Ade, P.A.R. and Aghanim, N. and Armitage-Caplan, C. and Arnaud, M. and Ashdown, M. and Atrio-Barandela, F. and Aumont, J. and Baccigalupi, C. and Banday, A.J. and Barreiro, R.B. and Bartlett, J.G. and Battaner, E. and Benabed, K. and Benoit, A. and Benoit-Lévy, A. and Bernard, J.-P. and Bersanelli, M. and Béthermin, M. and Bielewicz, P. and Blagrave, K. and Bobin, J. and Bock, J.J. and Bonaldi, A. and Bond, J.R. and Borrill, J. and Bouchet, F.R. and Boulanger, F. and Bridges, M. and Bucher, M. and Burigana, C. and Butler, R.C. and Cardoso, J.-F. and Catalano, A. and Challinor, A. and Chamballu, A. and Chen, X. and Chiang, H.C. and Chiang, L.-Y. and Christensen, P.R. and Church, S. and Clements, D.L. and Colombi, S. and Colombo, L.P.L. and Couchot, F. and Coulais, A. and Crill, B.P. and Curto, A. and Cuttaia, F. and Danese, L. and Davies, R.D. and Davis, R.J. and De Bernardis, P. and de Rosa, A. and de Zotti, G. and Delabrouille, J. and Delouis, J.-M. and Desert, F.-X. and Dickinson, C. and Diego, J.M. and Dole, H. and Donzelli, S. and Dore, O. and Douspis, M. and Dupac, X. and Efstathiou, G. and Enßlin, T.A. and Eriksen, H.K. and Finelli, F. and Forni, O. and Frailis, M. and Franceschi, E. and Galeotta, S. and Ganga, K. and Ghosh, T. and Giard, M. and Giraud-Héraud, Y. and Gonzalez-Nuevo, J. and Gorski, K.M. and Gratton, S. and Gregorio, A. and Gruppuso, A. and Hansen, F.K. and Hanson, D. and Harrison, D. and Helou, G. and Henrot-Versille, S. and Hernandez-Monteagudo, C. and Herranz, D. and Hildebrandt, S.R. and Hivon, E. and Hobson, M. and Holmes, W.A. and Hornstrup, A. and Hovest, W. and Huffenberger, K.M. and Jaffe, A.H. and Jaffe, T.R. and Jones, W.C. and Juvela, M. and Kalberla, P. and Keihanen, E. and Kerp, J. and Keskitalo, R. and Kisner, T.S. and Kneissl, R. and Knoche, J. and Knox, L. and Kunz, M. and Kurki-Suonio, H. and Lacasa, F. and Lagache, G. and Lahteenmaki, A. and Lamarre, J.-M. and Langer, M. and Lasenby, A. and Laureijs, R.J. and Lawrence, C.R. and Leonardi, R. and Leon-Tavares, J. and Lesgourgues, J. and Liguori, M. and Lilje, P.B. and Linden-Vornle, M. and Lopez-Caniego, M. and Lubin, P.M. and Macias-Perez, J.F. and Maffei, B. and Maino, D. and Mandolesi, N. and Maris, M. and Marshall, D.J. and Martin, P.G. and Martinez-Gonzalez, E. and Masi, S. and Massardi, M. and Mendes, L. and Mennella, A. and Migliaccio, M. and Mitra, S. and Miville-Deschenes, M.-A. and Moneti, A. and Montier, L. and Morgante, G. and Mortlock, D. and Munshi, D. and Murphy, J.Anthony and Naselsky, P. and Nati, F. and Natoli, P. and Netterfield, C.B. and Norgaard-Nielsen, H.U. and Noviello, F. and Novikov, D. and Novikov, I. and Osborne, S. and Oxborrow, C.A. and Paci, F. and Pagano, L. and Pajot, F. and Paladini, R. and Paoletti, D. and Partridge, B. and Pasian, F. and Patanchon, G. and Perdereau, O. and Perotto, L. and Perrotta, F. and Piacentini, F. and Piat, M. and Pierpaoli, E. and Pietrobon, D. and Plaszczynski, S. and Pointecouteau, E. and Polenta, G. and Ponthieu, N. and Popa, L. and Poutanen, T. and Pratt, G.W. and Prezeau, G. and Prunet, S. and Puget, J.-L. and Rachen, J.P. and Reach, W.T. and Rebolo, R. and Reinecke, M. and Remazeilles, M. and Renault, C. and Ricciardi, S. and Riller, T. and Ristorcelli, I. and Rocha, G. and Rosset, C. and Roudier, G. and Rowan-Robinson, M. and Rubino-Martin, J.A. and Rusholme, B. and Sandri, M. and Santos, D. and Savini, G. and Scott, D. and Seiffert, M.D. and Serra, Pier A. and Shellard, E.P.S. and Spencer, L. and Starck, J.-L. and Stolyarov, V. and Stompor, R. and Sudiwala, R. and Sunyaev, R. and Sureau, F. and Sutton, D. and Suur-Uski, A.-S. and Sygnet, J.-F. and Tauber, J.A. and Tavagnacco, D. and Terenzi, L. and Toffolatti, L. and Tomasi, M. and Tristram, M. and Tucci, M. and Tuovinen, J. and Turler, M. and Valenziano, L. and Valiviita, J. and Van Tent, B. and Vielva, P. and Villa, F. and Vittorio, N. and Wade, L.A. and Wandelt, B.D. and Welikala, N. and White, M. and White, S.D.M. and Winkel, B. and Yvon, D. and Zacchei, A. and Zonca, A.
