . . . 66

4.6 A front panel screen shot of Gaussians-ab2.vi (57 u - 62 u group). . . . . 68

4.7 A block diagram screen shot of Gaussians-ab2.vi program. . . . . . . . . 69

4.8 The front panel of the Onsets.vi program. . . . . . . . . . . . . . . . . . 71

5.1 5-fluorouracil mass spectrum. . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Superimposed mass spectra of 5-fluorouracil and uracil. . . . . . . . . . . 74

5.3 Mass spectra of 5-fluorouracil and uracil at 4 different electron energies. . 74

5.4 5-fluorouracil mass spectrum (3D). . . . . . . . . . . . . . . . . . . . . . 76

5.5 Gaussian peak fitting results for the 130 - 132 u group. . . . . . . . . . . 78

5.6 Ion yield curves for the 130, 131 and 132 u. . . . . . . . . . . . . . . . . 78

5.7 Gaussian peak fitting results for the 86 - 88 u group. . . . . . . . . . . . . 79

5.8 Ion yield curves for the 86, 87 and 88 u. . . . . . . . . . . . . . . . . . . 80

5.9 Gaussian peak fitting results for the 72 - 75 u group. . . . . . . . . . . . . 81

5.10 Ion yield curves for the 72, 73, 74 and 75 u. . . . . . . . . . . . . . . . . 81

5.11 Gaussian peak fitting results for the 64 - 72 u group at 101 eV. . . . . . . 82

5.12 Gaussian peak fitting results for the 64 - 72 u group at 30 eV. . . . . . . . 83

5.13 Ion yield curves for the 64 - 72 u group. . . . . . . . . . . . . . . . . . . 83

5.14 Gaussian peak fitting results for the 57 - 62 u group. . . . . . . . . . . . . 84

iv



5.15 Ion yield curves for the 57 - 62 u group. . . . . . . . . . . . . . . . . . . 84

5.16 Gaussian peak fitting results for the 50 - 56 u group. . . . . . . . . . . . . 85

5.17 Ion yield curves for the 50 - 56 u group. . . . . . . . . . . . . . . . . . . 86

5.18 Gaussian peak fitting results for the 41 - 47 u group at 101 eV. . . . . . . 87

5.19 Gaussian peak fitting results for the 41 - 47 u group at 30 eV. . . . . . . . 87

5.20 Ion yield curves for the 41 - 47 u group. . . . . . . . . . . . . . . . . . . 88

5.21 Gaussian peak fitting results for the 36 - 40 u group. . . . . . . . . . . . . 89

5.22 Ion yield curves for the 36 - 40 u group. . . . . . . . . . . . . . . . . . . 90

5.23 Gaussian peak fitting results for the 24 - 34 u group. . . . . . . . . . . . . 91

5.24 Ion yield curves for the 24 - 34 u group. . . . . . . . . . . . . . . . . . . 91

5.25 Gaussian peak fitting results for the 12 - 15 u group. . . . . . . . . . . . . 92

5.26 Ion yield curves for the 12 - 15 u group. . . . . . . . . . . . . . . . . . . 93

5.27 Molecular structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.28 Appearance energies for the positive fragments of 5-fluorouracil. . . . . . 99

5.29 Appearance energy graph of the 130 u fragment. . . . . . . . . . . . . . . 101

5.30 Appearance energy graph of the 87 u fragment. . . . . . . . . . . . . . . 101

5.31 Appearance energy graph of the 74 u fragment. . . . . . . . . . . . . . . 102

5.32 Appearance energy graph of the 70 u fragment. . . . . . . . . . . . . . . 102

5.33 Appearance energy graph of the 60 u fragment. . . . . . . . . . . . . . . 103

5.34 Appearance energy graph of the 44 u fragment. . . . . . . . . . . . . . . 103

5.35 Appearance energy graph of the 31 u fragment. . . . . . . . . . . . . . . 104

5.36 Appearance energy graph of the 28 u fragment. . . . . . . . . . . . . . . 104

5.37 Tautomeric and rotameric forms of 5-fluorouracil. . . . . . . . . . . . . . 106

5.38 Fragmentation processes for the main fragments of 5-fluorouracil. . . . . 108

5.39 Fragmentation processes producing the 87 u and 86 u fragments. . . . . . 110

5.40 Possible configurations of the 74 u and 73 u fragments. . . . . . . . . . . 110

5.41 Possible configurations of the 70 u and 68 u fragments. . . . . . . . . . . 111

5.42 Possible configurations of the 60 u, 59 u and 58 u fragments. . . . . . . . 113

5.43 Possible configurations of the 47 u, 46 u, 44 u and 43 u fragments. . . . . 115

5.44 Possible configurations of the 40 u, 39 u and 38 u fragments. . . . . . . . 116

5.45 Possible configurations of the 32 u, 31 u and 28 u fragments. . . . . . . . 118

v



List of Tables

3.1 Indicative electron gun voltages and Faraday cup currents. . . . . . . . . 48

5.1 Appearance energy of 5-fluorouracil fragments. . . . . . . . . . . . . . . 96

5.2 Comparison of appearance energy results of fragments from various

molecules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3 Appearance energy results for the parent ions. . . . . . . . . . . . . . . . 98

vi



Contents

Abstract i

Acknowledgements ii

List of Figures iii

List of Tables vi

1 Introduction 1

1.1 Why study electron collisions with 5-fluorouracil? . . . . . . . . . . . . . 1

1.2 Structure of DNA and RNA . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Electron - molecule collisions . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 Principles of electron induced ionisation . . . . . . . . . . . . . . 5

1.3.3 The role of low-energy electrons in radiation damage processes . 8

1.4 The role of low-energy electrons in radiosensitization and radiation therapy 12

1.4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.2 5-fluorouracil and its role as a radiosensitizer . . . . . . . . . . . 15

1.5 Experimental research of low-energy electron impact with 5-halo-uracils

(and uracil) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5.1 Dissociative electron attachment (DEA) studies . . . . . . . . . . 16

1.5.2 Other electron impact studies . . . . . . . . . . . . . . . . . . . . 20

1.5.3 Photon impact studies . . . . . . . . . . . . . . . . . . . . . . . 23

1.5.4 Ion impact studies . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6 Research presented in this thesis . . . . . . . . . . . . . . . . . . . . . . 26

vii



2 Principles and Instrumentation of Mass Spectrometry 28

2.1 What is mass spectrometry? . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Mass analysers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Single-focusing mass spectrometer . . . . . . . . . . . . . . . . . 29

2.2.2 Double-focusing mass spectrometer . . . . . . . . . . . . . . . . 30

2.2.3 Quadrupole mass spectrometer . . . . . . . . . . . . . . . . . . . 31

2.3 Trap mass spectrometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Time-of-flight mass spectrometry . . . . . . . . . . . . . . . . . . . . . . 35

2.4.1 Linear time-of-flight mass spectrometry . . . . . . . . . . . . . . 35

2.4.2 Reflectron time-of-flight mass spectrometry . . . . . . . . . . . . 36

3 Experimental Apparatus 39

3.1 Overview of the molecular beam experiment . . . . . . . . . . . . . . . . 39

3.1.1 Vacuum system . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.2 Interlock system . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Expansion chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Oven . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Collision chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Electron gun . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.2 Testing of the electron gun . . . . . . . . . . . . . . . . . . . . . 49

3.3.3 Calibration of the electron energy . . . . . . . . . . . . . . . . . 50

3.4 Reflectron time-of-flight mass spectrometer . . . . . . . . . . . . . . . . 52

4 Interfacing, Data Acquisition and Data Analysis 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Experimental event sequence . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Amplification and discrimination of detector pulses . . . . . . . . . . . . 61

4.4 Multichannel scaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.1 Calibration of the multichannel scaler . . . . . . . . . . . . . . . 62

4.4.2 LabVIEW control of the multichannel scaler . . . . . . . . . . . 63

4.5 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5.1 Measurement of single mass spectra . . . . . . . . . . . . . . . . 64

4.5.2 Measurement of mass spectra as a function of electron impact energy 65

4.6 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

viii



4.6.1 Gaussian peak fitting . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6.2 Determining appearance energies . . . . . . . . . . . . . . . . . 70

5 Electron Impact Fragmentation of 5-Fluorouracil 72

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Mass spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Gaussian peak fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.1 130 - 132 u group . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.2 86 - 88 u group . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3.3 72 - 75 u group . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.4 64 - 72 u group . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.5 57 - 62 u group . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.6 50 - 56 u group . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.7 41 - 47 u group . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.8 36 - 40 u group . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.9 24 - 34 u group . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.10 12 - 15 u group . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Appearance energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4.2 Comparing results . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5 Fragmentation processes . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.5.1 130 - 132 u parent ions . . . . . . . . . . . . . . . . . . . . . . . 109

5.5.2 86 - 88 u fragmentation processes . . . . . . . . . . . . . . . . . 109

5.5.3 73 - 74 u fragmentation processes . . . . . . . . . . . . . . . . . 110

5.5.4 64 - 71 u fragmentation processes . . . . . . . . . . . . . . . . . 111

5.5.5 57 - 61 u fragmentation processes . . . . . . . . . . . . . . . . . 111

5.5.6 50 - 56 u fragmentation processes . . . . . . . . . . . . . . . . . 113

5.5.7 43 - 47 u fragmentation processes . . . . . . . . . . . . . . . . . 114

5.5.8 36 - 41 u fragmentation processes . . . . . . . . . . . . . . . . . 115

5.5.9 24 - 34 u fragmentation processes . . . . . . . . . . . . . . . . . 117

5.5.10 12 - 15 u fragmentation processes . . . . . . . . . . . . . . . . . 118

6 Conclusion 119

ix



Bibliography 122

Appendix A 129

x



Chapter 1

Introduction

1.1 Why study electron collisions with 5-fluorouracil?

In recent years many studies of electron collisions with molecules have focused on

biomolecules such as the nucleobases in the gas phase. Radiation induced processes

in the DNA bases have been the focus of many studies, aiming at a better understanding of

the fundamental reaction mechanisms leading to DNA strand breaks. When high-energy

ionising radiation passes through biological tissue, a large amount of secondary electrons

are produced along the tracks of the ionising radiation, mostly with energies below 30

eV, and these electrons are very effective in causing DNA strand breaks. Even electrons

with energies below the ionisation energies of the DNA bases are capable of breaking

bonds via dissociative electron attachment. For this reason, many recent studies have

focused on collisions with DNA bases in the gas phase. Reviews of this field of molecular

physics research are given by [Alizadeh et al., 2015], [Baccarelli et al., 2011b], [García

Gómez-Tejedor and Fuss, 2012] and [Sanche, 2005].

Previous studies inMaynooth University have focused on electron impact fragmentation

of the nucleobases of cytosine [van der Burgt, 2014], thymine [van der Burgt et al., 2014],

adenine [van der Burgt et al., 2015] and uracil [Diskin, 2015]. These studies have

been performed using time-of-flight mass spectrometry of the positive ions generated

by electron impact fragmentation. The focus of the research presented in this thesis is

5-fluorouracil, (see Figure 1.1). The halo-uracils are important in radiation treatment

therapy as radiosensitizers, because cancer tissues doped with these sensitizer molecules

will be destroyed preferentially under exposure to ionising radiation. Because secondary

1



Chapter 1: Introduction Structure of DNA and RNA

electrons play an important role in radiation damage processes on the molecular scale,

low-energy electron impact studies of radiosensitizers are of relevance.

Figure 1.1: The 5-fluorouracil and uracil molecules.

The chemical formula for 5-fluorouracil and uracil are C4H3FN2O2 and C4H4N2O2,

with a mass number of 130 u and 112 u respectively. The structure of the 5-fluorouracil

molecule can be seen in Figure 1.1. The purpose of this thesis is to present new results

for low-energy electron impact to 5-fluorouracil in the gas phase leading to the formation

of positively charged fragments. We have obtained ion yield curves and appearance

energies for most of the positively charged fragments. These results are compared with

other research on uracil and the 5-halo-uracils, and provide new information about the

appearance energies of the positive fragments and the fragmentation pathways initiated by

electron impact.

In the following sections we briefly review the structure of DNA and RNA, the collision

processes involving biomolecules, and research that has been performed on the halo-

uracils.

1.2 Structure of DNA and RNA

DNA is composed of two poly-nucleotide chains that form the shape of a double helix.

Each nucleotide consists of a phosphate group, a sugar and a heterocyclic base. The

backbone of DNA is made up from alternating phosphate units and the sugar 2-deoxy-D-

2



Chapter 1: Introduction Structure of DNA and RNA

ribose, with nucleobases connected via the glycosidic C-N bond, [Baccarelli et al., 2011a].

There are four heterocyclic bases: thymine (T), adenine (A), cytosine (C) and guanine

(G) that each connect to the DNA backbone, see Figure 1.3. These bases attach to the

backbones in pairs. Adenine and thymine form one base pair, with cytosine and guanine

forming the second base pair.

AA

AA

AA

CC

CC

CC

GG

GGGG

TT

TTTT

Chromosome

Nucleus

Telomere

ChromatidChromatid

Telomere

Centromere

Cell

Histones

DNA(double helix)

Base Pairs

Figure 1.2: The structure of a biological cell, [National Human Genome Research Insti-
tute].

The two backbone chains of DNA are held together through hydrogen bonding between

the base pairs. RNA differs from DNA in their molecular structure. While DNA has two

strands, RNA consists of a single strand. The RNA molecule does not contain thymine

bases; instead they are replaced by uracil (U). RNA does not form a double helix, but

3-dimensional structures - similar to that of DNA - are formed by base pairing. The base

3



Chapter 1: Introduction Low-energy electrons in radiation damage processes

pairs in RNA include: uracil pairing with adenine, and guanine pairing with cytosine.

The interchangeability of thymine with both uracil and 5-fluorouracil allow research

groups to investigate the radiation induced fragmentation processes of modified DNA,

which will result in the enhancement on radiosensitization techniques, briefly discussed

later in this chapter. Prior to this discussion, I will introduce the effects that high-energy

radiation has on biomolecules, primarily focussing on DNA molecules, and introduce the

secondary species produced from this interaction.

Figure 1.3: The structure of DNA compared with the structure of RNA, [Bio].

1.3 Electron - molecule collisions

1.3.1 Introduction

The following section begins with a summary of the resulting affects from the interaction

of high-energy radiation with biomolecules by mentioning the devastating affects it causes

(primarily how it interacts with DNA). The importance of researching this interaction is

apparent as it supplies information regarding the dissociative processes that cause chemical

and structural modification of DNA molecules (single- and double-strand breaks) which

are prevalent is radiotherapy.

4



Chapter 1: Introduction Low-energy electrons in radiation damage processes

In recent years there has been a lot of research regarding the interaction of high-energy

radiation with biomolecules, primarily DNA. DNA is the genetic material, most sensitive

to radiation damage. When high-energy radiation interacts with DNA molecules, it can

result in damage to the genome which generally leads to cell death. This is why high-

energy radiation is used in radiotherapy, to interact with and kill cancerous cells. However,

exposure to ionising radiation can cause irreversible damage to living tissue, and can result

in mutation, radiation sickness, cancer, and death (see [Alizadeh et al., 2015], [Baccarelli

et al., 2011b], [García Gómez-Tejedor and Fuss, 2012], [Sanche, 2005]).

Section 1.3.2 will discuss the processes behind electron induced ionisation. Under-

standing how the resulting secondary species are produced will give insight into how they

act under various conditions, see Section 1.3.3. In addition, I will discuss how elec-

tron - molecule interactions can induce internal structure modifications of the atoms and

molecules involved. Potential energy wells are presented to show the position at which

fragmentation occurs within the molecule as the electron energy increases.

1.3.2 Principles of electron induced ionisation

This section will discuss the principles of electron induced ionisation and dissociation.

The ionisation energy can be defined as the amount of energy that an atom needs to absorb

in its vibrational and electronic ground states in order to discharge an electron to form an

ion, [Ball et al., 2012]. High-energy radiation is composed of particles that individually

carry enough kinetic energy to liberate an electron from an atom or molecule, ionizing it.

If the electron energy is sufficiently high, there is a probability that doubly charged ions

may be formed.
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Figure 1.4: A graph showing the transition from a neutral to an excited state for a diatomic
molecule, [Gross and Roepstorff, 2011].

When an electron interacts with a molecule, the molecules electronic excitation occurs

much faster than the time is takes for the bond lengths of the molecule to find their

new position of equilibrium, also known as the Franck-Condon principle, [Gross and

Roepstorff, 2011].

Figure 1.4 shows that the minimum of the potential energy curve of molecule M, is

located at the shorter bond length r0, whereas the minimum of the potential energy curve

for M+∗ is located at a longer bond length, given as r1. Figure 1.4 also shows the vertical

transition of molecule M into an excited state M+∗. Two excited M+∗ ions are shown, one

with an internal energy below the dissociation energy (this ion will remain stable), and the

second with an internal energy greater than the dissociation energy (this ion is unstable).

If the internal energy of the ion is greater than the dissociation energy D, fragmentation

of molecule M+∗ → m+
1 + n∗ will occur. Moreover, if a resulting fragment formed by

dissociation possesses enough internal energy, a second dissociation can occur, forming

additional products, see Figure 1.5.
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Figure 1.5: This Figure shows the change in amolecules internal energy P(E) upon electron
ionisation, the potential energy curves for various fragments, and defines the appearance
energy (AE) of subsequent fragmentations, [Gross and Roepstorff, 2011].

Figure 1.5 shows the location of subsequent fragmentations caused by electron induced

ionisation, and thus shows the position of their corresponding appearance energy. Three

potential energy curves are shown for molecules M, M+∗ and m+
1 where M is a neutral

molecule, M+∗ is the excited ion caused by electron ionisation of M, and m+
1 is a resulting

fragment formed due to the dissociation of excited molecule M+∗. It should also be noted

that the ions are not produced with a single internal energy value that applies for every

ion, but with a broad energy distribution, given by P(E) in Figure 1.5.

When an ion dissociates into fragments, the lowest energy at which this occurs is known

as the appearance energy. Figure 1.5 shows the positions of appearance energies AE(m+
1 )

and AE(m+
2 ) for fragments m+

1 and m+
2 . Each of these resulting fragments will appear as

a peak on a mass spectrum.

For this experiment, the appearance energies for various fragments of 5-fluorouracil

were determined. Figure 1.6 shows the time scale of events regarding various electron

ionisation processes.
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Figure 1.6: Time scale of events for various electron ionisation processes, [Gross and
Roepstorff, 2011].

