MURAL - Maynooth University Research Archive Library



    Outage minimization for parallel fading channels with limited feedback


    He, Yuanyuan and Dey, Subhrakanti (2012) Outage minimization for parallel fading channels with limited feedback. EURASIPJournal on Wireless Communications and Networking. ISSN 1687-1472

    [img]
    Preview
    Download (2MB) | Preview


    Share your research

    Twitter Facebook LinkedIn GooglePlus Email more...



    Add this article to your Mendeley library


    Abstract

    We address an optimal power allocation problem for minimizing the outage probability for M parallel block-Nakagami-fading channels under along-term average sum transmit power constraint with finite rate feedback of channel state information(CSI). A simulation-based optimization technique called simultaneous perturbation stochastic approximation algorithm (SPSA) is employed first to numerically derive a locally optimal power code book. Due to the high computational complexity and long convergence time of SPSA, we make an ordering assumption on the power code book entries and derive effective hyperplane based approximations to the channel quantization regions and present a number of low-complexity suboptimal quantized power code book design algorithms. Unlike existing work on outage minimization for multiple-input multiple-output(MIMO) channels with limited feedback, we do not assume that identical transmission power is used for all channels within each channel quantization region. We also do not resort to a Gaussian approximation for the instantaneous mutual information in general as used in many existing work. Based on our power ordering assumption and hyper plane based approximations, we show that allocating identical power to all channels within a given channel quantization region in the limited feedback scenario is a symptotically optimal only at high average power (or average signal-to-noise ratio(SNR))for the Rayleigh fading case, where as for the general Nakagami case, the transmit power allocation for an individual channel within each quantized region is a symptotically proportional to the corresponding Nakagami fading parameter (severity of fading). We also present a novel diversity order result for the outage probability for the Nakagami fading case. Finally, we derive a suitable Gaussian approximation based low-complexity power allocation scheme for a large number of parallel channels, which has important applications in wide band slow-fading orthogonal frequency-division multiplexing (OFDM)systems. Extensive numerical results illustrate that only a few bits of feedback close the gap substantially in outage performance between the limited feedback case and the full instantaneous CSI at the transmitter case.

    Item Type: Article
    Keywords: Outage minimization; parallel; fading channels; limited feedback;
    Academic Unit: Faculty of Science and Engineering > Electronic Engineering
    Item ID: 12707
    Identification Number: https://doi.org/10.1186/1687-1499-2012-352
    Depositing User: Subhrakanti Dey
    Date Deposited: 06 Apr 2020 11:16
    Journal or Publication Title: EURASIPJournal on Wireless Communications and Networking
    Publisher: Springer Nature
    Refereed: Yes
    URI:

    Repository Staff Only(login required)

    View Item Item control page

    Downloads

    Downloads per month over past year