McArdle, Gavin and Demsar, Urska and van der Spek, Stefan and McLoone, Sean F.
(2014)
Classifying Pedestrian Movement Behaviour from GPS Trajectories using Visualisation and Clustering.
Annals of GIS, 20 (2).
pp. 85-98.
Abstract
The quantity and quality of spatial data are increasing rapidly. This is particularly evident in the case of movement data. Devices capable of accurately recording the position of moving entities have become ubiquitous and created an abundance of movement data. Valuable knowledge concerning processes occurring in the physical world can be extracted from these large movement data sets. Geovisual analytics
offers powerful techniques to achieve this. This article describes a new geovisual analytics tool specifically designed for movement data. The tool features the classic space-time cube augmented with a novel clustering approach to identify common behaviour. %based on the mathematical description of motion in terms of speed and acceleration.
These techniques were used to analyse pedestrian movement in a city environment which revealed the effectiveness of the tool for identifying spatiotemporal patterns.
Repository Staff Only(login required)
 |
Item control page |
Downloads per month over past year