MURAL - Maynooth University Research Archive Library

    Luminescence spectroscopy of matrix-isolated atomic manganese: Site size and orbital occupancy dependence of crystal field splitting

    Collier, Martin A. and Byrne, Owen and Murray, Ciaran and McCaffrey, John G. (2010) Luminescence spectroscopy of matrix-isolated atomic manganese: Site size and orbital occupancy dependence of crystal field splitting. Journal of Chemical Physics, 132 (16). p. 164512. ISSN 0021-9606

    Download (293kB) | Preview

    Share your research

    Twitter Facebook LinkedIn GooglePlus Email more...

    Add this article to your Mendeley library


    Narrow linewidth emission features observed in the near-UV following y (6)P state excitation of atomic manganese isolated in the solid rare gases are assigned to b (4)D and a (4)P states. These states arise from the 3d(5)4s(2) electronic configuration, identical to that of the (6)S ground state, and the origin of the narrow linewidths. Two thermally stable sites, labeled blue and red on the basis of their position in absorption spectra, are occupied by atomic Mn in Ar and Kr while a single site is present in Xe. The red site produces a single, narrow line emission for the b (4)D state at 329 nm. In contrast, a lineshape analysis of the complex blue site b (4)D state emission between 331 and 332 nm reveals the occurrence of three zero phonon lines (ZPLs). Millisecond emission decay curves recorded for these features are found to be complex, requiring double and triple exponential fit functions. The origins of the complex decays and multiple ZPLs are shown to arise from weak crystal field splitting (CFS) of the J=7/2 spin-orbit level of the b (4)D state of atomic Mn isolated in the blue site of the solid rare gases. Fields of cubic symmetry are capable of inducing splitting for J>3/2 so atoms isolated in both single vacancy and tetravacancy sites in the fcc lattices of the solid rare gases are prone to this effect. b (4)D state emission is also produced following y (6)P excitation for Mn atoms occupying the red sites in Ar and Kr. However, Mn atoms isolated in the larger tetravacancy sites have small matrix shifts and do not exhibit any CFS. The magnitudes of the weak CF splittings are shown to depend on both the excited state electronic configurations 3d(5)4s(2) b (4)D and 3d(6)4s(1) a (4)D states and the size of the matrix site occupied by atomic Mn.

    Item Type: Article
    Keywords: Luminescence spectroscopy; matrix-isolated atomic manganese; orbital occupancy dependence; crystal field splitting;
    Academic Unit: Faculty of Science and Engineering > Chemistry
    Item ID: 7843
    Identification Number:
    Depositing User: Dr. John McCaffrey
    Date Deposited: 01 Feb 2017 17:39
    Journal or Publication Title: Journal of Chemical Physics
    Publisher: American Institute of Physics
    Refereed: Yes
    Use Licence: This item is available under a Creative Commons Attribution Non Commercial Share Alike Licence (CC BY-NC-SA). Details of this licence are available here

    Repository Staff Only(login required)

    View Item Item control page


    Downloads per month over past year

    Origin of downloads