MURAL - Maynooth University Research Archive Library



    Amino acid-based squaramides for anion recognition


    Elmes, Robert B.P. and Jolliffe, Katrina A. (2014) Amino acid-based squaramides for anion recognition. Supramolecular Chemistry, 27 (5-6). pp. 321-328. ISSN 1061-0278

    [img]
    Preview
    Download (573kB) | Preview


    Share your research

    Twitter Facebook LinkedIn GooglePlus Email more...



    Add this article to your Mendeley library


    Abstract

    Eight receptors 1–8 comprising an l-lysine scaffold modified at N- and C-termini with aliphatic alkyl chains and N,N′-alkyl amides, respectively, and bearing squaramide moieties on the amino acid side chain were synthesised by a combination of solid- and solution-phase chemistries and shown to complex various anions in 0.5% H2O in dimethyl sulfoxide-d6 solution. All of the receptors were found to bind Cl− , AcO− and BzO− via hydrogen-bond or acid–base interactions with the squaramide protons; however, 1 was found to bind to via hydrogen bonds formed between the anion and both the squaramide and amide NH moieties. Moreover, modification of both the N- and C-termini of the amino acids with different alkyl substituents had a negligible effect on their anion-binding properties while simultaneously conferring lipophilicities in a range that is optimal for molecules to behave as ‘drug-like’ systems as defined by Lipinski's rule of five. The results of this study demonstrate the versatility of such amino acid receptors as building blocks in the field of anion recognition.

    Item Type: Article
    Keywords: anion binding; squaramide; amino acid;
    Academic Unit: Faculty of Science and Engineering > Chemistry
    Item ID: 12533
    Identification Number: https://doi.org/10.1080/10610278.2014.976221
    Depositing User: Robert Elmes
    Date Deposited: 06 Mar 2020 16:57
    Journal or Publication Title: Supramolecular Chemistry
    Publisher: Taylor & Francis
    Refereed: Yes
    URI:

    Repository Staff Only(login required)

    View Item Item control page

    Downloads

    Downloads per month over past year