McMahon, Colm P. and Rocchitta, Gaia and Serra, Pier A. and Kirwan, Sarah and Lowry, John P. and O'Neill, Robert D.
(2006)
Control of the Oxygen Dependence of an Implantable Polymer/Enzyme Composite Biosensor for Glutamate.
Analytical Chemistry, 78 (7).
pp. 2352-2359.
ISSN 0003-2700
Abstract
Biosensors for glutamate (Glu) were fabricated from Teflon-coated Pt wire (cylinders and disks), modified with the enzyme glutamate oxidase (GluOx) and electrosynthesized polymer PPD, poly(o-phenylenediamine). The polymer/enzyme layer was deposited in two configurations: enzyme before polymer (GluOx/PPD) and enzyme after polymer (PPD/GluOx). These four biosensor designs were characterized in terms of response time, limit of detection, Michaelis−Menten parameters for Glu (Jmax and KM(Glu)), sensitivity to Glu in the linear response region, and dependence on oxygen concentration, KM(O2). Analysis showed that the two polymer/enzyme configurations behaved similarly on both cylinders and disks. Although the two geometries showed different behaviors, these differences could be explained in terms of higher enzyme loading density on the disks; in many analyses, the four designs behaved like a single population with a range of GluOx loading. Enzyme loading was the key to controlling the KM(O2) values of these first generation biosensors. The counterintuitive, and beneficial, behavior that biosensors with higher GluOx loading displayed a lower oxygen dependence was explained in terms of the effects of enzyme loading on the affinity of GluOx for its anionic substrate. Some differences between the properties of surface immobilized GluOx and glucose oxidase are highlighted.
Item Type: |
Article
|
Keywords: |
Oxygen Dependence; Implantable Polymer/Enzyme Composite Biosensor; Glutamate; |
Academic Unit: |
Faculty of Science and Engineering > Chemistry |
Item ID: |
8040 |
Identification Number: |
https://doi.org/10.1021/ac0518194 |
Depositing User: |
John Lowry
|
Date Deposited: |
22 Mar 2017 16:47 |
Journal or Publication Title: |
Analytical Chemistry |
Publisher: |
American Chemical Society |
Refereed: |
Yes |
Funders: |
Science Foundation Ireland (SFI) |
URI: |
|
Use Licence: |
This item is available under a Creative Commons Attribution Non Commercial Share Alike Licence (CC BY-NC-SA). Details of this licence are available
here |
Repository Staff Only(login required)
|
Item control page |
Downloads per month over past year
Origin of downloads