1.3.3 The role of low-energy electrons in radiation damage processes

Ionisation can lead to molecular bond breaking through a number of processes discussed

below. When ionising radiation passes through a cell, it releases its energy along its

track by interacting with the electrons of nearby molecules. The probability of ionisation

and excitation from a collision are similar, but a larger amount of the energy flows into

ionisation, [Sanche, 2005]. The released energy is absorbed by molecules near the track,

resulting in excitation, ionisation, the formation of radicals, and the generation of low-

energy secondary electrons. For reviews see [Balog et al., 2004], [Hotop et al., 2004] and

[McConkey et al., 2008]. The processes are listed on the following page.
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Ionisation and dissociation:

e + M −→ M+ + e+ esc

e + M −→ X+ +Y + e + esc

e + M −→ X+ +Y+ + 2e + esc

Excitation and dissociation:

e + M −→ M∗ + esc −→ M + esc + hv

e + M −→ M∗ + esc −→ X + Y + esc

e + M −→ M∗ + esc −→ X∗ +Y −→ X + Y + esc + hv

e + M −→ M∗ + esc −→ X+ +Y + e + esc

Dissociative electron attachment:

e + M −→ M−∗ −→ X + Y + e

e + M −→ M−∗ −→ X− +Y

whereM is a molecule, X and Y are atoms or groups of atoms, e represents an electron,

and esc represents a scattered electron. Dissociation mechanisms are of vital importance to

radiotherapy research as the risks involved with irradiating biomolecules with high-energy

radiation are great, therefore a clear understanding of the mechanisms involved in these

interactions is needed.

The following paragraph will briefly discuss the dissociative electron attachment (DEA)

process that induces single- and double-strand breaks inDNA.Amore thorough discussion

is found in Section 1.5.1 where the results obtained by various research groups with regard

to the dissociative electron attachment process on 5-halo-uracils are presented.

Dissociative electron attachment (DEA) refers to the process of a low-energy free

electron attaching itself to a molecule, causing it to eventually fragment itself - through an

understood process described below. Equation 1.1 depicts a simple representation of this

process that can be modelled with molecules A and B, and low-energy electron e−:
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AB + e− −→ AB−∗ −→ A + B− or A−+ B (1.1)

where AB−∗ is a super-excited molecule that is transitioned into a higher energy

state but does not exceed the excited state potential curve that would cause dissociation.

Instead, the super-excited molecule AB−∗ is brought into a vibrational state with the

same energetic make-up of a repulsive state, meaning that AB−∗ will spontaneously

decay. Dissociation occurs by tunnelling to a repulsive electronic state when the excited

vibrational state matches that of a repulsive state. Section 1.5.1 deals with the results

obtained from different research groups into how various halo-uracil molecules fragment

due to dissociative electron attachment.

Asmentioned, when high-energy radiation interacts with biological tissue it can produce

severe chemical and structural modifications that can affect biological function, [García

Gómez-Tejedor and Fuss, 2012]. DNAmolecules can be damaged bymeans of either direct

or indirect interaction with high-energy radiation. In the case of direct interaction, the

radiation causes damage as it collides and deposits energy to the DNA molecules directly.

An indirect interaction refers to a high-energy particle colliding with the biomolecules

that surround the DNA (e.g. water, protein and oxygen molecules), which then produce

the secondary species that damage the DNA molecules, [Desouky and Zhou, 2016].

Low-energy secondary electrons are the most abundant product produced with ≈ 5 x

104 being produced per megaelectron volt of deposited energy within nanoscopic volumes

along ionization tracks, [Alizadeh et al., 2015]. Secondary electrons possess most of the

kinetic energy of the incident radiation and are the secondary species that inflict the most

damage to biomolecules, [Sanche et al., 2000]. These electrons can cause single- and

double-strand breaks in DNA even if their energy is below the ionisation energy, through

processes such as dissociative electron attachment. Other secondary products include:

super-excited molecules, ions (cations and anions), and radicals. Ions and radicals that are

formed can trigger further damage through energy deposition to surrounding molecules.

Sanche et al. [2000] discovered that low-energy electrons can induce single- and double-

strand breaks in DNA due to the secondary species that are generated by the incident

high-energy radiation, discussed below.

10



Chapter 1: Introduction Low-energy electrons in radiosensitization

The paper that birthed this field of research was published in the year 2000 and was

titled ’Resonant Formation of DNA Strand Breaks by Low-Energy (3 to 20 eV) Electrons’

by Sanche et al. [2000]. They discovered that low-energy secondary electrons can induce

single- and double-strand breaks in DNA. Prior to this finding, it was thought that the

harmful effects of ionising radiation in living cells was caused by direct impact of the

high-energy particles.

Figure 1.7: Induced single- and double-strand breakage in DNA with increasing electron
energy (3 - 20 eV), [Sanche, 2005].

Figure 1.7 shows that single-strand breaks and double-strand breaks can be induced

in DNA by electron energies below the ionisation threshold of DNA. It was shown that

the high yield of single-strand breaks and double-strand breaks is caused by electron

attachment to a molecule within the DNA. This induces bond rupture which initiates the

resulting fragmentation processes.

The structural modifications caused by single- and double-strand breaks can result

in errors in their repair resulting in gene mutations and alterations in the chromosome.

Chromosomes are responsible for the reproduction of each cell, and if one cell is damaged

(single- and double-strand breaks), this can result in the reproduction of damaged cells.

11



Chapter 1: Introduction Low-energy electrons in radiosensitization

1.4 The role of low-energy electrons in radiosensitization

and radiation therapy

1.4.1 Background

The use of radiation to treat cancer patients had been around since the early twentieth

century. In 1901, a German physicist Wilhelm Conrad Roentgen was awarded the Nobel

Price for his work, using x-rays as a diagnostic tool. Back then, radiation therapy began

with the use of radium and diagnostic machines with low voltage. It is well known that

most of the advances made in curing cancer in recent times, have been due to successful

combination of chemotherapy doses with radiation therapy.

Further improvement in radiation therapy will depend greatly on understanding the un-

derlyingmechanisms of single- and double-strand breaks in DNA caused by the interaction

of secondary species such as low-energy secondary electrons (produced by the interaction

of high-energy radiation with biomolecules), with DNA molecules.

Low-energy electrons play a vital role in radio-biology research including techniques

to improve radiosensitization with the use of molecules such as 5-fluorouracil. A useful

attribute of low-energy electrons is their short range penetrability within biological tissue.

Having a short range of penetration means that the damage induced by the secondary

electrons is confined to a few biomolecules (e.g., to the DNA of cancer cells, nearby water

and proteins), [García Gómez-Tejedor and Fuss, 2012].
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Figure 1.8: The penetrability of electrons in 25°C liquid water as a function of initial
electron energy, [García Gómez-Tejedor and Fuss, 2012].

Figure 1.8 shows the penetrability of electrons in 25°C liquid water as a function of

initial electron energy. The depth of penetration from electrons with an energy between

0 - 30 eV is of the order of 10 nm in H2O and DNA. Electrons with this energy are very

efficient in causing single- and double-strand breaks.

Denifl et al. [2003] conducted studies on electron attachment to 5-chloro-uracil. Electron

attachment initiates a dissociation process that cause single- and double-strand breaks in

DNA, discussed in more detail in Section 1.5.1. Figure 1.9 shows the relationship between

incident electrons of varying energy and the abundance of single-strand breaks and double-

strand breaks induced in DNA.
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Figure 1.9: The yield of single-strand breaks (SSB) and double-strand breaks (DSB) with
an increase of incident electron energy, [García Gómez-Tejedor and Fuss, 2012].

Figure 1.9 shows the single- and double-strand break yield as a function of 0 - 100

eV electron impact. It can be seen that electrons with energies as little as 10 eV are

very efficient at causing single- and double-strand breaks in DNA. The electrons with

an energy of 10 eV carry almost the same probability as the 100 eV electrons when

it comes to breaking DNA strands. Researchers have utilised low-energy electrons in

radiosensitization due to low-energy electrons having only a small range of penetrability

within biological tissue. This fact, coupled with the ability to cause single- and double-

strand breaks in DNA, make low-energy electrons effective at disrupting and killing

dangerous cells. Suppose there exists a location where there are numerous cancer cells

within a human body. Electrons with an energy range of 1 - 30 eV which have short

penetrability, can be used to confine the damage sites they create to a few biomolecules

(i.e. targeting the cancerous cells without inflicting damage on surrounding healthy cells).

There are different techniques used to enhance radiosensitization. One method is

to increase the number of low-energy electrons surrounding the targeted DNA, [García

Gómez-Tejedor and Fuss, 2012]. Gold nanoparticles (GNP) are used to increase the
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absorption of ionising radiation which will result in a higher production of low-energy

secondary electrons. Seeing as low-energy secondary electrons have a short range of

penetrability and are produced in large amounts during ionisation, GNP’s have the potential

to focus radiation energy to the dangerous cancer cells, [Xiao et al., 2011]. The results

obtained from Xiao et al. [2011] provide additional evidence that low-energy electrons

enhance radiosensitization of DNA using GNP’s.

A second method to enhance radiosensitization involves making the targeted DNAmore

susceptible to low-energy electrons with the use of radiosensitizers. 5-fluorouracil is a

molecule that is used to enhance radiosensitization and is the molecule investigated in

this experiment. It increases the effectiveness of radiation treatment which is discussed

in Section 1.4.2. The development of chemo-radiation therapy techniques is a very

important field of research that is attempting to improve the efficiency of current cancer

treatments. As mentioned above, the main advances in cancer treatment have come from

successfully combining chemotherapy agents with radiation therapy. The simultaneous

use of chemotherapy and radiotherapy means that lower doses of chemotherapy may be

used on a patient making it a safer alternative, [Ferreira da Silva et al., 2011].

1.4.2 5-fluorouracil and its role as a radiosensitizer

5-fluorouracil is capable of increasing radiation sensitivity through the killing of cells that

are in their S-phase, as these cells are radio-resistant, thus increasing the rate of cell death

in tumours. The S-phase period of a cells cycle is when the DNA is replicated. The onset

of DNA replication marks a cells entry into S-phase, [Stein and Pardee, 2004]. Accurate

DNA replication is important for the cells survival, as it prevents any harmful genetic

abnormalities that could lead to cell death.

Research into the fragmentation processes of 5-fluorouracil, aswell as other 5-halouracils,

is becoming more widespread due to the potential of 5-fluorouracil as a radiosensitizer.

The halogen atom in the 5-halo-uracils replaces the methyl group in thymine, and re-

places the corresponding hydrogen atom in uracil (see Figure 1.1). Because of their

structural similarities, 5-halo-uracil can be substituted for thymine in DNA in vivo, and

be substituted for uracil in RNA in vivo. Cells that contain modified halo-uracil DNA

are significantly more sensitive to ionisation radiation,[Abdoul-Carime et al., 2003]. The
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study of the fragmentation processes of 5-fluorouracil and the other halo-uracils therefore

provides relevant information about the radiation damage mechanisms happening within

radiosensitized cells.

1.5 Experimental research of low-energy electron impact

with 5-halo-uracils (and uracil)

1.5.1 Dissociative electron attachment (DEA) studies

This section discusses the measurements recorded by various research groups, regarding

dissociation byDEAwith 5-halo-uracils and uracil. Abdoul-Carime et al. [2003] published

their research findings for the formation of negative ions from gas phase halo-uracils by

low-energy electron impact, using a standard crossed beam apparatus. The ion yield for

fragments of various halo-uracils, including 5-fluorouracil can be seen in Figure 1.10.

Abdoul-Carime et al. [2003] propose that the presence alone of a halo-uracil in DNA is

not the entire picture regarding the sensitization of the halo-uracil modified DNA. Rather,

the location of the halo-uracil within the DNA is also of great importance. When the free

secondary electrons surround the halo-uracil molecules within the DNA, the probability

of them interacting increases, which will cause the decomposition process to begin.

Figure 1.10 shows the yield from various fragments of 5-fluorouracil being produced

from electron impact energies below their ionisation energy. In this scenario, the electron

impact energy refers to the energy associated with a beam of electrons that interact with

the molecules. The electron impact energy required to produce the parent ion (the initially

ionisedmolecule before subsequent fragmentations) of 5-fluorouracil, through dissociative

electron attachment, was 0.1± 0.2 eV, 0.7± 0.2 eV and 1.8± 0.2 eV (clear peaks in the ion

yield graph). It was concluded that these fragmentations were generated by dissociative

electron attachment. Halo-uracils are quite susceptible to this process, as they have a

large dipole moment increasing the chance of a low-energy electron getting trapped by the

multipolar forcefield.
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Figure 1.10: These results are taken from Abdoul-Carime et al. [2003] and show the
electron energy dependence for the ion yields of a) 5-FU− and/or (5-FU - H)−, (b)
H2C3NO−, (c) CN2OH−, (d) OCN−, and (e) CN−. These results were produced by
electron impact to gaseous 5-fluorouracil.

Another example of this research was carried out by Denifl et al. [2003], who in-

vestigated the effects of electron attachment and dissociative electron attachment to 5-

chlorouracil in the gas phase. A hemispherical electron monochromator (including a

quadrupole mass spectrometer) was used, which enabled an electron energy resolution

of between 90 - 120 meV. Very similar to the study discussed above, the electron impact

energy required to produce the parent ion, this time the parent ion of 5-chlorouracil, was

well below the ionisation energy.
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Figure 1.11: Absolute cross section function for the DEA to 5-ClU, [Denifl et al., 2003].

Figure 1.11 shows the attachment cross sections for various masses with low electron

impact energy. The parent ion, (5-ClU)− (146 u) had a resonant electron voltage of 0

eV which agrees well with the 0.1 ± 0.2 result obtained for the (5-FU)−. Fragments (5-

ClU(-H))− (145 u) that underwent hydrogen loss, (5-ClU(-HCl))− (110 u) that underwent

hydrogen and chlorine loss, and (Cl)− (35 u) were generated at an electron impact energy

of 0.57 eV, 0.23 eV and 0.23 eV respectively.

Abouafa andDunet [2005] investigated the structures in dissociative electron attachment

cross-sections in thymine, uracil and halo-uracils. The apparatus used for their experiment

was an electrostatic electron spectrometer using two hemispherical energy analysers. The
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(5-FU - H)− fragment occurred initially at an energy of 0.560 eV and was then found to

appear at 0.85 eV and 1.28 eV. Their result for the 5-ClU− was found to be 0.00 eV. This

agrees with the results found by Denifl et al. [2003], see Figure 1.11.

Abdoul-Carime et al. [2000] reported dissociative electron attachment to gaseous 5-

bromouracil with a 0 - 16 eV incident electron energy range. They found that low-energy

electron impact can produce various anion fragments that are caused from endo- and

exo-cyclic bond ruptures. The parent ion BrU− resulted from resonant electron capture

by the parent molecule at 0, 0.5 and 1.3 eV, [Abdoul-Carime et al., 2000]. The yield peaks

for the Br− or (U-yl)− (U-yl referring to an anion fragment existing through exo-cyclic

bond rupture) fragments were found to exist at 0, 1.4 and a weak structure at 6 eV. These

results indicate that they were formed through dissociate electron attachment.

Abouaf et al. [2003a] compared the negative ion production processes in thymine (T)

and 5-bromouracil (BrU) after impact of low-energy electrons (0-2 eV). The experimental

apparatus used in this research included an electrostatic electron spectrometer using hemi-

spherical energy analysers in tandem. The cross-section for the BrU− fragment displayed

a peak located at 0.02 ± 0.02 eV alongside a smaller peak located at 0.6 eV. Regarding

the Br− and Uyl− fragments, they observed three peaks close to 0 eV. These peaks were

located at 0.02 ± 0.02, 0.09 ± 0.02 and 0.28 ± 0.02 eV. They concluded their study by

verifying large cross-sections for negative ion production close to 0 eV in bromouracil.

Denifl et al. [2004a] investigated the process of electron attachment to chlorouracil,

comparing the results of 5-chlorouracil with 6-chlorouracil. The experiment was carried

out using a crossed electron/molecular beam apparatus. They found that themost dominant

DEA channel is the formation of (M-HCl)− - which implies the loss of a neutral HCl

molecule. (Note that M refers to ClU.) The reaction cross-sections are 9 x 10−18 m2 and

5 x 10−18 m2 for 6-chlorouracil and 5-chlorouracil respectively.

Scheer et al. [2004] describe the dipole bound and valence anion states in these com-

pounds and present assignments for the two types of structure appearing in the cross-

sections.

Winstead and McKoy [2006] studied low-energy electron collisions with gas-phase
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uracil in the attempt to understand the resonant structure of the scattering cross section.

They calculated the first resonance to appear at 0.32 eV which agrees relatively well

with 0.22 eV, which is the result obtained from electron-transmission experiments. Their

symmetry-resolved results for elastic scattering provide locations for the expected π∗

shape resonances as well as indicating the possibility of a low-energy σ∗ resonance.

1.5.2 Other electron impact studies

Many recent studies have focussed on low-energy electron collisions with the nucleobases

(adenine, cytosine, guanine, thymine and uracil) in the gas phase. This section discusses

the measurements recorded by various research groups, regarding electron impact with

5-halo-uracils and uracil.

Herve du Penhoat et al. [2004] studied the anion fragment formation in 5-halo-uracil

(5-XU, U = uracil, X = fluorine, chlorine, bromine, and iodine) films induced by 1 - 20

eV electron impact. A heated oven raised each compound to a temperature below the

evaporation onset temperature. Each 5-halo-uracil was raised to a different temperature

(103 ° C for 5-fluorouracil). The electron gun operated with an energy range of 1 - 40 eV.

A quadrupole mass spectrometer was used to measure the yield of fragments produced

from the condensed phase target molecules.

5-FU 5-ClU 5-BrU 5-IU

anion E0onset E0max E0onset E0max E0onset E0max E0onset E0max

H- 4.9 7.7 4.9 8.9 4.7 8.6 5.0 8.5
X- 4.7 7.2 3.0 7.2 3.3 6.4 3.0 5.7

(3.5) (2.0) (2.3)
12.1 8.7

CN- 5.0 8.4 5.0 8.4 5.6 8.3 5.2 8.4
(4.6) (4.8) (4.4)

OCN- 4.0 8.7 4.0 9.1 5.3 8.7 4.3 8.8
(4.7)

O- - - - - - - 5.8 8.1*
12.3

OH- - - - - - - 5.0 8.2
12.2

Figure 1.12: Onset energies and positions of maxima (eV ± 0.5 eV) of yields produced
by low-energy electron bombardment, [Herve du Penhoat et al., 2004]. X refers to the
chemically related halogen elements.
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Figure 1.12 is a table of results that show the onset energies for various 5-halo-uracils

fragments. The onset energy for the halogen atom fragment of 5-CIU, 5-BrU and 5-IU

was 3.0 ± 0.5, 3.3 ± 0.5 and 3.0 ± 0.5 eV respectively, while the halogen atom fragment

of 5-FU (fluorine) had a larger onset energy of 4.7 ± 0.5 eV. Their studies found that ions

H− and X− fragments were most abundant for all 5-halo-uracils.

