MURAL - Maynooth University Research Archive Library



    A New Approach to Homogenize Daily Radiosonde Humidity Data


    Dai, A. and Wang, Junhong and Thorne, Peter and Parker, D.E. and Haimberger, L. and Wang, Xiaolang (2011) A New Approach to Homogenize Daily Radiosonde Humidity Data. Journal of Climate, 24 (4). pp. 965-991. ISSN 0894-8755

    [img]
    Preview
    Download (7MB) | Preview


    Share your research

    Twitter Facebook LinkedIn GooglePlus Email more...



    Add this article to your Mendeley library


    Abstract

    Radiosonde humidity records represent the only in situ observations of tropospheric water vapor content with multidecadal length and quasi-global coverage. However, their use has been hampered by ubiquitous and large discontinuities resulting from changes to instrumentation and observing practices. Here a new approach is developed to homogenize historical records of tropospheric (up to 100 hPa) dewpoint depression (DPD), the archived radiosonde humidity parameter. Two statistical tests are used to detect changepoints, which aremost apparent in histograms and occurrence frequencies of the daily DPD: a variant of the Kolmogorov–Smirnov (K–S) test for changes in distributions and the penalized maximal F test (PMFred) for mean shifts in the occurrence frequency for different bins of DPD. These tests capture most of the apparent discontinuities in the daily DPD data, with an average of 8.6 changepoints (;1 changepoint per 5 yr) in each of the analyzed radiosonde records, which begin as early as the 1950s and ended in March 2009. Before applying breakpoint adjustments, artificial sampling effects are first adjusted by estimating missingDPDreports for cold (T ,2308C) and dry (DPDartificially set to 308C) conditions using empirical relationships at each station between the anomalies of air temperature and vapor pressure derived from recent observations when DPD reports are available under these conditions. Next, the samplingadjusted DPD is detrended separately for each of the 4–10 quantile categories and then adjusted using a quantile-matching algorithm so that the earlier segments have histograms comparable to that of the latest segment. Neither the changepoint detection nor the adjustment uses a reference series given the stability of the DPD series. Using this new approach, a homogenized global, twice-dailyDPDdataset (available online at www.cgd.ucar.edu/cas/catalog/) is created for climate and other applications based on the Integrated Global Radiosonde Archive (IGRA) and two other data sources. The adjusted-daily DPD has much smaller and spatially more coherent trends during 1973–2008 than the raw data. It implies only small changes in relative humidity in the lower and middle troposphere. When combined with homogenized radiosonde temperature, other atmospheric humidity variables can be calculated, and these exhibit spatially more coherent trends than without the DPD homogenization. The DPD adjustment yields a different pattern of change in humidity parameters compared to the apparent trends from the raw data.The adjusted estimates show an increase in troposphericwater vapor globally.

    Item Type: Article
    Keywords: Homogenize; Daily Radiosonde Humidity Data;
    Academic Unit: Faculty of Social Sciences > Geography
    Faculty of Social Sciences > Research Institutes > Irish Climate Analysis and Research Units, ICARUS
    Item ID: 6528
    Identification Number: https://doi.org/10.1175/2010JCLI3816.1
    Depositing User: Peter Thorne
    Date Deposited: 04 Nov 2015 16:04
    Journal or Publication Title: Journal of Climate
    Publisher: American Meteorological Society
    Refereed: Yes
    URI:
    Use Licence: This item is available under a Creative Commons Attribution Non Commercial Share Alike Licence (CC BY-NC-SA). Details of this licence are available here

    Repository Staff Only(login required)

    View Item Item control page

    Downloads

    Downloads per month over past year

    Origin of downloads