Abergel, A. and Ade, P.A.R. and Aghanim, N. and Alves, M.I.R. and Aniano, G. and Arnaud, M. and Ashdown, M. and Aumont, J. and Baccigalupi, C. and Banday, A.J. and Barreiro, R.B. and Bartlett, J.G. and Battaner, E. and Benabed, K. and Benoit-Lévy, A. and Bernard, J.-P. and Bersanelli, M. and Bielewicz, P. and Bobin, J. and Bonaldi, A. and Bond, J.R. and Bouchet, F.R. and Boulanger, F. and Burigana, C. and Cardoso, J.-F. and Catalano, A. and Chamballu, A. and Chiang, H.C. and Christensen, P.R. and Clements, D.L. and Colombi, S. and Colombo, L.P.L. and Couchot, F. and Crill, B.P. and Cuttaia, F. and Danese, L. and Davis, R.J. and De Bernardis, P. and de Rosa, A. and de Zotti, G. and Delabrouille, J. and Desert, F.-X. and Dickinson, C. and Diego, J.M. and Dole, H. and Donzelli, S. and Dore, O. and Douspis, M. and Dupac, X. and Efstathiou, G. and Enßlin, T.A. and Eriksen, H.K. and Falgarone, E. and Finelli, F. and Forni, O. and Frailis, M. and Franceschi, E. and Galeotta, S. and Ganga, K. and Ghosh, T. and Giard, M. and Giraud-Héraud, Y. and Gonzalez-Nuevo, J. and Gorski, K.M. and Gregorio, A. and Gruppuso, A. and Guillet, V. and Hansen, F.K. and Harrison, D. and Helou, G. and Henrot-Versille, S. and Hernandez-Monteagudo, C. and Herranz, D. and Hildebrandt, S.R. and Hivon, E. and Huffenberger, K.M. and Jaffe, A.H. and Jaffe, T.R. and Joncas, G. and Jones, A. and Jones, W.C. and Juvela, M. and Kalberla, P. and Keihanen, E. and Kerp, J. and Keskitalo, R. and Kisner, T.S. and Kneissl, R. and Knoche, J. and Kunz, M. and Kurki-Suonio, H. and Lagache, G. and Lahteenmaki, A. and Lamarre, J.-M. and Lasenby, A. and Lawrence, C.R. and Leonardi, R. and Levrier, F. and Liguori, M. and Lilje, P.B. and Linden-Vornle, M. and Lopez-Caniego, M. and Lubin, P.M. and Macias-Perez, J.F. and Maffei, B. and Maino, D. and Mandolesi, N. and Maris, M. and Marshall, D.J. and Martin, P.G. and Martinez-Gonzalez, E. and Masi, S. and Massardi, M. and Matarrese, S. and Mazzotta, P. and Melchiorri, A. and Mendes, L. and Mennella, A. and Migliaccio, M. and Mitra, S. and Miville-Deschenes, M.-A. and Moneti, A. and Montier, L. and Morgante, G. and Mortlock, D. and Munshi, D. and Murphy, J.Anthony and Naselsky, P. and Nati, F. and Natoli, P. and Noviello, F. and Novikov, D. and Novikov, I. and Oxborrow, C.A. and Pagano, L. and Pajot, F. and Paoletti, D. and Pasian, F. and Perdereau, O. and Perotto, L. and Perrotta, F. and Piacentini, F. and Piat, M. and Pierpaoli, E. and Pietrobon, D. and Plaszczynski, S. and Pointecouteau, E. and Polenta, G. and Ponthieu, N. and Popa, L. and Pratt, G.W. and Prunet, S. and Puget, J.-L. and Rachen, J.P. and Reach, W.T. and Rebolo, R. and Reinecke, M. and Remazeilles, M. and Renault, C. and Ricciardi, S. and Riller, T. and Ristorcelli, I. and Rocha, G. and Rosset, C. and Roudier, G. and Rusholme, B. and Sandri, M. and Savini, G. and Spencer, L. and Starck, J.-L. and Sureau, F. and Sutton, D. and Suur-Uski, A.-S. and Sygnet, J.-F. and Tauber, J.A. and Terenzi, L. and Toffolatti, L. and Tomasi, M. and Tristram, M. and Tucci, M. and Umana, G. and Valenziano, L. and Valiviita, J. and Van Tent, B. and Verstraete, L. and Vielva, P. and Villa, F. and Wade, L.A. and Wandelt, B.D. and Winkel, B. and Yvon, D. and Zacchei, A. and Zonca, A.
