Lord, D.J. and O'Farrell, Anthony G.
(1994)
Boundary smoothness properties of Lipα analytic functions.
Journal d’Analyse Mathématique (63).
pp. 103-119.
ISSN 1565-8538
Abstract
Let U be an open set andb ∈ bdy(U). Let 0 < α< 1. Let A(U) denote the space of Lipα functions that are analytic onU, and a(U) the subspace lipα ∩ A(U). The space a(U ∪b), consisting of the functions that are analytic nearb, is dense in a(U). Letk be a natural number. We say that a(U) admits ak-th order continuous point derivation (cpd) atb if the functionalf → f(k) (b) is continuous on a(U ∪b), with respect to the Lipα norm.
Item Type: |
Article
|
Additional Information: |
Cite as: Lord, D.J., O’Farrell, A.G. Boundary smoothness properties of Lipα analytic functions. J. Anal. Math. 63, 103–119 (1994). https://doi-org.jproxy.nuim.ie/10.1007/BF03008420 |
Keywords: |
Lipschitz Norm; Curvilinear Triangle; Point Derivation; Regular Boundary Point; Lipa Function; |
Academic Unit: |
Faculty of Science and Engineering > Mathematics and Statistics |
Item ID: |
14689 |
Identification Number: |
https://doi.org/10.1007/BF03008420 |
Depositing User: |
Prof. Anthony O'Farrell
|
Date Deposited: |
11 Aug 2021 13:43 |
Journal or Publication Title: |
Journal d’Analyse Mathématique |
Publisher: |
Hebrew University Magnes Press |
Refereed: |
Yes |
URI: |
|
Use Licence: |
This item is available under a Creative Commons Attribution Non Commercial Share Alike Licence (CC BY-NC-SA). Details of this licence are available
here |
Repository Staff Only(login required)
|
Item control page |
Downloads per month over past year
Origin of downloads