Denifl et al. [2004b] determined the appearance energy of fragments produced through

electron impact ionisation of 5- and 6-chlorouracil. The apparatus used in their experiment

was a hemispherical electron monochromator coupled with a quadrupole mass spectrom-

eter. An oven was heated to temperatures of 180°C and 160°C for 5-chlorouracil and

6-chlorouracil respectively. The appearance energies were determined by fitting a thresh-

old function to the ion yield curves (for more details see Section 4.6.2). Mass spectra were

recorded with an electron impact energy of 70 eV.
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Figure 1.13: Appearance energy graphs for chosen fragments generated from neutral
5-chlorouracil by electron impact, [Denifl et al., 2004b].

The ionisation energy for 5-chlorouracil was determined to be 9.39± 0.05 eV. Themost
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abundant fragment in the mass spectrum was the (C3H2ClNO)+ which had an appearance

energy of 11.12 ± 0.03 eV. Denifl et al. [2004b] compared the appearance energies for all

5-halo-uracil molecules with that of thymine. All the compared appearance energies were

within ≈ 0.5 eV of one another.

Denifl et al. [2004c] studied the threshold electron impact ionisation of uracil using a

high resolution hemispherical electron monochromator combined with a quadrupole mass

spectrometer. Mass spectra were recorded at an electron impact energy of 70 eV. The

appearance energies were determined using a non-linear least square fitting procedure

based on a Wannier type power law. The ionisation energy of uracil was found to be 9.59

± 0.08 eV.

Abouaf et al. [2003b] investigated the excitation of the lowest electronic and vibrational

excitation in gas phase thymine and 5-bromouracil by electron impact. The apparatus that

was used for this research was an electrostatic electron spectrometer that used two hemi-

spherical energy analysers, both in the electron gun and the analyser sections. Resonant

vibrational excitation for both thymine and 5-bromouracil appeared in the 1 - 2 eV range

as well as in the 4 - 5 eV range. There is an indication that they detected a triplet electronic

state for both thymine at 3.6 ± 0.08 eV and 5-bromouracil at 3.35 ± 0.8 eV. Abouaf et al.

[2003b] state that electronic and vibrational excitations do not appear to be involved in

explaining the different behaviour of these molecules under ionising radiation.

Imhoff et al. [2007] investigated the formation channels and chemical composition

of charged fragments of uracil (U) and 5-bromouracil (BrU) produced by 70 eV electron

impact in gas phase and 10 - 200 eVAr∗ ion irradiation in condensed phase are investigated

in parallel with that of thymine (T). The apparatus used in this research consisted of an

ion beam system and a quadrupole mass spectrometer. They found that the fragmentation

pattern of 5-bromouracil is quite different when compared with that of thymine and uracil

with a lot less heavy fragments. Major anion fragments were produced by ion irradiation

and they included H−, O−, CN− and OCN−. These fragments were the major ion

fragments produced by ion irradiation for all three molecules.

Ulrich et al. [1969] conducted a study on the fragmentation processes of uracil (U) and

thymine (T) derivatives. Their original mass spectra are presented. The fragmentation
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of thymine derivatives confirm the Diels-Alder mechanism (in the first mass spectra

series). Diels-Alder mechanism involves combining a diene (a molecule that possesses

two alternating double bonds) and a dienophile (an alkene) to make rings and bicyclic

compounds. The secondmass spectra series includes dihydro 5,6-fragmentations of uracil.

These molecules behave differently, as they are more sensitive to the substituents.

Rahman and Krishnakumar [2015] measured absolute partial and total electron ion-

ization cross-sections of uracil in the gas phase as a function of energy that reached 500

eV. The relative flow technique was used to normalize the ion yield curves to the partial

ionisation cross-sections. The relative flow technique for a target gas relates the differential

cross-section of that gas, at a specific scattering angle and energy, to that of a reference

gas under identical conditions, [Ehrhardt and Morgan, 2013]. A time-of-flight mass spec-

trometer was used to mass select the ions. The appearance energies for most fragments

were determined. The appearance energy for the parent ion of uracil (112 u) was found to

be 9.5 ± 0.7 eV.

1.5.3 Photon impact studies

This section discusses the measurements recorded by various research groups, regarding

photon impact with 5-halo-uracils and uracil. Photoionisation refers to the ionisation of a

molecule or atom caused by the absorption of a photon.

Jochims et al. [2005] used synchrotron radiation as an excitation source, in a 6 - 22

eV photon energy range, to perform photoionisation on uracil (as well as thymine and

adenine). A quadrupole mass spectrometer was used to measure the fragments formed

by photoionisation of the molecules. The entire chamber was heated to a temperature

between 120 - 140°C. This temperature was sufficient to supply target molecules but also

low enough that the thermally fragile nucleic acid bases did not dissociate when in the

gas phase. Mass spectra were generated at 20 eV and ion yield curves were obtained

through photon energy scans. The appearance energy of most photoions was determined

and compared with the corresponding electron impact results. The parent ion of uracil

and thymine were found to have an appearance energy of 9.15± 0.03 eV and 8.82± 0.03

eV respectively.
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Itälä et al. [2010] investigated the photofragmentation of thymine and 5-bromouracil fol-

lowing core ionisation by soft x-rays using photoelectron-photoion-photoion coincidence

techniques. Once the energy of the incident photons are resonant, electrons can be excited

from a specific atomic core orbital. This experiment used a time-of-flight detector with a

400 mm drift tube and an electron energy analyser. The electronics for the ion detection

system is based on a 1 GHz waveform digitiser card. Once the targets are irradiated with

photons, a 1s core hole is created in one of the carbon atoms. An advantage of this method

is that it provides an opportunity to study site selected fragmentation.

Itälä et al. [2011] researched the molecular fragmentation of pyrimidine derivatives

following site-selective carbon core ionisation. The biomolecules investigated were 5-

bromouracil, uracil and thymine. The apparatus used in this study was a hemispherical

analyser and a ion time-of-flight mass spectrometer.

Figure 1.14: C 1s photoelectron spectrum of 5-bromouracil, thymine and uracil, [Itälä
et al., 2011].

Figure 1.14 shows a photoelectron spectrum of 5-bromouracil, thymine (where 330 eV
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photons were used), and of uracil (where 315 eV photons were used). It was found that,

generally speaking, the surrounding bonds of a molecule that was ionised have a higher

probability of undergoing bond cleavage. However, in some cases, it was found that some

fragmentation pathways result in bond breakages that are not dependant on the site of the

initial ionisation.

Barc et al. [2013] investigated multi-photon ionisation of uracil in a wavelength range

220–270 nm, and the resulting fragmentations were then analysed. The main components

of equipment used in this experiment were a time-of-flight mass spectrometer, a molecular

beam, electron gun and a supersonic expansion chamber (where the uracil molecules were

heated to sublimation). The appearance energies were determined for most fragments

and compared with other studies. Their results showed that hydrogen bonding to water

will stabilise uracil with respect to neutral excited-state ring opening as they showed that

hydration enhances particular fragmentation pathways but also suppresses the production

of other fragments.

Radisic et al. [2011] studied the negative parent ions of 5-chlorouracil (UCl−) and

5-fluorouracil (UF−) using anion photoelectron spectroscopy. Low-energy electrons were

directed using magnetic fields, into a gas expansion, producing the negative ions. The

ions were transferred into a flight-tube of a 90° magnetic sector mass spectrometer with a

mass resolution of 400. The determined vertical detachment energy measurements of the

ions are consistent with the observation of DNA being more sensitive to radiation when

the thymine molecule is replaced with a halouracil.

1.5.4 Ion impact studies

Maclot et al. [2014] have presented a study regarding the stability of the glycine cation in

the gas phase after interaction with multiply charged ions. Their paper presents both an

experimental and theoretical analysis. A crossed beam device and a linear time-of-flight

mass spectrometer were the main apparatus used in this experiment. They found the

primary fragmentation pathways consist of a bond cleavage of the Cα - Ccarboxyl bond.

This primary bond cleavage led to the 28, 29, 30 and 45 amu masses. The most stable

single charged glycine conformers show a geminal diol form.
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In 2016, Markush et al. [2016] investigated the role of the environment in the ion

induced fragmentation of uracil. An ion beam was used to induce fragmentation and

the resulting fragments were extracted into a time-of-flight mass spectrometer and then

detected with a Daly-type detector. They obtainedmass spectra for both the pure and nano-

hydrated fragments and made a comparison between them. They discovered that when

the uracil is surrounded with the environment, the resulting peaks on the mass spectrum

are much broader when compared to that of the uracil molecule that is not surrounded by

the environment. They found that the environment plays a pivotal role in the molecular

fragmentation process, as the presence of an environment acts as a protector, resulting in

a lower yield for the low mass fragments.

There are several review papers regarding ion impact on uracil. The following is a list

of additional research groups that have studed ion impact on uracil: [Afrosimov et al.,

2015], [Agnihotri et al., 2013], and [Ferreira da Silva et al., 2011] (A comparison of the

results from Ferreira da Silva et al. [2011] with results obtained in this experiment is found

in Section 5.4.2).

1.6 Research presented in this thesis

The research presented in this Masters of Science thesis involves the study of positive-ion

mass spectrometry of 5-fluorouracil using low-energy electron impact. The apparatus in

Maynooth University is designed to investigate the results obtained from electron impact

with molecules and clusters.

In chapter 2, an overview is given of varius techniques used in mass spectrometry.

Chapter 3 describes the experimental apparatus used in this work, including the creation

of a suitable vacuum within the system, the testing of the efficiency and collimation of the

electron gun, and the calibration of the electron energy.

Chapter 4 discusses the interfacing, data acquisition and data analysis of the experiment.

This involves the calibration of the multichannel scaler and the acquisition of mass spectra.

The LabVIEW programs for data acquisition and data analysis are also discussed.
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Chapter 5 presents the results we have obtained for 5-fluorouracil. The mass spectrum

of 5-fluorouracil is compared with that of uracil. The results from the Gaussian peak fitting

are discussed and analysed, followed by the analysis of the appearance energy results that

were obtained from the appearance energy fitting program. Finally, we investigate the

fragmentation processes for most of the 5-fluorouracil fragments.
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Chapter 2

Principles and Instrumentation of Mass

Spectrometry

2.1 What is mass spectrometry?

The basic principle of mass spectrometry is to generate ions from either inorganic or

organic compounds by any suitable method, to separate these ions by their mass-to-charge

ratio m/q and to detect them qualitatively and quantitatively by their respective m/q and

abundance, [Gross and Roepstorff, 2011]. Mass spectrometry is used to investigate the

fragmentation patterns, chemical composition and the structure of molecules. Mass spec-

trometers are used in many fields of research including: pharmaceutical, environmental

and biotechnology research, [Hassan, 2012].

A mass spectrometer consists of three primary components held under vacuum: an ion

source where the molecules in their gas phase are converted into ions, a mass analyser

that separates the ions based on their mass-to-charge ratio by applying electromagnetic

fields, and (finally) a detector that detects the newly formed ions. This chapter will discuss

the various equipment used to perform mass spectrometry including: time-of-flight mass

spectrometers (which is used in this experiment), mass analysers, and mass spectrometers

using ion traps.

Inlet System

(Vacuum)

Ion Source

(Vacuum)

Mass Analyser

(Vacuum)

Detector

(Vacuum)
Signal Processor Read Out

Figure 2.1: Components of a mass spectrometer.
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Figure 2.1 shows the components that comprise a mass spectrometer. All mass spec-

trometers use an ion formation component, a component to mass analyse and an ion

detection component. The procedure begins with the inlet system where the compound of

interest is placed. A small quantity of the compound is introduced from the inlet system

into the ion source as a gas. The ion source used in this experiment is an electron impact

source but there exist other ion sources that are widely used. These ion sources include:

photon ionisation, chemical ionisation, and fast atom bombardment ionisation. Most mass

analysers use electric or magnetic fields to apply a force on the ions. The difference in

the mass of the ions allows the mass analyser to separate the ions depending on their m/q

ratio. In the following sections, we will briefly discuss mass analysers, mass spectrometry

using traps and time-of-flight mass spectrometry. There are essential differences between

the different techniques of mass spectrometry. Mass analysers filter and detect a single

m/q at a time, ion traps are used to store and selectively release individual masses and a

time-of-flight mass spectrometer - which uses a pulsed source - that detects and analyses

all ions that are produced.

2.2 Mass analysers

2.2.1 Single-focusing mass spectrometer

Asingle-focussingmass spectrometer uses a singlemagnetic sector to differentiate between

the m/q value of the ions but as the ions leaving the ion source will have different levels

of kinetic energy, their velocities will not be the same. This causes a limitation on the

resolution of the single-focusing mass spectrometers. The magnetic sector generates a

perpendicular magnetic force onto the ions which does not effect the velocity of the ions,

only their direction. The magnetic sector is a momentum analyser as opposed to one that

analyses mass directly. The Lorentz Force FL can be used to describe the effects on a

charged particle inside a magnetic field:

FL = qvB (2.1)

where q is the charge of an ion, v is its velocity and B is the magnetic field. An ion of

mass m travelling perpendicular to a homogeneous magnetic field will follow a circular

trajectory of radius rm implying:
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FL = qvB =
miv2

rm
(2.2)

Rearranging equation 2.2 the radius rm becomes:

rm =
miv
qB

(2.3)

implying that the radius rm depends on the momentum mv of an ion and therefore the

momentum depends on the ions m/q value, implying:

mi

q
=

rmB
v

(2.4)

Equation 2.4 shows the relationship between an ions m/q value and the magnetic field

through which it is travelling, [Gross and Roepstorff, 2011]. Once the ions pass through

the magnetic sector and travel through a collector aperture, they will produce a signal

once they reach the detector. Single-focusing analysers fail to account for the difference

in kinetic energies of ions with equal m/q ratio exiting the ion source.

2.2.2 Double-focusing mass spectrometer

A double-focusing mass spectrometer combines a magnetic sector and an electric sector

bringing ions with differing kinetic energy distributions but equal m/q ratio to a focus,

[Gross and Roepstorff, 2011]. The electric sector consists of two concentrically curved

parallel plates. A voltage is applied to these plates to generate an electric field that will

bend the trajectory of the ion beam as it travels through the mass analyser. The electric

sector is used to minimise the kinetic energy distribution of the ions which increases

the mass resolution of the magnetic sector, [Skoog et al., 2017]. The radius of an ions

trajectory is dependent on the kinetic energy of that ion and the voltage applied across

the two deflecting plates. The equation that describes the radius of an ions trajectory

can be defined as r = 2V/E. This equation shows that the radius of an ions trajectory is

independent of its m/q ratio. The electric sector brings ions with differing kinetic energies

to a focus whereas the magnetic sector separates the ions depending on their m/q ratio.

The ions are accelerated into the magnetic sector with uniform energy. The magnetic

sector separate the ions depending on their mass by analysing their momentum. The
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deviation of trajectory for ions that are too heavy and too light will not traverse the

magnetic sector toward the detector slit positioned at the end of the mass spectrometer.

This causes an ion optical system that focuses ions on a single image position. These slits

can be narrowed which will increase mass resolution but will decrease the count rate of

ion detection. The slits define the energies and locations of the ions, [Dass, 2007]. The

benefits of double focusing include: much higher mass resolution, high dynamic range,

high sensitivity and very high reproducibility.

2.2.3 Quadrupole mass spectrometer

A linear quadrupole mass analyser consists of four cyclindrically or hyperbolically shaped

rod electrodes that are assembled in a square configuration, [Gross and Roepstorff, 2011],

as shown in Figure 2.2.

Two opposite rod electrodes have an applied potential of +(U + Vcosωt) with the

other two having an applied potential of −(U + Vcosωt), where U represents the DC

voltage and the AC voltage is given by Vcosωt. If a positive AC potential is applied to the

x-rods, for example, a positive ion would move towards the centre axis between the two

x-rods. When the potential became negative, the ion would then accelerate towards the

x-rods due to the attractive force. If the attractive force was sufficient so that the ion came

into contact with either rod, it would result in that ion being removed from the system.

There are a few factors that determine whether an ion will be removed from the system

when the potential is negative, and they include: the charge of the ion, the frequency

regarding the AC potential and the mass of the ion.
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Figure 2.2: Image of a linear quadrupole mass analyser adapted from Project [b].

Figure 2.2 shows a linear quadrupole mass analyser with the different components

numbered. Component 1 is the ion source, 2 is the ion optics component to accelerate and

focus the ions through an aperture into the quadrupole mass filter, 3 shows the trajectory

of a non-resonant ion that will not be detected, 4 shows the trajectory of a resonant ion

that will be detected once it has travelled through the exit aperture, 5 is the ion detector

that detects ions that have traversed the mass filter, and 6 shows the DC and AC voltage

configuration. The DC and AC voltages generate a potential that will only allow ions

with a specified m/q value to pass through the quadrupole toward the detector. The ions

are separated in a quadrupole based on the stability of their trajectories when travelling

through the oscillating field. Ions that have unstable trajectories will be removed from the

system when they collide with the quadrupole rods or escape from the quadrupole.

Ions with different masses can be detected by varying the voltages so that an ion

traverses the quadrupole to the detector. Conventionally, the x-rods of the quadrupole

represent a high-pass mass filter allowing ions with large mass to be transmitted through

the quadrupole and reach the detector (without hitting the x-rods). The y-rods of the

quadrupole represent a low-pass mass filter, allowing low mass ions through (without
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hitting the y-rods), see Figure 2.2. The benefits of using a linear quadrupole include:

classical mass spectra, low cost systems and good reproducibility.

2.3 Trap mass spectrometry

An ion trap uses electric and magnetic fields to capture charged particles. The Paul trap

and the Penning trap are the two most common types of trap used to capture ions. A

Penning trap uses a homogeneous magnetic field and a quadrupole electric field to contain

ions within a given region. The Penning trap combines electric and magnetic fields to

confine the ions whereas the Paul trap forms a potential via a combination of static and

oscillating electric fields. Ion trapping mass spectrometers such as the Fourier transform

ion cyclotron resonance mass spectrometer and a quadrupole ion trap, capture the ions

within a confined region of space where they are subject to time dependant fields, [March

and Todd, 1995]. A Fourier transform ion cyclotron resonance mass spectrometer uses a

Penning trap to confine the ions.