(2014)
Planck 2013 results. XXX. Cosmic infrared background measurements and implications for star formation.
Astronomy & Astrophysics, 571 (A30).
ISSN 0004-6361
Abstract
We present new measurements of cosmic infrared background (CIB) anisotropies using Planck. Combining HFI data with IRAS, the angular auto- and cross-frequency power spectrum is measured from 143 to 3000 GHz, and the auto-bispectrum from 217 to 545 GHz. The total areas used to compute the CIB power spectrum and bispectrum are about 2240 and 4400 deg2, respectively. After careful removal of the contaminants (cosmic microwave background anisotropies, Galactic dust, and Sunyaev-Zeldovich emission), and a complete study of systematics, the CIB power spectrum is measured with unprecedented signal to noise ratio from angular multipoles ℓ ~ 150 to 2500. The bispectrum due to the clustering of dusty, star-forming galaxies is measured from ℓ ~ 130 to 1100, with a total signal to noise ratio of around 6, 19, and 29 at 217, 353, and 545 GHz, respectively. Two approaches are developed for modelling CIB power spectrum anisotropies. The first approach takes advantage of the unique measurements by Planck at large angular scales, and models only the linear part of the power spectrum, with a mean bias of dark matter haloes hosting dusty galaxies at a given redshift weighted by their contribution to the emissivities. The second approach is based on a model that associates star-forming galaxies with dark matter haloes and their subhaloes, using a parametrized relation between the dust-processed infrared luminosity and (sub-)halo mass. The two approaches simultaneously fit all auto- and cross-power spectra very well. We find that the star formation history is well constrained up to redshifts around 2, and agrees with recent estimates of the obscured star-formation density using Spitzer and Herschel. However, at higher redshift, the accuracy of the star formation history measurement is strongly degraded by the uncertainty in the spectral energy distribution of CIB galaxies. We also find that the mean halo mass which is most efficient at hosting star formation is log (Meff/M⊙) = 12.6 and that CIB galaxies have warmer temperatures as redshift increases. The CIB bispectrum is steeper than that expected from the power spectrum, although well fitted by a power law; this gives some information about the contribution of massive haloes to the CIB bispectrum. Finally, we show that the same halo occupation distribution can fit all power spectra simultaneously. The precise measurements enabled by Planck pose new challenges for the modelling of CIB anisotropies, indicating the power of using CIB anisotropies to understand the process of galaxy formation.
Item Type: |
Article
|
Keywords: |
Planck Collaboration; cosmology: observations; large-scale structure of Universe; galaxies: star formation; infrared: diffuse background; |
Academic Unit: |
Faculty of Science and Engineering > Experimental Physics |
Item ID: |
14138 |
Identification Number: |
https://doi.org/10.1051/0004-6361/201322093 |
Depositing User: |
Dr. Anthony Murphy
|
Date Deposited: |
05 Mar 2021 17:30 |
Journal or Publication Title: |
Astronomy & Astrophysics |
Publisher: |
EDP Sciences |
Refereed: |
Yes |
URI: |
|
Use Licence: |
This item is available under a Creative Commons Attribution Non Commercial Share Alike Licence (CC BY-NC-SA). Details of this licence are available
here |
Repository Staff Only(login required)
|
Item control page |
Downloads per month over past year
Origin of downloads