Bechtluft-Sachs, Stefan and Wraith, David
(2012)
On the topology of G-manifolds with finitely many non-principal orbits.
Topology and its Applications, 159 (15).
pp. 3282-3293.
ISSN 1879-3207
Abstract
We study the topology of compact manifolds with a Lie group action for which there are
only finitely many non-principal orbits, and describe the possible orbit spaces which can
occur. If some non-principal orbit is singular, we show that the Lie group action must
have odd cohomogeneity. We pay special attention to manifolds with one and two singular
orbits, and construct some infinite families of examples. To illustrate the diversity within
some of these families, we also investigate homotopy types.
Repository Staff Only(login required)
 |
Item control page |
Downloads per month over past year