Figure 2.3: Image of a Penning trap, [Arian Kriesch Akriesch]

Figure 2.3 shows the homogeneous electric field that is generated by two end caps

denoted as ’a’ and a ring electrode denoted as ’b’, with a superimposed magnetic field B

that is generated with a surrounding cylindrical magnet ’c’. The measurement of the mass

of the ion is carried out via the determination of the characteristic cyclotron frequency

given by vc = qB/2πm, [Eitel et al., 2008].
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A quadruple ion trap, or Paul Trap named after its inventor, stores ions within defined

boundaries for a defined period in time, [March and Todd, 2005]. A quadrupole ion trap

consists of two hyperbolic electrodes with their foci facing each other that are used as

end caps, as well as a ring electrode, see Figure 2.4. The two hyperbolic electrodes are

electronically connected and a potential is generated between them and the ring electrode.

The ring electrode and the two endcap electrodes are supplied with suitable AC voltages,

[Gross and Roepstorff, 2011].

Laser

Cap 
Electrode

Ring
Electrode

Lenses

Figure 2.4: Image of a quadruple ion trap, [Pinimg].

Figure 2.4 shows the configuration of the quadrupole ion trap and the resonance AC

voltage being applied to the two endcap electrodes. These are used to create stable

trajectories for ions with a specified m/q while removing other ions. The unwanted ions

are removed from the system when they collide into the walls of the mass analyser, or by

axial ejection, [Gross and Roepstorff, 2011]. An issue with using ion traps to perform

mass spectrometry is that the captured ions could eventually spontaneously fragment,

known as unimolecular decomposition, which would result in unexpected peaks in the

mass spectrum. Space-charge effects (ion-ion repulsion) limit the dynamic range of the

ion trap. The benefits of quadrupole ion trapping include: they can achieve high sensitivity

as well as being a relatively compact analyser.
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2.4 Time-of-flight mass spectrometry

A time-of-flight mass spectrometer is a type of mass spectrometer that measures the

time it takes for ions of varying m/q values to travel from the ion source to a detector.

The first commercial time-of-flight mass spectrometer was the linear time-of-flight mass

spectrometer, designed and published in 1955 by Wiley and McLaren [de Hoffmann and

Stroobant, 2013]. This instrument was of vital importance to Curl, Kroto and Smalley,

[Smalley, 1997], when they shared theNobel Prize in Chemistry in 1966 for their discovery

of fullerenes. It was the availability of time efficient data acquisition with fast working

electronics and processing of data, alongside the capability of using pulsed ion sources

that pushed the time-of-flight mass spectrometer to the forefront of atomic and molecular

research.

In time-of-flight mass spectrometry, the ions are created from a pulsed laser or pulsed

electron source. They are extracted from the ion source and directed into a field-free time-

of-flight tube by a potential that is applied to an extraction grid. The mass-to-charge ratio

of an ion is determined by analysing the time taken for an ion to reach the detector once

it has been extracted into the flight-tube. The time taken for a singly charged ion to travel

down the flight-tube is proportional to theirm/q value assuming that the ions all receive the

same level of kinetic energy. The time measurements and ion abundance measurements

are recorded by the detector. Mass spectra are accumulated by collecting the ions from the

electron pulses and laser pulses. Two types of time-of-flight mass spectrometry include:

linear time-of-flight mass spectrometry and reflectron time-of-flight mass spectrometry,

see Figure 2.5. Both types of time-of-flight mass spectrometer are discussed below,

beginning with a brief discussion of the linear time-of-flight mass spectrometer.

2.4.1 Linear time-of-flight mass spectrometry

In a linear time-of-flight mass spectrometer, the ions are accelerated in two stages and

extracted into a field free region where they drift towards a detector situated at the end of

the flight-tube, [Wiley andMcLaren, 1955]. A spectrum can be generated by analysing the

flight time of each ion. The linear time-of-flight mass spectrometer has some limitations,

arising from space charge effects and the kinetic energy distribution. Space charge defects

refers to the issues caused by the size of the volume where the ions are formed (ions

35



Chapter 2: Principles and Instrumentation of Mass Spectrometry TOF

entering the field free region at different times). Molecules within the ion source receive

different levels of energy from the electron pulse or laser pulse resulting in the formation

of ions with varying kinetic energies. The varying levels of kinetic energy broaden the

peaks in the mass spectrum decreasing the mass resolution.

Figure 2.5 shows the difference in the arrangement of a linear time-of-flight mass spec-

trometer and a reflectron time-of-flight mass spectrometer. The main difference between a

linear time-of-flight mass spectrometer and a reflectron time-of-flight mass spectrometer

is that a reflectron time-of-flight mass spectrometer uses a reflector component to perform

second order focussing in flight time of ions with the same m/q ratio, whereas a linear

time-of-flight mass spectrometer only provides first order focussing.

Ion source Field free drift region Detector

Reflector

Trajectory of ions

Trajectory of ions

Detector

a

b

Figure 2.5: Basic configuration of a linear time-of-flight mass spectrometer (a), and a
reflectron time-of-flight mass spectrometer (b).

2.4.2 Reflectron time-of-flight mass spectrometry

A reflectron time-of-flight mass spectrometer consists of an ion source, a time-of-flight

tube, a reflector that acts as an ion mirror, and a detector. Mamyrin was the first person to

propose a second order focussing reflectron or reflector, [Boesl, 2016]. To supply second

order focussing, the reflector uses a static electric field with the same polarity as the ions,

to focus the ions toward the detector. This retarding electrostatic field is produced inside
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the reflector which is positioned at the end of the field free flight-tube. The distance in

which an ion penetrates the retarding field within the reflector depends on the m/q ratio

and the kinetic energy of the ion. Ions that have high levels of kinetic energy will penetrate

the electric field more deeply than ions with low kinetic energy. This increase in path

length causes ions with varying levels of kinetic but equal m/q to arrive at the detector at

the same time.

For this experiment, a reflectron time-of-flight mass spectrometer by R.M. Jordan

Company was used to detect the ions, see Section 3.4 for a detailed description. A

Mamyrin design [Mamyrin, 2001] time-of-flight mass spectrometer tilts the reflector off

at a small angle with respect to the ion source, so the detector can be placed adjacent to

the ion source. In this experiment we use a set of deflection plates. An Einzel lens is used

to provide a certain amount of focussing of the ions extracted into the mass spectrometer.

An Einzel lens focuses the ions without changing their energy. The ions are then reflected

towards a detector located underneath the entry to the flight-tube. The reflector corrects

for a small dispersion in the initial energy of the ions with the same m/q ratio.

Ion Flight Path

Figure 2.6: Reflectron time-of-flight mass spectrometer.

The flight time of an ion in a reflectron time-of-flight mass spectrometer can be

described as: [Mamyrin, 2001]

t = A0

[
A1√

k
+ A2(

√
k−

√
(k− p)

]
= A0F (2.5)

where k =
U
U0

and p =
Ub
U0

. qU0 describes the average energy of the ion and qU is

37



Chapter 2: Principles and Instrumentation of Mass Spectrometry TOF

the energy of the ion corresponding to the ion velocity components. Quantities A0, A1

and A2 are now defined as:

A0 =
4dr√

2qU
m

U0
Ur

A1 =
L1+L2
4drU0

A2 =
db
dr

Ur
Ub

A1 and A2 being independent of mass and charge, Ub refers to the potential difference

inside the deceleration gap db. Ur is the potential difference in the reflecting gap dr. L1

and L2 are the lengths of the flight paths that span the reflecting field and the field-free

drift region, see Figure 2.6. A0 can be manipulated to yield:

A0 =
4dr√

2qU
m

U0
Ur

= 4dr√
2U

U0
Ur

√
m
q

When the equations for A0, A1 and A2 are inserted into equation 2.5 we are left with a

flight time of:

t = A
√

m
q
+ B (2.6)

with A =
4dr√
2U

U0
Ur

[
A1√

k
+A2(

√
k−

√
(k− p)

]
B is a term used to accommodate for the delay of the extraction pulse and the multi-

channel scaler card, discussed in Section 4.1. Using equation 2.6, the relationship between

time and an ion m/q value is:

m
q = (Ct + D)2

where C =
1
A and D =− B

A .
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Chapter 3

Experimental Apparatus

3.1 Overview of the molecular beam experiment

This chapter describes the apparatus used for the research carried out in this thesis.

This chapter will discuss in detail the different parts of the apparatus as well as any

modification made for this study. The molecular beam experiment consists of three

interconnected vacuum chambers as shown in Figure 3.1: the expansion chamber, the

collision chamber and the flight-tube. The experiment consists of a differentially pumped

vacuum. The system is kept under a suitable vacuum using a combination of forepumps

and turbopumps discussed in Section 3.1.1. A vacuum lessens the probability of unwanted

collisions within the system.

The oven, bracket and a skimmer are all situated within the expansion chamber. The

bracket is a part of a top-hat arrangement that provides alignment between the aperture of

the skimmer and the capillary of the oven. The top-hat arrangement is used to separate

the expansion chamber and the collision chamber. The 5-fluorouracil is vaporised inside

the oven. The electron gun, Faraday cup and the ion extraction grids are situated inside

the collision chamber. The molecules are ionised and undergo fragmentation within the

collision chamber. The reflectron time-of-flight spectrometer and the microchannel plate

detector are situated inside the flight-tube. The total length of the system is approximately

2 m. The vacuum chambers are supported by an aluminium frame. The primary sections

of the reflectron time-of-flight mass spectrometer can slide along the structure of the

aluminium frame, allowing access into the various compartments of the system.
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reflectron time-of-flight mass spectrometer

positive ions

oven

skimmer

electron 
beam
(down)

expansion chamber

collision chamber

reflectormicrochannel plate detector

extraction 
grids

Figure 3.1: Overview of the molecular beam experiment.

Copper gaskets are used on the flanges that seal the three main chambers together, (for

a few flanges viton o-rings are used). The expansion chamber is where the molecular beam

of 5-fluorouracil is produced through sublimation inside a heated oven. This process is

discussed in more detail in Section 3.2.1.

Section 4.2 discusses the process of ion extraction in depth. The electron beam passes

between two grids where one grid is charged, discussed in Section 3.4. Using charged

electrodes, the fragments are extracted into the reflectron time-of-flight mass spectrometer.

The ions are detected using a multichannel plate detector (MCP) situated within the flight-

tube.
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Figure 3.2: Photo of the molecular beam experiment. 1 - Expansion chamber, 2 - Collision
chamber, 3 - Flight-tube.
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3.1.1 Vacuum system

Three turbopumps backed up by two forepumps are used to keep the entire system at a

suitable vacuum. The Leybold TurboVac 360 turbopump on the expansion chamber is

backed up by an Alcatel 2063 SD rotary vane pump, and the two Leybold TurboVac 361

turbopumps on the collision chamber and the flight-tube are both backed up by the same

Leybold Trivac D25B rotary vane pump. To evacuate the vacuum system after it has

been exposed to atmospheric pressure, the rotary vane pumps are started first until the

pressure in the vacuum system is low enough and the turbopumps can be started. Once

the evacuation procedure is complete, the pressure in the vacuum system is typically ≈

2x10−8 mbar.

Figure 3.3: The ionisation gauges of this type are used in the experiment, [Project [a],
Nude Bayard-Alpert].

The pressure within the system is measured using two AML ionisation gauges and two

AML pirani gauges. Each pair of ionisation gauge and pirani gauge is monitored using

an Arun Microelectronics PGC2 Pressure Gauge Controller. One of the ionisation gauges

used in this experiment can be seen in Figure 3.3. The ionisation gauges measure the

pressure inside the collision chamber and the flight-tube whereas the two pirani gauges

measure the pressures within the fore-lines of the forepumps.
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3.1.2 Interlock system

An interlock system is used as a safety mechanism that will shut down the running of the

experiment in the event of equipment failure, which enables the experiment to be ran over

an extended time period.

The interlocking of the system prevents the damage of other apparatus, caused by the

failing equipment. To ensure this, the three turbopump controllers and the two pressure

gauge controllers are connected to the interlock box. Pressure trip points for the ionization

gauges and the pirani gauges are set on each of the pressure gauge controllers. The interlock

box has five toggle switches on its front panel, for each of the controllers connected to it,

so that each of these can be bypassed during the pump-down of the vacuum system. The

pieces of apparatus are the following: the three turbo-pumps and the two pirani gauges. If

the trip points are activated, the interlock box will receive a signal that implies equipment

failure. If this occurs, it was result in the shut-down of the experiment.

3.2 Expansion chamber

The expansion chamber is the left chamber in Figure 3.1. The expansion chamber is

separated from the collision chamber by a top-hat arrangement, shown in Figure 3.4,

which ensures the correct alignment of the oven, the skimmer and the electron gun. The

expansion chamber is where the beam of 5-fluorouracil is generated, inside the resistively

heated oven, and collimated using an electroplated skimmer. A skimmer is a conical

device that creates a collimated beam of 5-fluorouracil as it enters the collision chamber.

The skimmer separates the expansion chamber from the collision chamber. Its aperture is

1.2 mm.
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Capillary 
of oven

Skimmers 
aperture 

Figure 3.4: Diagram of the top-hat arrangement, showing the oven inside its mounting
bracket, the skimmer, the electron gun and the Faraday cup.

Figure 3.4 shows the skimmer which has a diameter of 1.2 mm mounted on a top-hat

arrangement separating the expansion chamber and the collision chamber. The bracket in

also part of the top-hat arrangement and aligns the capillary of the oven with the aperture

of the skimmer.

3.2.1 Oven

The oven is a cylindrical copper compartment that contains the 5-fluorouracil and is

situated inside the expansion chamber. The front of the oven contains a 0.5 mm diameter

capillary that is positioned such that it lies above the surface of the 5-fluorouracil. Figure

3.5 shows the aperture of the oven positioned above the 5-fluorouracil. The dashed line in

Figure 3.4 shows the alignment of the capillary in the oven with the skimmer.

An Omron E5CK digital controller and a Thurlby Thandar PL330 power supply control

the temperature of the oven that is measured using a thermocouple. A Thermocoaxial SEI

10/50 heater is used to heat the 5-fluorouracil to sublimation. It will then effuse through

the capillary of the oven toward the skimmer. A portion of the 5-fluorouracil will fail to

enter the skimmer due to the spreading of the beam as it exits the oven. When the oven is
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in operation, the pressure within the expansion chamber increases to 2x10−7 mbar.

3.3 Collision chamber

The collision chamber can be seen in detail in Figure 3.5. The molecular beam enters

the collision chamber through the skimmer and is crossed at a right angle with a beam

of electrons that ionise and fragment the 5-fluorouracil molecules. The electron beam is

produced by the electron gun (see section 3.3.1), passes between two extraction grids, G1

and G2 (see Section 3.4), and is collected in the Faraday cup.

Molecular Beam

Electron Gun

Inner & Outer 
Faraday Cups

Oven

Skimmer
Electron 
Beam

Figure 3.5: Diagram of the collision chamber.

The interaction region is formed by the overlap of both beams and is centred between

the extraction grids. The ions that are created within the interaction region are extracted

into the reflectron mass spectrometer by pulsing the extraction grid G2 (see section 3.4).
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3.3.1 Electron gun

For this experiment, a new electron gun was assembled with better suited materials. The

original electron gun had a filament holder made from stainless steel and cylindrical

aluminium elements with molybdenum apertures in between.

Figure 3.6: The assembly of the electron gun.

Figure 3.6 shows the new electron gun, where all the electrostatic lens elements were

machined from solid pieces of molybdenum. The insulating spacers between the lens

elements are made from macor. Figure 3.7 is a schematic digram showing a cross-section

of the electron gun, collision chamber and the Faraday cup.

Figure 3.7 shows that the Faraday cup consists of an outer cup, biased at 10 V, and an

inner cup biased at 40 V. Apart from collecting the electron beam, the Faraday cup is used

to determine the collimation of the electron beam by monitoring the currents on both the

inner cup and the outer cup, see Section 3.3.2. A current is passed through the filament

situated inside the electron gun using a Thurlby Thandar PL154 power supply, while a

Farnell L30B is used as the power supply for the filament holder. The filament holder

’grid’ is biased at Vgrid = -2.5 V relative to the tip of the filament. The pulse width of the

electron beam is 0.5 µs which is sufficient to achieve high mass resolution.
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Figure 3.7: Schematic diagram of the electron gun and Faraday cup.

As the current passes through the filament, electrons are being emitted and directed

into the collision chamber using electrostatic lens elements to accelerate and decelerate

the electrons. The electron beam is pulsed which is discussed in detail in Section 4.2.

The charged electrostatic lens elements collimate and focus the electron beam before it

enters the collision chamber. The collimated electron beam is crossed with the collimated

molecular beam ionising the molecules within the collision chamber. A control box is

used to control all electron gun voltages. The control box operates with a resistor divider

network shown in Figure 3.8, and provides test points for checking the voltages while the

gun is in operation. The voltages on the electron gun elements, V1, V2, V3 and V6, are

varied to achieve a satisfactory electron beam setting. Four deflection plates (X1, X2, Y1,
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Y2) are mounted inside lens element V3. These values were set using a multimeter and

can be seen in Table 3.3.1.

Indicative Electron gun voltages and Faraday cup currents

Vgrid -2.49 V V f ilament +2.85 V

V1 +46.1 V I f ilament +2.245 V

V2 +205.7 V X1/X2 +7.36 ± 0.0 V

V3 +32.4 V Y1/Y2 -11.59± 11.0V

V6 +37.2 V VIncident +100 V

Inner Faraday

cup
+6.3 nA

Outer Faraday

cup
+0.2 nA

Table 3.1: Electron gun voltages and Faraday cup currents.

The deflection plates steer the electron beam in a direction that is dependent on the

voltages applied to these plates. Figure 3.8 shows the circuitry of the electron gun.

Figure 3.8: Circuitry of the electron gun.

A KEPCO APH 500M supplies 300 V to the control box that operates with a resistor

divider network. A set of potential dividers inside the control box allow specified voltages

to be applied to the electrostatic lens elements. The circuit is assembled so that V1, V2,
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V3 and V6 do not need to be altered each time Vincident is changed. A second KEPCO

power supply, labelled Vincident in Figure 3.8, controls the electron impact energy.

The Faraday cup collects the incident electron beam as it is positioned underneath the

electron gun as shown in Figure 3.7. The Faraday cup consists of an inner and outer cup that

together measure the beam current as a function of incident energy. Two Keithley 610C

ammeters are connected to a National Instruments USB myDAQ device. The currents in

both Faraday cups are displayed on Keithley 610C ammeters.

