Dolan, Brian P. and O'Connor, Denjoe and Presnajder, Peter (2004) Fuzzy Complex Quadrics and Spheres. Journal of High Energy Physics, 0402.
Download (170kB)
|
Abstract
A matrix algebra is constructed which consists of the necessary degrees of freedom for a finite approximation to the algebra of functions on the family of orthogonal Grassmannians of real dimension 2N, known as complex quadrics. These matrix algebras contain the relevant degrees of freedom for describing truncations of harmonic expansions of functions on N-spheres. An Inonu-Wigner contraction of the quadric gives the co-tangent bundle to the commutative sphere in the continuum limit. It is shown how the degrees of freedom for the sphere can be projected out of a finite dimensional functional integral, using second-order Casimirs, giving a well-defined procedure for construction functional integrals over fuzzy spheres of any dimension.
Item Type: | Article |
---|---|
Keywords: | Field Theories in Higher Dimensions Differential and Algebraic Geometry Non-Commutative Geometry |
Academic Unit: | Faculty of Science and Engineering > Experimental Physics |
Item ID: | 247 |
Depositing User: | Dr. Brian Dolan |
Date Deposited: | 30 Aug 2005 |
Journal or Publication Title: | Journal of High Energy Physics |
Publisher: | IOP |
Refereed: | Yes |
URI: | |
Use Licence: | This item is available under a Creative Commons Attribution Non Commercial Share Alike Licence (CC BY-NC-SA). Details of this licence are available here |
Repository Staff Only(login required)
Item control page |
Downloads
Downloads per month over past year