Kavanagh, P.J., Sasaki, M., Bozzetto, L.M., Points, S.D., Crawford, E.J., Dickel, J., Filipović, M.D., Haber, F., Maggi, P. and Whelan, Emma (2016) Two evolved supernova remnants with newly identified Fe-rich cores in the Large Magellanic Cloud*. Astronomy & Astrophysics, 586 (A4). ISSN 0004-6361
Preview
EW-Two-evolved-2016.pdf
Download (5MB) | Preview
Abstract
Aims. We present a multi-wavelength analysis of the evolved supernova remnants MCSNR J0506−7025 and MCSNR J0527−7104 in the Large Magellanic Cloud.
Methods. We used observational data from XMM-Newton, the Australian Telescope Compact Array, and the Magellanic Cloud Emission Line Survey to study their broad-band emission and used Spitzer and H i data to gain a picture of the environment into which the remnants are expanding. We performed a multi-wavelength morphological study and detailed radio and X-ray spectral analyses to determine their physical characteristics.
Results. Both remnants were found to have bright X-ray cores, dominated by Fe L-shell emission, which is consistent with reverse shock-heated ejecta with determined Fe masses in agreement with Type Ia explosion yields. A soft X-ray shell, which is consistent with swept-up interstellar medium, was observed in MCSNR J0506−7025, suggestive of a remnant in the Sedov phase. Using the spectral fit results and the Sedov self-similar solution, we estimated the age of MCSNR J0506−7025 to be ~16−28 kyr, with an initial explosion energy of (0.07−0.84) × 1051 erg. A soft shell was absent in MCSNR J0527−7104, with only ejecta emission visible in an extremely elongated morphology that extends beyond the optical shell. We suggest that the blast wave has broken out into a low density cavity, allowing the shock heated ejecta to escape. We find that the radio spectral index of MCSNR J0506−7025 is consistent with the standard −0.5 for supernova remnants. Radio polarisation at 6 cm indicates a higher degree of polarisation along the western front and at the eastern knot with a mean fractional polarisation across the remnant of P ≅ (20 ± 6)%.
Conclusions. The detection of Fe-rich ejecta in the remnants suggests that both resulted from Type Ia explosions. The newly identified Fe-rich cores in MCSNR J0506−7025 and MCSNR J0527−7104 make them members of the expanding class of evolved Fe-rich remnants in the Magellanic Clouds.
Item Type: | Article |
---|---|
Additional Information: | *Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. |
Keywords: | ISM: supernova remnants; Magellanic Clouds; X-rays: ISM; |
Academic Unit: | Faculty of Science and Engineering > Experimental Physics |
Item ID: | 9877 |
Depositing User: | Emma Whelan |
Date Deposited: | 04 Sep 2018 15:44 |
Journal or Publication Title: | Astronomy & Astrophysics |
Publisher: | EDP Sciences |
Refereed: | Yes |
Related URLs: | |
URI: | https://mural.maynoothuniversity.ie/id/eprint/9877 |
Use Licence: | This item is available under a Creative Commons Attribution Non Commercial Share Alike Licence (CC BY-NC-SA). Details of this licence are available here |
Repository Staff Only (login required)
Downloads
Downloads per month over past year