3.3.2 Testing of the electron gun

Figure 3.9 shows the performance of the electron gun when the incident electron energy is

varied. Asmentioned above, Vincident is the varied incident electron energy, see Figure 3.8.

The aim was to achieve a sharp stable current with low applied voltage to the electron gun

elements. A LabVIEWprogramwas used to control the KEPCOAPH 500M power supply

that varied the incident electron energy. The KEPCO power supply sets the acceleration

voltage of the electron gun. A step size of 0.25 V was set in LabVIEW for the KEPCO

power supply to increment by, until it reaches the set maximum of 100 V. Minimum,

maximum and the incremental voltages are specified in the LabVIEW program.
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Figure 3.9: Optimum electron gun setting (of current vs applied voltage).

Measuring the currents in both the inner and outer Faraday cups gives an indication
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of the shape of the electron beam. The best setting for the electron gun is determined

by optimising the combination of voltages, V1, V2, V3, V6 and the deflection plates such

that the total current is constant to as low a voltage as possible. Figure 3.9 shows a stable

current from 13 V up to 100 V. The current is not constant below 13 V.

3

2

1

Figure 3.10: Photo of 1 - The electron gun, 2 - The interaction region and 3 - The Faraday
cup.

The Faraday cup is positioned directly below the electron gun so that it collects the

electron beam, see Figure 3.10. The oven is off when optimising the settings for the

electron gun. From analysing the current obtained by the outer and inner Faraday cups, we

can determine if the electron beam is sufficiently collimated. If the electron beam was not

sufficiently collimated, Figure 3.9 would show an increase in current in the outer Faraday

cup. As Figure 3.9 suggests, most of the electron beam was gathered by the inner Faraday

cup showing good collimation.

3.3.3 Calibration of the electron energy

The onset voltage in this section refers to the voltage of the Kepco power supply. It is this

voltage that allows the determination of the electron impact energy. The ionisation yield
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curves for the 17 u and 18 u were generated by summing the counts in both peaks in the

mass spectra.

For the energy calibration in this experiment, we analysed observed onset energies

for water peaks 17 u and 18 u, and compared them with accepted results. This involved

analysing the electron impact ionisation cross-section of the 17 u and 18 uwater molecules.

The results cited in Itikawa and Mason [2005] are the results used for comparison.

The ionisation energy of H2O+ and OH+ were found to be 12.261 ± 0.002 eV and

18.116 ± 0.003 eV respectively, as cited by Itikawa and Mason [2005]. The ion yield

curves generated for the 17 u and 18 u are superimposed onto the accepted cross-sections

for the 17 u and 18 u. We used a scaling factor of 0.006 and a shift in the horizontal

axis (calibration constant), to achieve overlap of the ion yields with the partial ionisation

cross-sections results from Itikawa and Mason [2005].
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Figure 3.11: Energy calibration using water peak cross-sections from [Itikawa andMason,
2005]. The black vertical lines indicate the onset positions.

Figure 3.11 shows optimal overlap between the accepted cross-sections and the ob-

tained ionisation yield curves of the 17 u and the 18 u water peaks. The calibration

constant was found to be -1.3 V with an estimated error of 0.2 V.
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Equation 3.1 shows the relationship between the incident energy and the incident voltage.

Ei = Vi − 1.3 (3.1)

where Ei is the incident energy (eV) and Vi is the incident voltage (V). Once the

calibration constant was determined, it was then applied to the voltage values read from

the Kepco power supply.

3.4 Reflectron time-of-flight mass spectrometer

The reflectron time-of-flight mass spectrometer separates the ions by mass to charge ratio

based on their flight time. Extraction electrodes are positioned on either side of the electron

beam to extract the ions into the time-of-flight mass spectrometer, see Figure 3.12.

1

2

3

Figure 3.12: Photo of the interaction region. 1 - Extraction grid G1, 2 - Entrance to
Faraday cup, 3 - Extraction grid G2.

The ions are extracted from the collision chamber due to a potential difference between

extraction grids G1 and G2. G1 is pulsed positive and G2 is kept at ground. The pulsing

is discussed in detail in Section 4.2.
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VLiner
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Figure 3.13: Schematic drawing of the reflectron.
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Figure 3.13 is a schematic diagram of the reflectron flight-tube. The ions extracted

from the collision chamber are accelerated before they enter the field-free flight-tube. A

liner inside the flight-tube is held at -1200 V. It can be seen that the flight path of the ions

is manipulated by using an Einzel lens and a pair of deflection plates. An Einzel lens

focuses the ions without changing their energy. A voltage of -1200 V is applied to the

first and third electrodes of the Einzel Lens denoted as VLiner in Figure 3.13. The second

electrode, VFocus, is set to a voltage of -1400 V.

The microchannel plate detector is positioned adjacent to the entrance of the flight-tube

from the collision chamber. In order for the ions to reach the detector, they need to be

directed toward the reflector in an off-axis trajectory. A potential difference between the

deflection plates XY1 and XY2 cause an off-axis trajectory of the ion beam (VXY1 = -1200

V and VXY2 = -1160 V).

The ions enter the reflector and are reflected back into the flight-tube by the electric fields

inside the reflector. The reflector consists of two plates R1 and R2 with mesh-covered

rectangular holes and 18 plates with open rectangular holes. To produce the electric fields

in the reflector, voltages VR1 = -390 V and VR2 = +87 V are applied, and each of the 18

plates is biased using a resistor divider network such that the electric field between R1

and R2 is uniform. The ions entering the reflector encounter a strong decelerating field

between the liner and R1, and a weaker electric field between R1 and R2, which turns their

trajectory around, and directs them back into the field-free region towards the detector.
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1

2

3

4

Figure 3.14: The reflector assembly situated in the flight-tube. 1 - Deceleration region, 2
- Liner plate (- 1200 V), 3 - Top plate (- 390 V), 4 - Bottom plate (+ 87 V).

VR1 refers to the top plate of the reflector which is held at -390V, while the bottom plate

VR2 is held at +87 V. The reflector uses a resistor divider network to apply voltages to a

series of equidistant plates mounted between the top plate and the bottom plate (see Figure

3.14) in order to create a homogeneous field. The electric field lessens the flight-time

spread of the extracted ions with equal m/q value. Ions with an identical m/q value may be

produced with different kinetic energy in the interaction region and as a result will have

slightly different velocities when traversing the flight-tube. The reflector will increase the

path distance of the ions that have higher velocities, as they will penetrate further into

the electric field before being repelled. The depth of penetration into the electric field is

proportional to the kinetic energy of the ion. The reflector directs the ions back into the

flight-tube where they enter the microchannel plate detector.

Figure 3.15 shows the inside of the flight-tube. The top aperture joins the collision

chamber with the flight-tube. The bottom aperture is the entrance to the microchannel

plate detector where the ions are detected.
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1

2

Figure 3.15: Inside of the flight-tube. 1 - Exit from the collision chamber into the
flight-tube, 2 - Entrance into the microchannel plate detector.

Once the ions have travelled back through the flight-tube they will strike the mi-

crochannel plate detector (MCP) positioned opposite the reflector. The MCP consists of

two microchannel plates in chevron configuration mounted in front of a tapered anode. An

incident ions will strike one of the microchannels in the top plate of the MCP, releasing

secondary electrons that are accelerated through the channel by a potential difference

between two plates. Further collisions in the channel result in a small current pulse being

produced on the anode, which can be detected using an ORTEC 9327 1-GHz amplifier

and timing discriminator (see Section 4.2).

A resistor divider network is used to apply appropriate potential differences across

both microchannel plates. For the measurements with 5-fluorouracil, the resistor divider

network was supplied with -4200 V, resulting in a voltage of -1848 V on the front of the

first plate, a voltage of -1008 V on the back of the first plate and the front of the second

plate, and a voltage of -168 V on the back of the second plate. The anode is kept at ground.
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Interfacing, Data Acquisition and Data

Analysis

4.1 Introduction

This chapter describes the procedures and software used to acquire mass spectra as a

function of electron impact energy and to analyse these mass spectra. A combination of

interfacing hardware, LabVIEW programs for data acquisition and data analysis is needed

to generate mass spectra and each will be discussed in this chapter.

In this experiment, the main piece of hardware used for data acquisition was the Fast-

Comtec 7886S multichannel scaler card (MCS) which is discussed in detail in Section 4.4.

Other hardware include an amplifier and timing discriminator (discussed in Section 4.3)

and a digital delay generator (discussed in Section 4.4).

The hardware and the software operate together and are used to set a sequence of events.

The sequence of events were timed with precision as accurate timing between the hardware

and software is of huge importance when collecting data. A Stanford DG535 digital delay

generator was used to control the timing sequence and pulsing of the grid, the multichannel

scaler card and the various electrostatic lens elements of the system.
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4.2 Experimental event sequence

The first step in the sequence was to initiate the electron pulse. Once the electron pulse

has stopped, the output extraction pulse was triggered to extract the newly formed ions

from the interaction region. Once the ions have been extracted into the flight-tube, the

multichannel scaler (MCS) was triggered by sending a pulse to its start input.

Ions are extracted by applying a pulsed voltage to the extraction grids G1 and G2, see

Figure 3.12. When the experiment is in operation, G2 is held at ground and G1 is set to

+100 V, creating the field that extracts the ions from the interaction region.

In order to obtain accurate results, the electron pulse and the ion extraction pulse must

be set to particular time intervals in which to operate. The digital delay generator (Stanford

DG535) is used to accurately time the electron pulse and the extraction pulse to extract the

ions into the reflectron and trigger the multichannel scaler. A, B, C and D are the delay

signal outputs on the delay generator which are triggered relative to T0 that denotes the

beginning of the timing cycle. They are generated with remote pulsers and are delayed

with respect to each other to ensure no overlap as the induced field within the collision

chamber would alter the trajectory of the incoming electron beam, see Figure 4.1. Two

remote pulses are used, which are triggered by the AB and CD pulses from the digital

delay generator.
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Figure 4.1: Diagram showing the settings for the extraction pulse and the electron gun
pulse.

The AB output from the signal delay generator is connected to trigger the ion extraction

remote pulser box. The remote pulser requires 12 V to operate its circuit and DC bias

voltages that are connected to a pulser power supply. The 12 V supply is connected to

G1. Signal AB is sent from the digital delay generator and triggers the extraction remote

pulser that is connected to G1, grounding G1 temporarily. The reaction time of the remote

pulser causes a delay of 0.25 µs between trigger A and the grounding of the extraction

pulse.

Signal CD triggers the electron gun remote pulser box. This electron gun remote pulser

box consists of a bias voltage received from a Farnell L30B stabilised power supply, a

pulsed voltage from a Farnell E30/2 power supply and 12 V from a pulser power supply.

The electron gun remote pulser pulses from -Vinc - 30 V to Vinc.
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The B output of the signal delay generator is connected to an ORTEC EG&G 416A

gate and a delay generator. The output of this generator is connected to the START input

of the multichannel scaler card (MCS). The MCS used in this experiment is the 7886S

manufactured by FAST ComTec.

Figure 4.1 shows the delay between the end of the CD signal and the beginning of the

B signal, where B = D + 0.27 µs. The B signal triggers a sweep of the MCS card. The

ions that travel through the flight-tube and strike the multichannel plate detector generate

a signal that is passed to the STOP input of the MCS stopping the cycle.

Figure 4.1 shows the pulse settings used for the output ion extraction and the output

electron gun. Before the start of the electron pulse, the extraction pulse that operates at

+100 V, is reduced to ground, eliminating the extraction field inside the interaction region.

The potential applied to G1 is set for most of the cycle to reduce background in our mass

spectra. It is only switched off when the electron pulse is being triggered. The output

electron pulse is started 1 µs after the output extraction pulse has been re-set to ground.

The duration of this electron pulse is set to 0.5 µs during which time the electron beam

ionises the molecules. The output extraction pulse is re-initiated to +100 V, 0.05 µs after

the grounding of the electron pulse, resulting in the extraction of the newly formed ions

into the flight-tube. This delay of 0.05 µs is minimised to ensure no ions escape from the

interaction region before being extracted. This also slightly improves the mass resolution.
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Figure 4.2: Pulsing arrangement for the DG535 digital delay generator.

Figure 4.2 show the pulsing set up of the Stanford DG535 digital delay generator. It

shows that the output signal AB triggers the output extraction remote pulser while the

output signal CD triggers the electron gun remote pulser, see Section 4.2. An ORTEC

416A gate and delay generator were used to delay the multichannel scaler start by 1 µs.

Figure 4.2 also shows the connections needed for the detection of pulses, which is

described in the next two paragraphs.

4.3 Amplification and discrimination of detector pulses

When an ion is detected by the multichannel plate detector (MCP), the MCP produces

a current pulse that needs to be amplified and discriminated before the data acquisition

can commence at the MCS card. The signal is sent to an ORTEC 9327 1-GHz amplifier

and timing discriminator, which produces a NIM logical pulse whenever the current pulse

exceeds the discriminator level. The ORTEC 9327 has a 1-GHz bandwidth that minimises
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the noise and rise time contributions to timing jitter on the detector pulses. The device has

a 15-turn potentiometer to control the discriminator level, and a LED on the front flashes

whenever a pulse exceeds the discrimination level. The optimum discriminator level was

determined by monitoring the background signal between the peaks in the mass spectra,

and the value used was -0.0247 V.

4.4 Multichannel scaler

In this experiment, data acquisition was carried out using a FastComtec 7886S multichan-

nel scaler. It was used to accumulate time-of-flight spectra. The 7886S multichannel

scaler card is capable of accepting one event per channel and can handle up to 2-GHz of

peak count rates. It has a dynamic range of up to 237 channels, which enables sweeps of

68.7 s with a time resolution of 430 ps per channel. All of the mass spectra were recorded

with a bin width of 64 channels (effective resolution of 27.55 ns) and a range of 2023 bins

(total range of 55.7 µs). The multichannel scaler card is LabVIEW controlled. Within

the LabVIEW program we can initialise the MCS card and also specify the bin width and

time range. The bin width can be set in powers of 2 up to 16,384 channels.

The multichannel scaler card has the following inputs and outputs: START IN, STOP

IN, ABORT IN, SYNC OUT, DIGITAL IN and a THRESHOLD adjust potentiometer.

Output B of the digital delay generator is connected to the START IN of the MCS via the

gate and delay generator that delays the signal by 1 µs. A sweep of the MCS begins when

the signal from output B of the digital delay generator arrives at the START IN input of the

MCS as seen in Figure 4.2. The multichannel plate detector is connected to the input of

the ORTEC 9327 amplifier and discriminator. The NIM OUT output of the 9327 device

is connected to the STOP IN input of the multichannel scaler card, so that the signal from

the detector can be registered as a count at the relevant binning location of the MCS.

4.4.1 Calibration of the multichannel scaler

The multichannel scaler card was calibrated to find the length of time for one channel. The

MCS utilizes a phase-locked loop (PLL) oscillator that is set to at least 1.8 GHz resulting

in an assured time resolution of less than 500 ps per channel. This frequency can vary

so the time per channel was calibrated using the Stanford digital delay generator as an
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external reference. The time delays for the output pulses of this device can be set with 5

ps resolution. The digital delay generator sent a start and stop pulse to the multichannel

scaler card with a fixed delay. The delay between the pulses incremented by 5 µs from a

minimum value of 5 µs up to a maximum of 60 µs. The corresponding channel number

was recorded with each 5 µs incremental delay as shown in Figure 4.3.
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Figure 4.3: Calibration graph of the multichannel scaler card.

Figure 4.3 shows a graph of the number of bins versus the delay time (µs). A best fit

trendline was fitted through these data that yielded a slope of 145.2003 ± 0.0002 bins per

µs. For this calibration, a bin width of 16 channels was used. Using this information we

calculated the calibration constant (dwell time) to be 430.4400 ± 0.0005 ps per channel.

This is in good agreement with previous calculations.

4.4.2 LabVIEW control of the multichannel scaler

In this experiment, the multichannel scaler (MCS) card was controlled using LabVIEW

code. LabVIEW is able to interact with the MCS card by using dynamic link library

(DLL) files. These DLL files were written in C code by Dr. Marcin Gradziel, and are

modified versions of the DLL files provided by FASTComTec. The DLL files are accessed

within LabVIEW by using two Call Library Function Nodes. The first node is used to
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check whether the MCS card is correctly initialised, and the second node is used to access

the data accumulated by the MCS card (for more information see Barrett [2008]).

4.5 Data acquisition

4.5.1 Measurement of single mass spectra

Two different LabVIEW based programs were used to acquire mass spectra in this exper-

iment. The first program was called getspectrum-3-5.vi (developed by Dr. Peter van der

Burgt and Dr. Marcin Gradziel), and was used to measure single mass spectra in real-

time. The data from the multichannel scaler card was recorded by the getspectrum-3-5.vi

program and displayed on a graph in real-time. The prime focus of the getspectrum-3-5.vi

program was to measure a single mass spectrum so that it could be assessed before the

experiment was initiated to carried out multiple time-of-flight scans.

Figure 4.4 is a screen shot of the front panel from the getspectrum-3-5.vi program. The

screen shot was taken during earlier measurements and shows amass spectrum of cytosine.

The control structure used in this program was a standard state structure and it uses two

different nodes to produce a single mass spectrum. The user determines appropriate values

for the time range, bin width and other variables, and inputs them on the front panel of the

program, as seen in Figure 4.4.

Some of the controls on the front panel include the Start, Stop, Continue and Save

controls. The Start control initiates the acquisition of a mass spectrum while the Stop

control stops the data acquisition. The Save control is used to save the data containing

current mass spectrum into a text file for further analysis.
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Figure 4.4: The front panel of the getspectrum-3-5.vi program. (This mass spectrum
belongs to cytosine).

4.5.2 Measurement of mass spectra as a function of electron impact

energy

The LabVIEW program that was used for the measurement of mass spectra as a function of

electron impact energy was called Spectra-vs-E-v7.vi, developed by Barrett [2008]. This

program ramps the electron impact energy in 0.25 eV steps from 5 eV to 100 eV, acquires

a mass spectrum at each electron impact energy, and adds that mass spectrum to the data

already accumulated in the appropriate place in the full data set. The full data set consists

of a two-dimensional array of ion yields as a function of time-of-flight and as a function

of electron impact energy. After each cycle, which is a single loop through the specified

range of electron impact energies taking about two hours, the full data set is written to a

file. The data set used for this thesis consists of 10 cycles of the electron impact energy.

Figure 4.5 shows the front panel of the Spectra-vs-E-v7.vi program, (showing a mass

spectrum of cytosine from a past measurement). As can be seen, there are many controls

and indicators on the front panel. Some of these controls include: the starting and ending
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electron impact energy, the value with which to increment, the number of cycles, and the

bin width and time range. The top of Figure 4.5 shows a small part of the two-dimensional

array of ion yields called Spectrum Array holding the accumulated mass spectra.