(2014)
Planck intermediate results
XVII. Emission of dust in the diffuse interstellar medium from the far-infrared to microwave frequencies.
Astronomy & Astrophysics, 566 (A55).
ISSN 0004-6361
Abstract
The dust-Hi correlation is used to characterize the emission properties of dust in the diffuse interstellar medium (ISM) from far infrared wavelengths to microwave frequencies. The field of this investigation encompasses the part of the southern sky best suited to study the cosmic infrared and microwave backgrounds. We cross-correlate sky maps from Planck, the Wilkinson Microwave Anisotropy Probe (WMAP), and the diffuse infrared background experiment (DIRBE), at 17 frequencies from 23 to 3000 GHz, with the Parkes survey of the 21 cm line emission of neutral atomic hydrogen, over a contiguous area of 7500 deg2 centred on the southern Galactic pole. We present a general methodology to study the dust-Hi correlation over the sky, including simulations to quantify uncertainties. Our analysis yields four specific results. (1) We map the temperature, submillimetre emissivity, and opacity of the dust per H-atom. The dust temperature is observed to be anti-correlated with the dust emissivity and opacity. We interpret this result as evidence of dust evolution within the diffuse ISM. The mean dust opacity is measured to be (7.1 ± 0.6) × 10-27 cm2 H-1 × (ν/ 353 GHz)1.53 ± 0.03 for 100 ≤ ν ≤ 353 GHz. This is a reference value to estimate hydrogen column densities from dust emission at submillimetre and millimetre wavelengths. (2) We map the spectral index βmm of dust emission at millimetre wavelengths (defined here as ν ≤ 353 GHz), and find it to be remarkably constant at βmm = 1.51 ± 0.13. We compare it with the far infrared spectral index βFIR derived from greybody fits at higher frequencies, and find a systematic difference, βmm − βFIR = − 0.15, which suggests that the dust spectral energy distribution (SED) flattens at ν ≤ 353 GHz. (3) We present spectral fits of the microwave emission correlated with Hi from 23 to 353 GHz, which separate dust and anomalous microwave emission (AME). We show that the flattening of the dust SED can be accounted for with an additional component with a blackbody spectrum. This additional component, which accounts for (26 ± 6)% of the dust emission at 100 GHz, could represent magnetic dipole emission. Alternatively, it could account for an increasing contribution of carbon dust, or a flattening of the emissivity of amorphous silicates, at millimetre wavelengths. These interpretations make different predictions for the dust polarization SED. (4) We analyse the residuals of the dust-Hi correlation. We identify a Galactic contribution to these residuals, which we model with variations of the dust emissivity on angular scales smaller than that of our correlation analysis. This model of the residuals is used to quantify uncertainties of the CIB power spectrum in a companion Planck paper.
Item Type: |
Article
|
Additional Information: |
Appendices are available in electronic form at http://www.aanda.org |
Keywords: |
Planck Collaboration; dust, extinction; submillimeter: ISM; local insterstellar matter; infrared: diffuse background; cosmic background radiation; |
Academic Unit: |
Faculty of Science and Engineering > Experimental Physics |
Item ID: |
14226 |
Identification Number: |
https://doi.org/10.1051/0004-6361/201323270 |
Depositing User: |
Dr. Anthony Murphy
|
Date Deposited: |
22 Mar 2021 16:13 |
Journal or Publication Title: |
Astronomy & Astrophysics |
Publisher: |
EDP Sciences |
Refereed: |
Yes |
URI: |
|
Use Licence: |
This item is available under a Creative Commons Attribution Non Commercial Share Alike Licence (CC BY-NC-SA). Details of this licence are available
here |
Repository Staff Only(login required)
|
Item control page |
Downloads per month over past year
Origin of downloads