Mullan, Donal, Favis-Mortlock, Dave and Fealy, Rowan (2012) Addressing key limitations associated with modelling soil erosion under the impacts of future climate change. Agricultural and Forest Meteorology, 156. pp. 18-30. ISSN 0168-1923
Preview
1-s2.0-S0168192311003418-main.pdf
Download (876kB) | Preview
Abstract
Future climate change is expected to impact the extent, frequency, and magnitude of soil erosion in a
variety of ways. The most direct of these impacts refers to the projected increase in the erosive power
of rainfall, whilst other more indirect impacts include changes in plant biomass and shifts in land use to
accommodate the new climatic regime. Given the potential for climate change to increase soil erosion
and its associated adverse impacts, modelling future rates of erosion is a crucial step in its assessment as
a potential future environmental problem, and as a basis to help advise future conservation strategies.
Despite the wide range of previous modelling studies, in the majority of cases limitations are apparent
with respect to their treatment of the direct impacts (changed climate data), and their failure to factor in
the indirect impacts (changing land use and management). In this study, these limitations are addressed
in association with the modelling of future soil erosion rates for a case study hillslope in Northern Ireland
using the Water Erosion Prediction Project (WEPP) model. The direct impacts are handled using statistical
downscaling methods, enabling the generation of site-specific, daily resolution future climate change
scenarios, and a simple sensitivity analysis approach is employed to investigate the previously unstudied
impacts of sub-daily rainfall intensity changes. Finally, the frequently neglected indirect impacts are
examined using a scenarios-based approach. Results indicate a mix of soil erosion increases and decreases,
depending on which scenarios are considered. Downscaled climate change projections in isolation generally
result in erosion decreases, whereas large increases are projected when land use is changed from
the current cover of grass to a row crop which requires annual tillage, and/or where large changes in subdaily
rainfall intensity are applied. The overall findings illustrate the potential for increased soil erosion
under future climate change, and illuminate the need to address key limitations in previous studies with
respect to the treatment of future climate change projections, and crucially, the factoring in of future
land use and management.
Item Type: | Article |
---|---|
Keywords: | Soil erosion; Climate change; Statistical downscaling; Land use and management; Sub-daily rainfall intensity; Northern Ireland; |
Academic Unit: | Faculty of Social Sciences > Geography Faculty of Social Sciences > Research Institutes > Irish Climate Analysis and Research Units, ICARUS |
Item ID: | 8743 |
Identification Number: | 10.1016/j.agrformet.2011.12.004 |
Depositing User: | Rowan Fealy |
Date Deposited: | 06 Sep 2017 11:04 |
Journal or Publication Title: | Agricultural and Forest Meteorology |
Publisher: | Elsevier Masson |
Refereed: | Yes |
Related URLs: | |
URI: | https://mural.maynoothuniversity.ie/id/eprint/8743 |
Use Licence: | This item is available under a Creative Commons Attribution Non Commercial Share Alike Licence (CC BY-NC-SA). Details of this licence are available here |
Repository Staff Only (login required)
Downloads
Downloads per month over past year