Figure 4.5: An image of the front panel from the Spectra-vs-E-v7.vi program. (This mass
spectrum of cytosine was produced when the electron impact energy was 58 eV).

The Spectra-vs-E-v7.vi program operates using three nested loops. The first loop will

continue running until it has reached the maximum number of cycles specified, or until the

user aborts the data acquisition. The second loop operates the data acquisition for a single

cycle, covering the full range of electron impact energies. The third loop is in relation to

the number of times the multichannel scaler sweeps over the full range of masses, which

is equal to the number of electron pulses used to accumulate a single mass spectrum. For

5-fluorouracil, the number of sweeps was set to 240,000, indicating that 240,000 sweeps

are completed for each mass spectrum. Using an electron pulse rate of 8 kHz this takes

30 s.

Because the full data set is written to a file every time a cycle is completed, mass spectra

obtained after each cycle can be examined, and it has been verified that no undesired

effects occurred during the collection of the data for 5-fluorouracil.
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4.6 Data analysis

4.6.1 Gaussian peak fitting

A Gaussian fitting program called Gaussians2.vi was developed by Dr. Peter van der

Burgt to fit groups of adjacent peaks in the mass spectra with a sequence of normalised

Gaussians. The formula was of the form:

f (x) = Σn
i=1

Ci

a
√

π
exp

(
−
(

x− p− δi

a

)2
)
+ B (4.1)

where C is the peak area, p is the position of the largest peak in the group, a is the

width of the peak, B is the background and δi is the difference between the largest peak

and each of the other peaks in the group. The values of δi are kept fixed during the fitting,

and are evaluated based on the mass calibration.

The program uses the Levenberg-Marquardt algorithm available in LabVIEW to deter-

mine the best fit. The program allows the user to change initial values, until the best fit for

the group of peaks in the mass spectrum at the highest electron energy is obtained, and

then this group is fitted successively for all mass spectra at all electron energies from 100

to 5 eV. At each step, the best fit values obtained for the previous electron energy are used

as starting values for the next electron energy.

For several groups of peaks it was found that not all of the peaks had the same width.

For this purpose a second version of the program was developed, called Gaussians2ab.vi,

in which one or more peaks within the range of peaks to be fitted could be given a different

width b.
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Figure 4.6: Front panel screen shot of Gaussians-ab2.vi (57 u - 62 u group).

Figure 4.6 shows a front panel screen shot of theGaussians-ab2.vi program being used

for the 57 u - 62 u group. In this case the peaks at 57 u, 58 u and 59 u had width a and the

peak at 60 u had width b and finally, peaks 61 u and 62 u had width a. The grey box in

Figure 4.6 shows the best fit for energy number 376 (corresponding to 101 eV), showing

the values for a, b, p, B, C1, C2, C3 and C4.

This program asks the user to enter a minimum and maximum peak range, and the

number of peaks to be fitted within this specified range. This allows the program to scale

the mass spectrum such that it only displays the range specified allowing clear visualisation

when adjusting the initial parameters array to achieve the model that best fits the data.

The initial parameters array includes: the number of background points, the width of the

peaks, the count of the peak and the model functions position along the mass axis (delta

values). The size of the array will change depending on the number of peaks to be fitted.

The bottom graph is a logarithmic representation of the above graph. This effectively acts

as a zoom in function, allowing for better initial parameters. It also helps to set an accurate

background value. There is a ’test fit’ button allowing the user to check the fit for a single

electron energy without running the program for the full range of electron energies.
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In several cases, problems with convergence of the fits were encountered at low electron

energies. In these cases, the number of peaks was reduced, or the peak width a and the

position of the largest peak p were both set to a fixed value, and the fitting was repeated

over a smaller range of electron energies near threshold. The fits over the full energy range

and over the smaller energy range were then compared and combined in Excel, to obtain

a set of ion yield curves.

1

2
3

Figure 4.7: Block diagram screen shot of Gaussians-ab2.vi program. 1) Arrays and
integers, 2) Levenberg-Marquardt fitting algorithm and 3) The two graphs as seen in
Figure 4.6.

Figure 4.7 shows part of the block diagram of the Gaussians-ab2.vi program. Below

the label 1 in Figure 4.7 is a list of various arrays and integers used in the program. Some

of these arrays and integers include: the number of peaks specified in the program, the

minimum and maximum electron energy, and the initial parameters. It can be seen that

the initial parameters are sent into the Levenberg-Marquardt fitting algorithm, situated at

label 2 in Figure 4.7. To the left of label 3 is where the two graphs in Figure 4.6 can be
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found.

The Levenberg-Marquardt algorithm and both graphs are positioned inside a while loop.

The while loop forces the program to fit to the data at every electron energy, which will

cause the graphs on the front panel to update, enabling real-time analysis. The energy

range through which the program runs is specified on the front panel, and this value is

sent into the while loop, as can be seen in Figure 4.7.

4.6.2 Determining appearance energies

To determine the appearance energy and possibly one or two higher onsets in the ion yield

of each fragment, a LabVIEW program called Onsets.vi was developed by Dr. Peter van

der Burgt. This program uses the Levenberg-Marquardt algorithm to fit an onset function

convoluted with a Gaussian function to a section of the ion yield curve near threshold.

P(E) = Σ∞
−∞ f (ε) g(E− ε) dε + b (4.2)

Equation 4.2 shows the onset function f (ε) convoluted with the Gaussian function

g(ε).

f (ε) = 0 if ε ≤ E0 (4.3)

f (ε) = c(ε− E0)
p if ε > E0 (4.4)

g(ε) =
1

σ
√

π
exp
(
− ε2

σ2

)
(4.5)

In these equations ε is the incident energy, and the fitting parameters are the background

b, the power p, the scaling factor c, and the appearance energy E0. σ is the Gaussian beam

width that is fixed at 0.48, corresponding to an electron beam width of 0.8 eV FWHM.

In case the ion yield curve shows a second onset, equation 4.4 is modified to:

f (ε) = c1(ε− E0)
p1 + c2(ε− E1)

p2 + b i f ε > E1 (4.6)
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In case there is a third onset, another term c3(ε− E2)
p2 is added.

Figure 4.8: Front panel of the Onsets.vi program used to determine the appearance energy
of 57 u fragment at 13.1 ± 0.2 eV, and a second onset at 26.4 ± 0.3 eV.

Figure 4.8 shows the front panel of theOnsets.vi program displaying an ion yield curve

that has a second onset. A graph with a linear scale and a graph with a logarithmic scale

are displayed to enable the user to judge the quality of the fit. The program is supplied with

a text file, in which the first row contains the electron energies, and the subsequent rows

contain the ion yields of all the fragments for which ion yields have been obtained using

the Gaussian peak fitting. On the front panel, the user is able to select a specific fragment

(mass nr in Figure 4.8) and the energy interval (E min nr and E max nr) over which the

fitting is to be done. The tab structure allows the user to choose whether to fit an onset

function with a single appearance energy or an onset function with one or two additional

onsets. The user has to provide suitable values for the initial parameters to commence the

fit. If the fit converges, the program displays the fit result in the graphs and shows the best

fit parameters. If the fit does not converge a toggle switch (fit 2 in Figure 4.8) turns red

and the graphs show the onset function calculated using the initial parameters. The user

then has to select better values for the initial parameters and has to press the toggle switch

to see whether the fit converges.
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Chapter 5

Electron Impact Fragmentation of

5-Fluorouracil

5.1 Introduction

This chapter presents the new results obtained for 5-fluorouracil. These results include:

Gaussian peak fit results for the various groups within the mass spectrum alongside their

corresponding ion yield curves and the appearance energy results for most fragments.

Possible fragmentation processes producing the obtained ions are also discussed. All

measurements in this section were taken over an electron impact energy range of 5.71 -

101.01 eV in 0.25 eV steps using the procedure discussed in Section 3.3.1. 10 cycles were

measured in total for the final data. Assuming that the detection efficiency of the reflectron

time-of-flight mass spectrometer is mass independent, all of the measured ion yield curves

are on the same relative scale allowing them to be compared.

Section 5.2 presents themass spectra of 5-fluorouracil at four different electron energies,

and compares these with the corresponding mass spectra of uracil.

Section 5.3 presents the Gaussian fits of the groups of positively ionised fragments

of 5-fluorouracil, and the resulting ion yield curves. The Gaussian fit images show the

individual Gaussians for all fragments in the group, with a superimposed sum of fits that

best models that data. Ion yield curves were generated using the Gaussian peak fitting

program Gaussians-ab2.vi as discussed in Section 4.6.1.
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The appearance energies obtained for most 5-fluorouracil fragments are presented in

Section 5.4. The appearance energies were determined by fitting an onset function to the

threshold region of the ion yield curves near threshold, using theOnsets.vi fitting program

as discussed in Section 4.6.2. Section 5.4 will also include appearance energy results for

various molecules including: 5-chlorouracil, 6-chlorouracil, 5-bromouracil and uracil that

were used for comparison.

Section 5.5 discusses the fragmentation pathways for a selection of fragments of 5-

fluorouracil and these are compared with the pathways for corresponding fragments of

uracil. Chosen fragments are stated as well as images that show the configuration and

fragmentation pattern of particular fragments.

5.2 Mass spectra
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Figure 5.1: 5-fluorouracil mass spectrum at an electron impact energy of 101 eV.

Figure 5.1 shows the mass spectrum of 5-fluorouracil at an electron impact energy of 101

eV. Figure 5.2 shows a superimposed image of themass spectra of uracil and 5-fluorouracil.

(The uracil mass spectrum was measured shortly after the data set for 5-fluorouracil was

obtained.)
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Figure 5.2: Superimposed mass spectra of 5-fluorouracil and uracil at an electron impact
energy of 101 eV.

Figure 5.2 provides a comparison between corresponding fragmentations with their

relative abundance. It was also used to view the overlapping peaks so that we could

determine which group of 5-fluorouracil peaks did not contain the fluorine atom. Series of

overlapping peaks indicate groups of fragments that have the same configuration, whereas

groups of peaks that have similar yields but are 18 u apart indicate corresponding fragments

for which the 5-fluorouracil fragment contains a fluorine atom.
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Figure 5.3: Superimposedmass spectrumof 5-fluorouracil and uracil at 4 different electron
impact energies.

Figure 5.3 shows four mass spectra of 5-fluorouracil and uracil at four different electron
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impact energies. The two parent ions are excluded from all spectra in this image. The

molecular formula for various fragments is stated above their corresponding peak. The

molecular formulas that are stated in blue represent 5-fluorouracil fragments and the

molecular formulas stated in red represent uracil fragments. Corresponding fragments

that are 18 u apart are indicated with grey lines.

Apart from the parent ions, the 87 u ion and the 69 u ion are the only two fragments

produced at an electron impact energy of 14 eV, see Figure 5.3. Further corresponding

groups of peaks between 5-fluorouracil and uracil can be seen at higher electron impact

energies.
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Figure 5.4: 3D image of the mass spectrum of 5-fluorouracil.
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Figure 5.4 is a 3D image of the mass spectrum of 5-fluorouracil taken over the full

energy range of 5.71 - 101.01 eV. This figure was generated using the Python code in

Appendix A. Figure 5.4 can be used as a visual tool to estimate the energies at which

fragments appear in the mass spectrum (by locating the position where the count starts to

increase from zero).

The most abundant fragment in this experiment was the 28 u ion. The second most

abundant fragment was the 130 u parent ion with an ion count of approximately 16500.

There is a veryweak peak at 131 u and an evenweaker peak at 132 u and these are attributed

to 5-fluorouracil isotopes, containing one or two isotopes of the constituent atoms. The

87 u has a very high yield and is the fifth most abundant fragment in the spectrum.

Figure 5.2 shows how the 87 u in the 5-fluorouracil data corresponds perfectly to the

69 u fragment in uracil. This shift of 18 u can be accounted for by exchanging a hydrogen

atom from a uracil molecule, and replacing it with a fluorine atom. The peak at 60 u is the

third largest peak in the 5-fluorouracil spectrum. The 57 - 61 u group of peaks correspond

to the 39 - 43 u group in the uracil mass spectrum. The overlap of the 26 - 30 u groups in

Figure 5.2 implies that these fragments do not contain the fluorine atom.

5.3 Gaussian peak fitting

5.3.1 130 - 132 u group

Figure 5.5 shows the 130 - 132 u group of peaks in the mass spectrum at 101 eV and

compares the model fit (red line) with the data from the ion yield (blue squares). The fit

with Gaussians was done with 4 peaks for 130 - 133 u and ion yield data from 127.0 u to

133.5 u. The ion yield curves for the 130 - 132 u ions are shown in Figure 5.6.
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Figure 5.5: Comparison between the Gaussian peak fitting results and the measured ion
yields at 101 eV for the 130 - 132 u group.
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Figure 5.6: Ion yield curves for the 130, 131 and 132 u.

The 130 u is the parent ion and has the second highest yield behind the 28 u, as seen

in Figure 5.1. The 131 u and 132 u are due to isotopes and therefore the ion yield curves

have the same shape. The 131 u: 130 u ratio is 0.067. The multiplication factors allow
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for a comparison of the shape of the ion yield curves over the full range of energies. The

ion yield curves for all three masses exhibit the same shape over the full range of electron

impact energy, as seen in Figure 5.6.

5.3.2 86 - 88 u group

Figure 5.7 shows the 86 - 88 u group of peaks in the mass spectrum at 101 eV and

compares the model fit (red line) with the data from the ion yield (blue squares). The fit

with Gaussians was done with 6 peaks for 85 - 90 u and ion yield data from 84.8 u to 92.1

u. The ion yield curves for the three masses with the highest yields are shown in Figure

5.8. The 87 u peak is the largest peak in the group and one of the most abundant fragments

in the mass spectrum. 89 u is the same fragment as 88 u, but originating from an isotope

of 5-fluorouracil. (Multiplication factors of 12 and 4 were applied to the 86 u and 88 u

data, respectively.) Below 85 u there is an increased background that does not show clear

peaks. 85 u was included in the fit to improve the fit of the 86 u peak. The rise in the

86 u ion yield between 12 and 18 eV is attributed to a rising background (perhaps due to

metastable decay), and the second onset in the 86 u ion yield curve at 17.8 ± 0.3 eV is

taken as the appearance energy of this fragment. A further discussion of the appearance

energies is given in Section 5.4.
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Figure 5.7: Comparison between the Gaussian peak fitting results and the measured ion
yields at 101 eV for the 86 - 88 u group.
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Figure 5.8: Ion yield curves for the 86, 87 and 88 u.

The 88 u:87 u yield ratio is constant above 30 eV and equal to 0.21. The 86 u:87 u

yield ratio is constant above 50 eV and is equal to 0.058. This indicates that these ions are

produced by similar fragmentation processes, which are discussed in Section 5.5.2.

5.3.3 72 - 75 u group

Figure 5.9 shows the 72 - 75 u group of peaks in the mass spectrum at 101 eV and compares

the model fit (red line) with the data from the ion yield (blue squares). The ion yield curves

for each mass are shown in Figure 5.10. In comparison with the previous three groups of

peaks, the 72 - 75 u group is a weak group with low ion yields. For this reason, only the

73 u and 74 u fragments will be considered in the discussion of fragmentations in Section

5.5.3.
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Figure 5.9: Comparison between the Gaussian peak fitting results and the measured ion
yields at 101 eV for the 72 - 75 u group.
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Figure 5.10: ion yield curves for the 72, 73, 74 and 75 u.

The 74 u is the largest peak in the group. (Multiplication factors of 8, 5 and 8 were

applied to the 72 u, 73 u and the 75 u data, respectively.) It is proposed that the 74 u

contains a fluorine atom, based on the assumption that the 74 u ion in the 5-fluorouracil
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mass spectrum corresponds to the 56 u ion from the uracil mass spectrum, see Figure 5.2.

The difference in mass between these two fragments suggests that the 74 u contains the

fluorine atom and the 56 u uracil fragment contains a hydrogen atom in its place. The

appearance energy of the 73 u ion is lower than that of the 74 u ion which may indicate

that these ions are produced by different fragmentation processes.

5.3.4 64 - 72 u group

Figure 5.11 shows the 64 - 72 u group of peaks in the mass spectrum at 101 eV and

compares the model fit (red line) with the data from the ion yield (blue squares). The ion

yield curves for each mass are shown in Figure 5.13. There appear to be doubly charged

fragments at 69.5 u and 70.5 u but because the mass of the parent ion is 130 u, this cannot

be the case. It is likely that the 69.5 u and 70.5 u peaks are the shoulders of a broadened 70

u peak, produced by a fragmentation process that yields energetic 70 u fragments. Figure

5.12 shows the mass spectrum of the 64 - 72 u group at 30 eV. It shows that at lower

electron energies the 69.5 u and 70.5 u peaks disappear, and that the appearance energies

of integer fragments are not affected.
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Figure 5.11: Comparison between the Gaussian peak fitting results and the measured ion
yields at 101 eV for the 64 - 72 u group.

82



Chapter 5: Electron Impact Fragmentation of 5-Fluorouracil Gaussian peak fitting

0

50

100

150

200

250

300

350

400

450

500

62 63 64 65 66 67 68 69 70 71 72 73

Io
n 

Y
ie

ld
 [

C
ou

nt
s]

m/q [u]

64 u
65 u
66 u
67 u
68 u
69 u
69.5 u
70 u
70.5 u
71 u
72 u
Sum of Fits
Ion Yield

Figure 5.12: Comparison between the Gaussian peak fitting results and the measured ion
yields at 30 eV for the 64 - 72 u group.
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Figure 5.13: Ion yield curves for the 64 - 72 u group.

The peak at 65 u is deemed to be too small to suggest double ionisation and may be

due to background contamination, see Figure 5.11.
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5.3.5 57 - 62 u group

Figure 5.14 shows the 57 - 62 u group of peaks in the mass spectrum at 101 eV and

compares the model fit (red line) with the data from the ion yield (blue squares). The ion

yield curves for the 57 - 60 u ions are shown in Figure 5.15 and clearly exhibit a variation

in shape over the full energy range. The 60 u is the third most abundant fragment in the

mass spectrum.
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Figure 5.14: Comparison between the Gaussian peak fitting results and the measured ion
yields at 101 eV for the 57 - 62 u group.
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Figure 5.15: Ion yield curves for the 57 - 62 u group.
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61 u and 62 u are attributed to isotopes of 60 u. Figure 5.15 shows that the 59 u and

60 u ion yield curves have the same shape over the full energy range with a yield ratio 59

u:60 u = 0.41. Figure 5.2 indicates that the 57 - 60 u group in 5-fluorouracil corresponds

to the 39 - 42 u group in uracil, which implies that the 57 - 60 u fragments all contain the

fluorine atom.

