Ashburn, J.R., Cline, R.A., van der Burgt, Peter J.M., Westerveld, W.B. and Risley, J.S. (1990) Experimentally determined density matrices for H(n=3) formed in H+-He collisions from 20 to 100 keV. Physical Review A, 41 (5). pp. 2407-2421. ISSN 1050-2947
PDF
PvdB_Density_matrices_p2407_1.pdf
Download (2MB)
PvdB_Density_matrices_p2407_1.pdf
Download (2MB)
Abstract
Density matrices describing H(n=3) atoms produced in collisions of 20- to 100-keV protons with He atoms have been determined experimentally. In the experiment the intensity and polarization of Balmer-α radiation emitted from a He gas cell are measured as a function of the strength of an externally applied electric field. Electric fields are applied in a direction either axial to or transverse to the proton beam. Density matrices are extracted by detailed analysis of the optical data. Data are obtained for each field direction and then analyzed, separately and in combination, to yield density matrices. Satisfactory agreement is found between density matrices determined from axial and transverse electric field data except at the lowest energies studied. Some nonzero density-matrix elements are determined more accurately using axial electric fields than with transverse fields, while other elements are more accurately determined using transverse electric fields. The combined analysis using data from both field directions gives a better determination of the density matrix than the separate data sets. Results for the H(n=3) electron-transfer cross sections (relative to 3s), the electric dipole moment of the charge distribution 〈d〉z, a first-order moment of the current distribution 〈L×A〉z,s, and the average coherence Tr(σ32) are obtained. The experimental results are compared to two recent calculations using the augmented atomic orbital (AO+) theory and the continuum distorted-wave approximation with post-collision interaction theory, and to one recent experimental measurement of the diagonal density-matrix elements. Both theories show qualitative agreement with the general trends in the data. The AO+ method gives better quantitative agreement. The experimental results are displayed in graphical form as distributions of the electronic charge D(r) and of the electronic current density j(r).
Item Type: | Article |
---|---|
Keywords: | density matrices; H(n=3); H+-He collisions; |
Academic Unit: | Faculty of Science and Engineering > Experimental Physics |
Item ID: | 2092 |
Depositing User: | Dr Peter van der Burgt |
Date Deposited: | 17 Aug 2010 15:38 |
Journal or Publication Title: | Physical Review A |
Publisher: | American Physical Society |
Refereed: | Yes |
Related URLs: | |
URI: | https://mural.maynoothuniversity.ie/id/eprint/2092 |
Use Licence: | This item is available under a Creative Commons Attribution Non Commercial Share Alike Licence (CC BY-NC-SA). Details of this licence are available here |
Repository Staff Only (login required)
Downloads
Downloads per month over past year