5.3.6 50 - 56 u group

Figure 5.16 shows the 50 - 56 u group of peaks in the mass spectrum at 101 eV and

compares the model fit (red line) with the data from the ion yield (blue squares). The ion

yield curves for all masses are shown in Figure 5.17. The 50 - 56 u is the group of peaks

that have the lowest ion yields. The 50 - 55 u peaks have similar yields as the 50 - 55 u

peaks in the uracil spectrum (see Figure 5.2). The overlapping of both groups in the mass

spectra suggests that the fluorine atom is not present in any of the 50 - 55 u fragments.

Figure 5.17 shows the ion yield curve for each fragment.
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Figure 5.16: Comparison between the Gaussian peak fitting results and the measured ion
yields at 101 eV for the 50 - 56 u group. The 57 u peak is included merely to improve the
fit of the 56 u peak.
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Figure 5.17: Ion yield curves for the 50 - 56 u group.

5.3.7 41 - 47 u group

Figure 5.18 shows the 41 - 47 u group of peaks in the mass spectrum at 101 eV and

compares the model fit (red line) with the data from the ion yield (blue squares). The ion

yield curves for all masses are shown in Figure 5.20. This group is part of a bigger group

that ranges from 36 - 47 u but has been separated into two groups to increase the accuracy

of the fits with Gaussians.

Figure 5.18 clearly shows the presence of 42.5 u and 43.5 u fragments, and four half-

integer peaks had to be included to obtain a good fit of this group of peaks. 42.5 u and 43.5

u could be due to 85 u and 87 u doubly-ionised fragments, and indeed 87 u is a prominent

singly-charged fragment in the mass spectra (see Figure 5.1). Another possibility is that

these half-integer peaks are due to broadening of the 41 - 44 u peaks caused by energetic

fragmentations. If this is indeed so, it would be difficult to correct the ion yields of the

integer peaks, because it is not clear how to redistribute the counts of each half-integer

peak to the integer peaks on either side. In the remainder of this chapter we only consider

fragmentation processes for the integer fragments in their group.

Figure 5.19 shows that at low electron energies the broadening disappears, so that we

can reliably determine the appearance energies of the (integer) fragments.
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Figure 5.18: Comparison between the Gaussian peak fitting results and the measured ion
yields at 101 eV for the 41 - 47 u group.
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Figure 5.19: Comparison between the Gaussian peak fitting results and the measured ion
yields at 30 eV for the 41 - 47 u group.
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Figure 5.20: Ion yield curves for the 41 - 47 u group.

Figure 5.18 shows the abundance of the 45 - 47 u fragments to be relatively low in

5-fluorouracil but Figure 5.2 shows how the 45 - 47 u are completely absent in uracil. By

comparing the mass spectrum of 5-fluorouracil and uracil, it would appear that the 45 - 47

u fragments contain a fluorine atom.

Figure 5.2 shows a mass shift of 18 u between the 45 - 47 u in 5-fluorouracil with the

27 - 29 u in uracil. The ion yield curves for the 45 u and 46 u have similar shape and have

a constant yield ratio of 0.58 above 35 eV. The 41 u and 47 u have a constant yield above

55 eV.

5.3.8 36 - 40 u group

Figure 5.21 shows the 36 - 40 u group of peaks in the mass spectrum at 101 eV and

compares the model fit (red line) with the data from the ion yield (blue squares). The ion

yield curves for the 38 - 41 u ions are shown in Figure 5.22. The yields of the 36 u and 37

u fragments are quite low but still exhibit a peak shape so it was decided to include these

peaks in the fit with Gaussians.
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Figure 5.21: Comparison between the Gaussian peak fitting results and the measured ion
yields at 101 eV for the 36 - 40 u group. The 41 u peak is included merely to improve the
fit of the 40 u peak.

The ion yields in this group were also determined by summing the counts over a

suitable bin range for each of the peaks. The bin ranges were determined by taking the

two bins with the lowest two counts between each pair of peaks and assigning the left bin

to the peak on the left, and the right bin to the peak on the right. The counts obtained in

this way were in close agreement with the peak areas obtained in the fits with Gaussians,

and it was decided to use the counts for the ion yield curves in Figure 5.22.

The 36 u peak is puzzling. It has a very low appearance energy of 12.9 ± 0.7 eV and

a second onset at 46.0 ± 1.5 eV. We propose that this peak may be due to an impurity in

the 5-fluorouracil and this fragment is not further considered.

The ion yield curves for the 38 - 40 u fragments all appear to be different, indicating that

each fragment underwent a different fragmentation process. The 40 u and 41 u ion yield

curves are similar in shape, and the yield ratio is 41 u:40 u = 0.22 above 50 eV. Unlike the

other ion yield curves, the 38 u has an ion yield curve that does not reach a maximum at

100 eV but keeps rising in count throughout the full energy range.
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Figure 5.22: Ion yield curves for the 36 - 40 u group.

5.3.9 24 - 34 u group

Figure 5.23 shows the 24 - 34 u group of peaks in the mass spectrum at 101 eV and

compares the model fit (red line) with the data from the ion yield (blue squares). The fit

with Gaussians was done with ion yield data from 21.0 u to 35.0 u. The ion yield curves

for all masses are shown in Figure 5.24.

Figure 5.23 clearly shows that the 28 u peak is not well fitted with a Gaussian and is

wider at the bottom. For this reason, the ion yields for this group were also determined by

summing the counts over a suitable bin range for each of the peaks. The bin ranges were

determined as described in the previous paragraph.

For the 24, 25, 26, 30 and 31 u peaks, the counts obtained in this way were in good

agreement with the peak areas in the fit with the Gaussians. For 32 u the counts were

slightly higher than the fits, and for 27 - 29 u the counts were clearly higher than the fits

for electron energies above about 40 eV. It was decided to take the counts for all peaks in

this group, and the ion yield curves obtained are shown in Figure 5.24.
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Figure 5.23: Comparison between the Gaussian peak fitting results and the measured ion
yields at 101 eV for the 24 - 34 u group.
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Figure 5.24: Ion yield curves for the 24 - 34 u group.

The ion yield curves shown in Figure 5.24 appear to vary in shape, indicating that

fragments in the same group are undergoing different fragmentation processes.

Because these peaks are absent in the uracil mass spectrum, it is likely that fragments

31 u and 32 u contain the fluorine atom, (discussed in Section 5.5). The 31 u peak is
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wider than the 32 u peak, which implies that the 31 u is a more energetic fragmentation.

Fragments 24 - 29 u cannot contain fluorine.

5.3.10 12 - 15 u group

Figure 5.25 shows the 12 - 15 u group of peaks in the mass spectrum at 101 eV and

compares the model fit (red line) with the data from the ion yield (blue squares). The ion

yield curves for all masses are shown in Figure 5.26.
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Figure 5.25: Comparison between the Gaussian peak fitting results and the measured ion
yields at 101 eV for the 12 - 15 u group.

Because the peaks arewell separated, the ion yield curveswere determined by summing

the counts over a suitable bin range for each of the peaks. The different shapes of the

ion yield curves indicate that these fragments may be produced by different fragmentation

processes.

It can be seen that all of the ion yield curves in Figure 5.26 continue to increase over

the full energy range. The 12 u has the highest appearance energy and the highest yield at

101 eV in this group.
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Figure 5.26: Ion yield curves for the 12 - 15 u group.

5.4 Appearance energies

5.4.1 Introduction

The ionisation energy can be defined as the minimum amount of energy that is needed to

be transferred to a neutral molecule to cause ionisation of that molecule with the removal

of a single electron. The appearance energy of a fragmentation is the minimum amount of

energy that must be supplied to a molecule to produce that ion. Each fragment will appear

as a peak on a mass spectrum, and the height of the peak provides information on the

abundance of the corresponding fragment. The appearance energies of the fragments are

important because these give information on the fragmentation processes as the incident

electron energy increases.

The appearance energies were determined using the LabVIEW program Onsets.vi (dis-

cussed in Section 4.6.2). The appearance energy results obtained from this experiment

allow us to investigate the fragmentation pathways of 5-fluorouracil, and are discussed in

more detail in Section 5.5.
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In this section, a comparison will be made between the appearance energies of 5-

fluorouracil, obtained in this experiment, with the appearance energies for fragments of

uracil from Diskin [2015] and for fragments of other halo-uracil molecules found in the

research of Denifl et al. [2004b].

Ahalo-uracilmolecule consists of a halogen atom replacing a hydrogen atom in the uracil

molecule. The three halo-uracil molecules used for comparison are the 5-chlorouracil,

6-chlorouracil and 5-bromouracil, (i.e. the halogens are chlorine and bromine). The

structures of these molecules are shown in Figure 5.27.

5.4.2 Comparing results

Table 5.1 displays the appearance energy results obtained in this experiment for chosen

fragments of 5-fluorouracil, as well as results obtained by Diskin [2015] for uracil. In each

case, the corresponding uncertainty of each result is stated. For 5-fluorouracil fragments

containing the fluorine atom, we have taken the corresponding uracil fragment containing

a hydrogen atom instead.
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Figure 5.27: Molecular structure of a) 5-fluorouracil, b) uracil c) 5-chlorouracil, d) 6-
chlorouracil and e) 5-bromouracil.
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Appearance Energies (eV)

Mass (u)
Possible

assignments

5-fluorouracil,

[present data]
Mass (u)

uracil,

[Diskin,

2015]

130 C4H3N2O2F+ 9.5 ± 0.2 112 9.15 ± 0.21

88 C3H3NOF+ 11.5 ± 0.2 70 11.04 ± 0.84

87 C3H2NOF+ 11.4 ± 0.2 69 10.84 ± 0.17

86 C3HNOF+ 17.8 ± 0.3 68 12.36 ± 0.29

70
OCNCO+ /

C2H2N2O+

16.2 ± 0.7,

21.1 ± 0.4
70 11.04 ± 0.84

60 C2HOF+ 14.0 ± 0.2 42 13.07 ± 0.24

59
C2H2NF+ /

C2FO+
13.6 ± 0.2 41 13.21 ± 0.25

58 C2HNF+
14.5 ± 0.6,

17.6 ± 0.3
40 13.01 ± 0.66

57 C2NF+
13.1 ± 0.2,

26.4 ± 0.3
39 16.52 ± 0.72

47 COF+ 14.8 ± 0.2 29 13.71 ± 1.2

46 HCNF+ 17.9 ± 0.7 28 13.40 ± 0.29

44 C2HF+ 15.1 ± 0.3 26 16.3 ± 0.39

43 HNCO+
14.6 ± 1.4,

19.4 ± 0.7
43 13.58 ± 0.78

39 C2HN+
22.0 ± 0.9,

28.0 ± 0.4
39 16.52 ± 0.72

38 C2N+
24.4 ± 0.7,

30.8 ± 0.9
38 21.77 ± 0.45

32 CHF+ 16.6 ± 0.4 14 18.69 ± 0.26

31 CF+
18.0 ± 1.4,

20.2 ± 0.5
13 19.8 ± 2.3

29
HNCH+

2 /

HCO+
16.6 ± 0.6 29 13.71 ± 1.2
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Continuation of Table 5.1

Mass (u)
Possible

assignments

5-fluorouracil,

[present data]
Mass (u)

uracil,

[Diskin,

2015]

28
HNCH+ /

CO+

13.8 ± 0.7,

15.7 ± 0.3
28 13.40 ± 0.29

27 HCN+
21.4 ± 1.0,

26.9 ± 0.5
27 14.56 ± 0.18

26 C2H+
2 / CN+ 25.5 ± 1.4 26 16.3 ± 0.39

15 NH+
29.6 ± 1.2,

36.3 ± 1.3
15 16.9 ± 1.4

14 CH+
2 / N+ 25.8 ± 0.6 14 18.69 ± 0.26

13 CH+ 27.7 ± 0.5 13 19.8 ± 2.3

Table 5.1: Appearance energy of 5-fluorouracil fragments [present data], compared with
uracil fragments, [Diskin, 2015].

Table 5.1 shows that there are substantial differences between the appearance energies

of corresponding fragments of 5-fluorouracil and uracil. Taking the estimated errors into

account, agreement is obtained for the appearance energies of 130 (112) u, 47 (29) u, 43

u, 31 (13) u, and 28 u. The appearance energies of 88 (70) u, 87 (69) u, 60 (42) u, 58

(40) u, and 44 u are outside the ranges of the error bars, but are less than 1.5 eV apart.

This indicates that, despite the similarities of the mass spectra of 5-fluorouracil and uracil,

there are differences in the fragmentation patterns of both molecules.
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Mass
(u) Assignment

Present results electron
impact (eV)
5-fluorouracil

Mass
(u)

[Denifl et al., 2004b]
results electron impact
(eV) 5-chlorouracil

130 C4H3N2O2F+ 9.5 ± 0.2 146 9.38 ± 0.05

87 C3H2NOF+ 11.4 ± 0.2 103 11.12 ± 0.03

60 C2HOF+ 14.0 ± 0.2 76 13.19 ± 0.03

44 C2HF+ 15.1 ± 0.3 60 13.97 ± 0.06

32 CHF+ 16.6 ± 0.4 48 14.92 ± 0.07

31 CF+ 18.0 ± 1.4, 20.2 ± 0.5 47 16.8 ± 0.4

40 C2H2N+ /
CN+

2
18.8 ± 0.7 40 12.34 ± 0.2, 16.08 ± 0.2

39 C2HN+ 22.0 ± 0.9, 28.0 ± 0.4 39 15.61 ± 0.10

28 HNCH+ /
CO+ 13.8 ± 0.7, 15.7 ± 0.3 28 13.96 ± 0.05

Table 5.2: Appearance energies of the 5-fluorouracil fragments, compared with the ap-
pearance energies of the 5-chlorouracil fragments, determined by Denifl et al. [2004b].

Table 5.2 compares the appearance energies of 5-fluorouracil obtained in this exper-

iment with the appearance energies of 5-chlorouracil obtained by Denifl et al. [2004b].

The appearance energies for 130 (146) u, 87 (103) u, and 28 u are in agreement. The

appearance energies of 60 (76) u, 44 (60) u, 32 (48) u, and 31 (47) u are less than 1.5 eV

apart, but there are substantial differences in the appearance energies of 40 u and 39 u.

This again points to differences in the fragmentation patterns of these molecules related

to the halogen atom in position 5 in the halo-uracils.
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Parent ion Method
Appearance energy

(eV)

5-fluorouracil, [present data] Electron impact 9.5 ± 0.2
5-chlorouracil, [Denifl et al.,

2004b] Electron impact 9.38 ± 0.05

6-chlorouracil, [Denifl et al.,
2004b] Electron impact 9.71 ± 0.05

5-fluorouracil, [Holland et al.,
2008]

Photoelectron
spectroscopy

9.54 ± 0.02

Table 5.3: Appearance energy results for the parent ions of: 5-fluorouracil, 5-chlorouracil
and 6-chlorouracil.

The ionisation energy of 5-fluorouracil (the appearance energy for the 130 u parent

ion) was determined to be 9.5 ± 0.2 eV. Table 5.3 shows that this value agrees well

with the ionisation energies of 5-chlorouracil and 6-chlorouracil determined by Denifl

et al. [2004b], and 5-fluorouracil determined by Holland et al. [2008] using photoelectron

spectroscopy.
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Figure 5.28: Appearance energies for the positive fragments of 5-fluorouracil. The
appearance energies are shown as red and blue squares. The red squares indicate first
onsets and the blue squares indicate second onsets.
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Figure 5.28 shows the appearance energies for the 5-fluorouracil fragments determined

in this work. For eight of the most important fragments, the ion yield curves and the fitted

onset functions are shown in Figure 5.29 to 5.36. The ion yield curves of 74 u, 70 u, 31

u and 28 u show a second onset. Figure 5.28 shows that in general the smaller fragments

have higher appearance energies because more bond breakages may be required to produce

these fragments. Apart from the parent ion, the fragments with the lowest appearance

energies are 87 u and 88 u, and most smaller fragments may be produced with the 87 u (or

88 u) ion as the intermediate. Several groups of fragments show increasing appearance

energies with reducing mass: 56 - 50 u, 43 - 38 u, 28 - 24 u, and 14 - 12 u. This may be

partly due to successive loss of hydrogen atoms, but this cannot be the full explanation

because 5-fluorouracil has only three hydrogen atoms.
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Figure 5.29: Appearance energy graph of the 130 u fragment.
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Figure 5.30: Appearance energy graph of the 87 u fragment.
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Figure 5.31: Appearance energy graph of the 74 u fragment.
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Figure 5.32: Appearance energy graph of the 70 u fragment.
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Figure 5.33: Appearance energy graph of the 60 u fragment.
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Figure 5.34: Appearance energy graph of the 44 u fragment.
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Figure 5.35: Appearance energy graph of the 31 u fragment.
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Figure 5.36: Appearance energy graph of the 28 u fragment.
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5.5 Fragmentation processes

Introduction

This section discusses fragmentation processes that lead to the formation of various

positively charged fragments of 5-fluorouracil based on the measured data. This section

is divided into paragraphs for each of the groups of fragments, beginning with the 130 -

133 u group and ending with the 12 - 15 u group.

This section will include a short discussion on the fragmentation pathways for chosen

fragments. For several of the fragments the proposed pathways are compared with results

obtained for uracil (Rice et al. [1965], Jochims et al. [2005], Diskin [2015]), 5-fluorouracil

and 5-chlorouracil ([Denifl et al., 2004c], Ferreira da Silva et al. [2011]), and 5-bromouracil

(Imhoff et al. [2007]).

For most of the chosen fragments the fragmentation pathway is represented as equa-

tions of molecular formulas. In addition, some fragments are presented in figures as

combinations or fragmentations of the parent ion.
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Figure 5.37: Tautomeric and rotameric forms of 5-fluorouracil, [Markova et al., 2005].
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Many fragments may be formed through more than one fragmentation process. In

some cases the shapes of the ion yield curves may indicate a similar fragmentation process

for two fragments 1 u apart, related to tautomerization. An ion yield curve showing a

second onset indicates the presence of an additional fragmentation process.

The 5-fluorouracil molecule can exist in different tautomeric forms and some of these

may be present in the molecular beam. Figure 5.37 shows the various tautomeric forms

of 5-fluorouracil, [Markova et al., 2005]. Tautomerization preceding the fragmentation

of the molecule may lead to rearrangements of hydrogen atoms during the fragmentation,

[van der Burgt et al., 2014]. These various forms of 5-fluorouracil were taken into

consideration when analysing the fragmentation processes.
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Figure 5.38: Fragmentation processes for the main fragments of 5-fluorouracil. The four
fragmentations of the 87 u ion on the left are adapted from Rice et al. [1965] and Jochims
et al. [2005].
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5.5.1 130 - 132 u parent ions

There exists very weak peaks at 131 u and 132 u in the mass spectrum, which are attributed

to 5-fluorouracil isotopes. The ion yield ratio 131 u:130 u = 0.067 and 132 u:131 u =

0.094. The 130 - 132 u ion yield curves all exhibit the same shape over the full energy

range which would be expected, as the difference in their mass is mostly due to the 13C

isotopes, see Figure 5.6.

5.5.2 86 - 88 u fragmentation processes

The first fragment to appear in the mass spectrum below the 130 u ion is the 88 u ion.

The 88 u fragment could have formed by NCO loss due to N3-C4 and N1-C2 bond

breakages, with the hydrogen atom migrating to the oxygen atom. The 87 u ion is one of

the more prominent fragments in the 5-fluorouracil mass spectrum and is C3H2NOF+ due

to HNCO loss. The 87 u fragments may be produced following HNCO loss due different

combinations of bond cleavages, such as: N1-C2 and N3-C4, C6-N1 and C2-N3, and

C2-N3 and C4-C5 bond cleavages. Figure 5.39 shows the possible HNCO cleavages that

form the 87 u fragment. The 86 u could form following HNCO + H loss, see Figure 5.39

which is indicated by its appearance energy, which is much higher than the appearance

energies of the 87 u and 88 u.

Figure 5.8 shows the ion yield curves of the 86 - 88 u fragments. The ion yield of

the 88 u has the same shape over the full energy range as the 87 u, and also has the

same appearance energy (11.5 ± 0.2 eV and 11.4 ± 0.2 eV, respectively). The 86 u ion

yield curve has a similar shape as the 87 u ion yield curve above 50 eV pointing towards

tautomerization during the fragmentation. Interestingly, the ion yield ratio 86 u:87 u =

0.059 whereas the ion yield ratio of the 68 u:69 u = 0.45 in uracil, [Diskin, 2005]. The

fragmentation reactions are:

C4H3N2O2F+ [130u] 7−→ C3H3NOF+ [88u] + NCO [42u] (5.1)

C4H3N2O2F+ [130u] 7−→ C3H2NOF+ [87u] + HNCO [43u] (5.2)

C4H3N2O2F+ [130u] 7−→ C3HNOF+ [86u] + CH2NO [44u] (5.3)
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Figure 5.39: Fragmentation processes producing the 87 u and 86 u fragments.

5.5.3 73 - 74 u fragmentation processes

The 74 u ion may be produced following a C2H2NO loss caused by C5-C6 and C2-N3

bond breakages. The 74 u is a small but distinct fragment, which is not present in the

uracil mass spectra (see Figure 5.3), but a possible corresponding fragment appears at 56

u in the mass spectra for uracil. Based on this, it is suggested that the 74 u fragment may

contain the fluorine atom, and the proposed reaction for its formation is:

C4H3N2O2F [130u] 7−→ C2HNOF [74u] + C2H2NO [56u] (5.4)

N

O

N

H

F

O

H

H

3

1
2

5

4

6

N

O

N

H

F

O

H

H

3

1
2

5

4

6

74 u 73 u

Figure 5.40: Possible configurations of the 74 u and 73 u fragments.

The 73 u fragment, which has a very low abundance and a 1.8 eV lower appearance

energy than the 74 u fragment so therefore not formed by hydrogen loss from the 74 u. A

possible configuration is shown in Figure 5.40.
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5.5.4 64 - 71 u fragmentation processes

The 70 u ion is the most abundant fragment in this group and is possibly due to an energetic

fragmentation, (see Section 5.3.4). Possible configurations for this fragment are shown in

Figure 5.41. van der Burgt et al. [2014] have suggested the same configurations for the 70

u fragment of thymine (OCNCO+ or C2H2N2O+). It is proposed that the 70 u does not

contain the fluorine atom as it is also present in uracil. The two possible fragmentations

leading to the configurations in Figure 5.41, both involving the rearrangement of a hydrogen

atom, are:

C4H3N2O2F+ [130u] 7−→ C2H2N2O+ [70u] + C2HOF [60u] (5.5)

C4H3N2O2F+ [130u] 7−→ C2NO+
2 [70u] + C2H3NF [60u] (5.6)

A possible configuration for the very weak 68 u fragment is also shown in Figure 5.41.
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Figure 5.41: Possible configurations of the 70 u and 68 u fragments.

5.5.5 57 - 61 u fragmentation processes

The 58, 59, and 60 u ions are three fragments with high abundance in this group. The 61

u ion could be due to a 5-fluorouracil isotope, although the 61 u:60 u ratio is less than the

131 u:130 u ratio. The 60 u may have derived from a HCN loss from the 87 u ion through

C5-C6 bond breakage or alternatively, it may have been formed directly from the parent

ion through N3-C4 and C5-C6 bond breakages. For this process, the hydrogen atomwould
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migrate to bond with the oxygen atom through tautomerization. The loss of a hydrogen

atom from the 60 u could give rise to the 59 u fragment. Alternative fragmentation

processes that may have formed the 59 u would be: a NH loss to the 74 u, and a C2O2NH

loss to the 130 u through C4-C5 and N1-C2 bond breakages. The processes are:

C3H2NOF+ [87u] 7−→ C2HOF+ [60u] + HNC [27u] (5.7)

↓

C2OF [59u] + H [1u] (5.8)

C3H2NOF+ [87u] 7−→ C2H2NF+ [59u] + CO [28u] (5.9)

↓

C2HNF+ [58u] + H [1u] (5.10)

↓

C2NF+ [57u] + H [1u] (5.11)

Another possible pathway for the production of the 59 u ion is:

C2HNOF [74u] 7−→ C2OF [59u] + HN [15u] (5.12)

Equation 5.7 shows the loss of a HNC from the 87 u fragment. Equivalent fragmenta-

tion pathways for uracil producing the 39 - 41 u ions have been proposed by Jochims et al.

[2005] and Rice et al. [1965]. Possible configurations for these fragments are shown in

Figure 5.42.

The ion yield curves for this group can be seen in Figure 5.15. The yield ratio between

the 59 u:60 u:61 u = 0.42:1:0.032. This is possibly caused by hydrogen rearrangement

during fragmentation and/or tautomerization. The appearance energies for the 57 u - 60 u
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ions all lie within 1.5 eV of each other, which seems to rule out successive hydrogen loss.

These possible fragmentations leading to 59 u are equations 5.8, 5.9 and 5.12, and if all

these are relevant then it is not clear why the 59 u:60 u ratio is constant. The 39 - 42 u

ions are the equivalent fragments in uracil but the 41 u:42 u ion yield ratio is not constant

and the ion yield curves for the 41 u and 42 u have different shapes.
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Figure 5.42: Possible configurations of the 60 u, 59 u and 58 u fragments.

5.5.6 50 - 56 u fragmentation processes

The 50 - 56 u fragments create one of the smaller groups in the mass spectrum. The 50

- 56 u fragments all have a very low yield, but the peaks are clearly resolved in the mass

spectrum. Figure 5.3 shows that the 50 - 55 u of uracil have very similar yields. This

group was not considered by Diskin [2005]. The 56 u fragment in uracil has a higher

abundance than the corresponding fragment in 5-fluorouracil. Based on this, we assume

that the 50 - 55 u fragments do not contain the fluorine atom, but the 56 u fragment of

5-fluorouracil may contain the fluorine atom. The lower mass fragments have increasingly

higher appearance energies, see Figure 5.28. Possible configurations are:

50 u: C3N+

51 u: C3HN+

52 u: C3H2N+, C2N+
2 , C3O+

53 u: C2HN+
2 , C3HO+

54 u: C2H2N+
2 , C2NO+, C3H2O+
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55 u: C2H3N+
2 , C2HNO+, C3H3O+

56 u: C2H2NO+, CN2O+ or C3HF+

5.5.7 43 - 47 u fragmentation processes

The 43 u peak is broadened due to an energetic fragmentation, and is similar in shape

to the 43 u peak in the uracil mass spectrum. The 44 u peak has a higher yield for

5-fluorouracil, indicating that this peak is partly due to a fragment containing the fluorine

atom. Fragments 45 - 47 u are present in 5-fluorouracil but not present in uracil. Figure

5.20 shows that the ion yield curves for the 45 - 47 u ions are very similar in shape. The

possible configurations are:

43 u: HNCO+

44 u: C2HF+, CH2NO+

45 u: CNF+, C2H2F+

46 u: HNCF+

47 u: COF+

C2HNOF+ [74u] 7−→ HCNF+ [46u] + CO [28u] (5.13)

The 44 u is the strongest peak in this group and is may be formed by a HNCO loss

from the 87 u through C2-N3 and C4-C5 bond breakages, as seen in Equation 5.14 below.

Figure 5.3 shows a peak at 44 u in uracil that is roughly a third of the size of the 44 u of

5-fluorouracil. This may be due to CH2NO+ contribution.

C3H2NOF+ [87u] 7−→ HC2F+ [44u] + HNCO [43u] (5.14)

The HNCO+ ion (43 u) is present in 5-fluorouracil and uracil with a broadened peak.

Equation 5.15 shows HC2F from to the 87 u ion may be a possible fragmentation pathway

producing the 43 u ion.

C3H2NOF+ [87u] 7−→ HNCO+ [43u] + HC2F [44u] (5.15)

Other possible fragmentation pathways are:
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C2HNOF+ [74u] 7−→ HNCO+ [43u] + CF [31u] (5.16)

C2OF+ [59u] 7−→ C2F+ [43u] + O [16u] (5.17)

C2HF+ [44u] 7−→ C2F+ [43u] + H [1u] (5.18)
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Figure 5.43: Possible configurations of the 47 u, 46 u, 44 u and 43 u fragments.

5.5.8 36 - 41 u fragmentation processes

The 38 - 42 u ions cannot contain the fluorine atom. The 40 u could have derived from

N1-C2 and C4-C5 bond breakages accompanied by loss of the fluorine atom. The 38 and

39 u ions may have formed by successive hydrogen loss from the 40 u ion, as seen in

Figure 5.44.

Fragments 38 - 42 u have appearance energies of 24.4 ± 0.7 eV, 22.0 ± 0.9 eV, 18.8

± 0.7 eV, 22.0 ± 0.4 eV and 17.0 ± 0.6 eV respectively. This increase in appearance

energies of the smaller fragments implies that the fragmentation processes may involve

successive hydrogen loss. Below is a list of possible fragments:
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38 u: C2N+

39 u: C2HN+

40 u: C2H2N+, CN+
2

41 u: C2H3N+, CHN+
2

42 u: CH2N+
2 , CNO

+

Some possible fragmentation pathways are:

C2OF+ [59u] 7−→ C2O [40u] + F [19u] (5.19)

C2H2NF+ [59u] 7−→ C2H2N [40u] + F [19u] (5.20)

C2HNF+ [58u] 7−→ C2HN [39u] + F [19u] (5.21)

C2NF+ [57u] 7−→ C2N [38u] + F [19u] (5.22)

An alternative fragmentation producing the 38 u ion is:

C3H2NF+ [87u] 7−→ C3H+
2 [38u] + NOF [42u] (5.23)
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Figure 5.44: Possible configurations of the 40 u, 39 u and 38 u fragments.
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5.5.9 24 - 34 u fragmentation processes

None of these fragments can contain the fluorine atom, and the only possible assignments

are:

24 u: C+
2

25 u: C2H+

26 u: C2H+
2 , CN

+

27 u: HCN+

28 u: HNCH+, CO+

29 u: HNCH+
2

The 32 u fragment may have formed from the carbon atom in the 5th position and the

fluorine atom, with a hydrogen atom migrating and bonding to the carbon atom. The 31

u and 32 u ions are likely CF+ and CHF+ respectively. The 31 u peak is broader than the

32 u peak, indicating that a more energetic fragmentation is responsible for the production

of the 31 u ion.

The appearance energies for the 31 u and 32 u ions are 18.0 ± 1.4 eV and 16.6 ± 0.4

eV respectively. The 31 u indicates a prominent fragmentation, its appearance energy is

lower than the corresponding 13 u fragment in uracil (both of low abundance). Fragments

27 - 24 u have progressively higher appearance energies. Equations 5.24 and 5.25 show

two possible configurations of the 28 u ion. The 28 u ion has the lowest appearance energy

in this group at 13.8 ± 0.7 eV (in uracil, the 29 u ion has a lower appearance energy than

the 28 u ion). Possible fragmentation pathways producing the 28 u ion are:

C3H2NOF [87u] 7−→ HNCH+ [28u] + FC2O [59u] (5.24)

C2HNOF [74u] 7−→ CO+ [28u] + HNCF [46u] (5.25)
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Figure 5.45: Possible configurations of the 32 u, 31 u and 28 u fragments.

5.5.10 12 - 15 u fragmentation processes

None of these fragments can contain the fluorine atom and the only possible assignments

are:

12 u: C+

13 u: CH+

14 u: CH+
2 , N

+

15 u: NH+

Multiple possible fragmentation pathways are expected to exist for these fragments,

but we only observe a second onset for the 15 u ion.
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Conclusion

The main objective of this experiment was to study low-energy electron impact induced

ionisation and fragmentation of 5-fluorouracil. We have measured mass spectra of positive

ions for electron impact on 5-fluorouracil, with electron energies ranging from 5.71 to

101.01 eV in steps of 0.25 eV. A beam of 5-fluorouracil was generated by a resistively

heated oven mounted in an expansion chamber, and the forward section of the beam

effusing from a capillary in the oven passed through a skimmer into the collision chamber,

where the beam was crossed by a pulsed electron beam (0.5 µs, 8 kHz). Ions have been

mass resolved and detected using a reflectron time-of-flight mass spectrometer. LabVIEW

based data acquisition techniques have been used to accumulate mass spectra as a function

of electron impact energy.

By fitting groups of adjacent peaks in the mass spectra with sequences of normalized

Gaussians, we have obtained ion yield curves, and have determined appearance energies

for most positive fragment ions of 5-fluorouracil.

Some of the main fragmentation pathways of 5-fluorouracil are similar to uracil. The

87 u ion is C3H2NOF+ formed by HNCO loss. This fragmentation is similar to the loss

of HNCO from uracil producing C3H3NO+ (69 u). Comparison of the mass spectra of

5-fluorouracil and uracil strongly suggest that the fragmentations producing the 57 - 60 u

group of peaks in 5-fluorouracil are the same as those producing the 39 - 42 u group of

peaks in uracil. Based on this, we attribute the 57 - 60 u ions to HCN loss from 87 u and

to CO loss from 87 u, accompanied by the possible loss of one or two additional hydrogen

atoms. In the mass spectra of both 5-fluorouracil and uracil 28 u is the most prominent
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peak, attributed to both HCNH+ and CO+. In 5-fluorouracil, one of the possible pathways

producing HCNH+ is FCCO loss from 87 u.

We have identified several fragmentations that are unique to 5-fluorouracil. The most

prominent fragmentation produces CF+ at 31 u. Because this fragmentation becomes

prominent above 40 eV we do not think that this fragmentation is relevant for explaining

the radiosensitizing properties of 5-fluorouracil. DEA with production of radicals is the

more likely explanation. Other fragmentations that are unique to 5-fluorouracil produce

peaks at 74 u (C2HNOF+), 47 u (COF+), 46 u (HCNF+), and 32 u (CHF+).

There are several small groups of peaks for which we have obtained ion yield curves

and appearance energies. The 50-56 u group of fragments have similar relative yields

in the mass spectra of 5-fluorouracil and of uracil, suggesting that these fragments do

not contain the fluorine atom, and that the fragmentation pathways are similar for 5-

fluorouracil and uracil. The 38 - 44 u group of fragments is likely produced by several

different fragmentation processes.

We have observed several half-integer peaks in two groups in the mass spectra. The 64

- 72 u group contain half integer peaks at 69.5 u and 70.5 u. The 41 - 47 u group contain

half-integer peaks at 41.5 u, 42.5 u, 43.5 u and 44.5 u. The half-integer peaks at 69.5

u and 70.5 u have been interpreted as broadening of the 70 u peak due to an energetic

fragmentation. It is unlikely that these peaks are due to doubly-charged fragments because

these are abovem/q = 65 u, of the doubly-charged parent. The half-integer peaks at 41.5 u,

42.5 u, 43.5 u and 44.5 could be due to doubly-ionised fragments, but could also possibly

be attributed to broadening of the integer peaks related to energetic fragmentations.

The appearance energies of a number of 5-fluorouracil fragments obtained in this ex-

periment were compared with appearance energies of fragments from similar molecules

(uracil, 5-chlorouracil, 6-chlorouracil and 5-bromouracil) obtained by other research

groups. Our results are in good agreement (see Table 5.1) with the uracil results of

Diskin [2015] and the results for 5- and 6-chlorouracil of Denifl et al. [2004b].

Understanding the appearance energies gives information regarding the fragmentation

processes of 5-fluorouracil induced by electron impact. Understanding of dissociation
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mechanisms on the microscopic scale are of vital importance to the enhancement of ra-

diosensitizers, as the risks involved with biological tissue interacting with high-energy

radiation are great and need to be comprehensively understood in order to make radi-

ation therapy safer. The results obtained in this experiment give new insight into the

fragmentation pathways for 5-fluorouracil that are initiated by electron impact.
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Appendix A

Image of the code used in python to generate Figure 5.4.

import matplotlib.pyplot as plt

from matplotlib import cm

import numpy as np

from mpl_toolkits.mplot3d import Axes3D

import matplotlib.colors as colors

import pandas as pd

def ionYield():

f= 'C:\\Users\\Administrator\\Desktop\\ION YIELD\\zvals2.txt'

zvals2 = pd.read_csv(f,delimiter='\t',header=None)

zvals2 = zvals2.as_matrix()

np.shape(zvals2)

f= 'C:\\Users\\Administrator\\Desktop\\ION YIELD\\data2.txt'

data2 = pd.read_csv(f,delimiter='\t',header=None)

data2 = data2.as_matrix()

colvals = data2[:,0]

rowvals = data2[0,:]

rowvals = rowvals[1:]

colvals = colvals[1:]

X,Y = np.meshgrid(colvals,rowvals)

fig = plt.figure()

plt.title('Airy Pattern Scan')

ax1 = fig.gca(projection='3d')

ax1.set_xlabel('m/q [u]')

ax1.set_ylabel('Electron Energy [eV]')
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